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Outline of the talk

Some context/motivation: interpolation of distributions (bridges)

Optimal mass transport and Schrödinger’s bridge problem

Diffusing and vanishing Particles in the spirit of Schrödinger
– Bridges between unbalanced marginals
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Interpolation of distributions
aka Morphing
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Interpolation of distributions
Time-series analysis

Doppler frequency tracking Voice morphing

⇒
Noninvasive temperature sensing - temperature field
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Interpolation of distributions – unbalanced marginals
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Optimal mass transport

G. Monge (1871)

L. Kantorovich (1942)

and then McCann, Ganbgo, Brenier,
Benamou, Ambrosio,. . . (1990’s on)
Rachev-Ruschendorf, Villani, . . .

Chen-Georgiou-Pavon Briges with unbalanced marginals Simons Institute - 2021 6 / 30



Unbalanced marginals - before 2010

µ0(Ω0) 6= µ1(Ω1)

dmixed,κ(µ0, µ1) = inf
µ̂0,µ̂1

dW(µ̂0, µ̂1) + κ

1∑
i=0

‖µ̂i − µi‖TV

= sup
f

{∫
fd(µ0 − µ1) | ‖f ‖Lip ≤ 1, ‖f ‖∞ ≤ κ

}

µ̂0, µ̂1: noise-free measures
µi − µ̂i : noise components e.g.., see G-Karlsson-Takyar 2009
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Unbalanced marginals - post 2010

inf
ρ,v,ρ̃1

∫ 1

0

∫
Rm

ρ(t, x)‖v‖2 dx dt + α

∫
Rm

(ρ1(x)− ρ̃1(x))2 dx ,

∂ρ

∂t
+∇ · (ρv) = 0, ρ(0, ·) = ρ0(·), ρ(1, ·) = ρ̃1(·) (not necessarily = ρ1(·)).

inf
ρ,v,s

∫ 1

0

∫
Rm

{
ρ(t, x)‖v‖2 + αs(t, x)2

}
dx dt,

∂ρ

∂t
+∇ · (ρv) = s, ρ(0, ·) = ρ0(·), ρ(1, ·) = ρ1(·).

inf
ρ,v,r

∫ 1

0

∫
Rm

{
ρ(t, x)‖v‖2 + α

s2

ρ(t, x)

}
dx dt

∂ρ

∂t
+∇ · (ρv) = s, ρ(0, ·) = ρ0(·), ρ(1, ·) = ρ1(·).

see Liero-Mielke-Savaré (arxiv.org/pdf/1508.07941),

Peyré-Cuturi 2020, also Chen-G-Tannenbaum 2018
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Optimal Mass Transport regularization:
Schrödinger’s Bridge Problem (SBP)

Balanced marginals for now

A problem in large-deviations that leads to:

inf
(ρ,v)

∫
Rn

∫ 1

0

ρ(t, x)‖v(t, x)‖2dtdx ,

∂ρ

∂t
+∇ · (vρ) =

1

2
∆ρ

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y)

And a fluid-dynamic, time-symmetric, formulation:

inf
(ρ,v)

∫
Rn

∫ 1

0

[
‖v(t, x)‖2 + ‖1

2
∇ log ρ(t, x)‖2

]
ρ(t, x)dtdx ,

∂ρ

∂t
+∇ · (ρv) = 0,

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y).

Blaquière, Dai Pra, Pavon-Wakolbinger, Filliger-Hongler-Streit, Mikami,

Thieulien, Leonard, Chen-G-Pavon
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Schrödinger’s Bridge Problem (SBP)

Erwin Schrödinger
Schrödinger bridges 1931/32

∼ Nelson’s stochastic mechanics
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Schrödinger’s Bridge Problem (SBP)

Consider:

– Cloud of N independent Brownian particles (N large)

– empirical distr. ρ0(x)dx and ρ1(y)dy at t = 0 and t = 1, resp.

– ρ0 and ρ1 not compatible with transition mechanism

ρ1(y) 6=
∫ 1

0

p(0, x , 1, y)ρ0(x)dx ,

where

p(s, y , t, x) = [2π(t − s)]−
n
2 exp

[
− |x − y |2

2(t − s)

]
, s < t

Particles have been transported in an unlikely way

Schrödinger (1931): Of the many unlikely ways in which this could
have happened, which one is the most likely?
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Schrödinger’s Bridge Problem (SBP)
Large deviations formulation

min
P

H(P|R) = min
P

EP

[
log

dP

dR

]
over P ∈ {distributions on paths with marginals ρ0, ρ1};
H(·|·) is the relative entropy
R reference Wiener measure

Föllmer 1988: SBP is a large deviations problem of the empirical
distribution on paths ≡ maximum entropy problem via Sanov’s thm

Connection to stochastic control & OMT:
For prior the law of a diffusion: dX = vdt + dB, Girsanov’s thm:

EQ

[
log

dQ

dR

]
= EQ

[
1

2

∫ 1

0
‖v‖2ds

]
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Schrödinger’s Bridge Problem (SBP)
Stochastic control formulation & structure of solutions

• Girsanov’s thm gives:

inf
(ρ,v)

∫
Rn

∫ 1

0
‖v(t, x)‖2ρ(t, x)dtdx ,

∂ρ

∂t
+∇ · (vρ) =

1

2
∆ρ

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y)

• minH(P|R) ⇒ ρ(t, x) = ϕ(t, x)ϕ̂(t, x) (t-time marginal of P)
where ϕ and ϕ̂ solve the Schrödinger’s system:

ϕ(t, x) =

∫
p(t, x , 1, y)ϕ(1, y)dy , ϕ(0, x)ϕ̂(x , 0) = ρ0(x)

ϕ̂(t, x) =

∫
p(0, y , t, x)ϕ̂(0, y)dy , ϕ(1, x)ϕ̂(1, x) = ρ1(x).
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SBP schematic - marginal
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SBP schematic - prior
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SBP schematic - prior vs. mismatched end-point marginal
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SBP schematic - Schrödinger bridge
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Schrödinger system

−∂ϕ
∂t (t, x) = 1

2 ∆ϕ(t, x)

∂ϕ̂
∂t (t, x) = 1

2 ∆ϕ̂(t, x)

ϕ(0, x)ϕ̂(0, x) = ρ0(x)
ϕ(1, x)ϕ̂(1, x) = ρ1(x)
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For dXt = b(t,Xt)dt + σ(t,Xt)dWt (?) SBP theory outline

a(t,X ) := σ(t,X )σ(t,X )′ > 0

Notation:
R : “prior” law of (?) on paths
Rt , Rst : marginals at times t, and jointly t, s
Rxy (·) law conditioned on X0 = x , X1 = y
disintegration of measure R(·) =

∫
x

∫
y R

xy (·)R01(dxdy)

SBP: Find

P? = argmin
P
{H(P|R) | P0 = ρ0, P1 = ρ1}

H(P|R) = H(P01|R01) +
∫
H(Pxy |Rxy )P01(dxdy)

Static SBP: Find

P?01 = argmin
P01

{H(P01|R01) | P0 = ρ0, P1 = ρ1}
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For dXt = b(t,Xt)dt + σ(t,Xt)dWt (?) SBP theory outline

Relation static-dynamic SBP:

P?(·) =

∫
x

∫
y
Rxy (·)P?01(dxdy)

Solution:
Under mild/natural assumptions, ∃ f , g so that:
P?01 = f (X0)g(X1)R01. These are solutions of the Schrödinger system

dρ0

dR0
(x) = f (x)R(g(X1) | X0 = x),

dρ1

dR1
(y) = g(y)R(f (X0) | X1 = y).

P?01 = f (X0)g(X1)R01 ⇔ P? = f (X0)g(X1)R.

Chen-Georgiou-Pavon Briges with unbalanced marginals Simons Institute - 2021 20 / 30



For dXt = b(t,Xt)dt + σ(t,Xt)dWt (?) SBP theory outline

Solution:
for ϕ̂(0, x) := f (x)R0(x), ϕ(1, y) := g(y)

∂tϕ̂ = −∇ · (bϕ̂) +
1

2

n∑
i ,j=1

∂2(aij ϕ̂)

∂xi∂xj

∂tϕ = −b · ∇ϕ− 1

2

n∑
i ,j=1

aij
∂2ϕ

∂xi∂xj

ρ0 = ϕ(0, ·)ϕ̂(0, ·)
ρ1 = ϕ(1, ·)ϕ̂(1, ·).

Then, P?t = ρ(t, ·) = φ(t, ·)φ̂(t, ·) (t-time marginal) of the law of

dXt = (b(t,Xt) + a(t,Xt)∇ logϕ(t,Xt))dt + σ(t,Xt)dWt

Chen-Georgiou-Pavon Briges with unbalanced marginals Simons Institute - 2021 21 / 30



Schrödinger’s Bridge with losses
most likely evolution of diffusing and vanishing particles

Consider:

– Cloud of N “tracer” particles (N large)

– empirical distr. ρ0(x)dx and ρ1(y)dy at t = 0 and t = 1, resp.

– ρ0 and ρ1 not compatible with transition mechanism

ρ1(y) 6=
∫ 1

0

p(t0, x , t1, y)ρ0(x)dx ,

Besides having been transported in an unlikely way,
the particles remain in suspension for a duration of time, and thus,

at t = 1 a random portion of the particles have been lost (sunk), and
∫
ρ1 <

∫
ρ0

Question - in the spirit of Schrödinger:
What is the most likely evolution that accounts for losses?
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Stochastic transport with losses – Prior:

dXt = b(t,Xt)dt + σ(t,Xt)dWt (??)

with killing rate V (t, x)

State space: X = Rn ∪ {c} with c a “coffin state”

Paths Ω = D([0, 1],X ) càdlàg
(Xt on Rn with killing) ≡ (Xt on X with a law on P(Ω))

p0, p1 natural augmentation of ρ0, ρ1 so that p0, p1 ∈ P(X )
i.e., assuming

∫
ρ1 = 1, set p0 = (ρ0(·), 0), and p1 = (ρ1(·), 1−

∫
ρ1)

P? := arg min
P∈P(Ω)

{H(P | R) | P0 = p0,P1 = p1} .
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Schrödinger Bridge with losses
unbalanced SBP –

∫
ρ0 >

∫
ρ1

Prior: Fokker-Planck equation for a diffusion with killing rate V (t, x)

∂tRt +∇ · (bRt) + VRt =
1

2

n∑
i ,j=1

∂2(aijRt)

∂xi∂xj
.

SB with losses: “new φ” = (φ(t, ·), ψ(t)) on X , same for “new ψ,” via

the Schrödinger system:

∂t ϕ̂ = −∇ · (bϕ̂)− V ϕ̂ +
1

2

n∑
i,j=1

∂2(aij ϕ̂)

∂xi∂xj

dψ̂

dt
=

∫
V ϕ̂(t, x)dx

∂tϕ = −b · ∇ϕ + Vϕ−
1

2

n∑
i,j=1

aij
∂2ϕ

∂xi∂xj
− Vψ

dψ

dt
= 0

with b.c.

ρ0 = ϕ(0, ·)ϕ̂(0, ·)
ρ1 = ϕ(1, ·)ϕ̂(1, ·)

ψ̂(0) = 0

ψ(1)ψ̂(1) = 1−
∫
ρ1.

⇒ P? = f (X0)g(X1)R

P? = (P?t , q
?
t ), R = (Rt , st)
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Schrödinger Bridge with losses – dynamic formulation

P? is the law of a diffusion

dXt = (b(t,Xt) + a(t,Xt)∇ logϕ(t,Xt))dt + σ(t,Xt)dWt

with killing rate ψV /ϕ, and Fokker-Planck equation

∂tPt +∇ · ((b + a∇ logϕ)Pt) =
1

2

n∑
i ,j=1

∂2(aijPt)

∂xi∂xj
− ψ

ϕ
VPt .

mass q(t) on c:
dqt
dt = ψ(t)

∫
V ϕ̂(t, x)dx =

∫ ψ
ϕVPtdx
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Schrödinger Bridge with losses – fluid dynamic formulation

Contrast with original SB the added terms:

min
Pt(·),u(t,·)

∫ 1

0

∫
Rn

[
1

2
‖u(t, x)‖2Pt + (α logα− α + 1)VPt ]dxdt

∂tPt +∇ · ((b + σu)Pt) + αVPt −
1

2

n∑
i ,j=1

∂2(aijPt)

∂xi∂xj
= 0

P0 = ρ0, P1 = ρ1.

u?(t, x) = σ(t, x)′∇ logϕ(t, x)

α?(t, x) = ψ(t)
ϕ(t,x)

with marginals:
P?t (x) = ϕ(t, x)ϕ̂(t, x) on Rn

qt = ψ(t)ψ̂(t) on c
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SBP on Feynman-Kac reweighed processes
Earlier attempts to “model” losses – Nagasawa, Wakolbinger, Leonard,
Chen-G-Pavon, . . .

Feynman-Kac reweighing of the prior

R̂ := exp
(
−
∫ 1

0
V (t,Xt)dt

)
R 7→ P̂? = f (X0) exp

(
−
∫ 1

0
V (t,Xt)dt

)
g(X1)R

via
P̂? := min

P∈P(Ω)

{
H(P | R̂) | P0 = ρ0, P1 = ρ̂1

}
,

with ρ̂1 normalized distribution of survived particles

- upside: simpler Schrödinger system
- downside: not physical & inconsistent with Schrödinger’s dictum

ρ0 distribution of all starting particles, ρ1 surviving particles

starting distribution of survived partices in not knowable

no mechanism to update V

when ρ1 consistent with prior model and losses in V , P̂? 6= R̂

marginals of R̂ and P̂? have constant mass
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Numerical example

Prior:
dXt = σdWt with killing rate V (t, x) = 1.
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Numerical example

survived mass

reweighed process, regardless of end-point mass
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Diffusing and Vanishing Particles in the Spirit of Schrödinger
Bridges with unbalanced marginals

Yongxin Chen Michele Pavon

Thank you for your attention

CGP arxiv.org/abs/2108.02879
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