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Motivation

o [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry

o [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for
irreducible reversible Markov processes

2/21



Motivation

o [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry

o [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for
irreducible reversible Markov processes

o0 O o% O ®-.0 — /X1 = X0)
[ ] (\. @ { ] (). & [ ) u. [ ] N— oo dXe = Xto(rl Xt )dBe
e N [ ]
e e e e e Orp = A (x(1 — x)p)
(a) (b) ]
Moran process i € [0, N] Kimura eq. x € [0, 1]

2/21



Motivation

o [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry

o [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for
irreducible reversible Markov processes

o0 O o% O ®-.0 — /X1 = X0)
[ ] (\. @ { ] (). & [ ) u. [ ] N— oo dXe = Xto(rl Xt )dBe
e N [ ]
e e e e e Orp = A (x(1 — x)p)
(a) (b) ]
Moran process i € [0, N] Kimura eq. x € [0, 1]

@ I absorbing states, delicate interactions and irreversibility [Chalub M. Ribeiro
Souza '21]

2/21



Motivation

o [JKO '98, Otto '00] Fokker-Planck = gradient-flow with respect to OT geometry

o [Maas '11, Mielke '11, Chow-Huang-Li-Zhou '12] discrete counterpart for
irreducible reversible Markov processes

® ) ; X=X
. (_)ooo :g.( ol o o Nosoo dXe = /X (1 = X:)dB:
. ® a® @ or
e e e e e Otp = A (x(1 — x)p)
(a) (&) ()
Moran process i € [0, N] Kimura eq. x € [0, 1]

@ I absorbing states, delicate interactions and irreversibility [Chalub M. Ribeiro
Souza '21]

Need for an adapted bulk/interface geometry!

(but failed in the end)
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In this talk Q C R? is compact and 8Q C Q
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Dynamical OT

Theorem (Benamou-Brenier '00)

For po, p1 € P(Q2) the Wasserstein distance

i
W(po, p1) = il { / / §|"t(><)|2dpt(x)df s.t. Orpr +div(prve) = 0}
v | Jo Ja

with pli—0,1 = po,1 and no-flux boundary conditions on 99
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Dynamical reaction

Definition (Fisher-Rao)
For po, p1 € M™(Q) with possibly |po| # |p1]

. Lra
FR?(po, p1) = min {/ / —|re(x)[Pdpe(x)dt  st. Bepr = pere
psr 0o Ja?2

popular in statistics and geometric information theory ~» Fisher information metric

Fundamental example: pg = dx;, p1 = 6x;

pe=[(1-t)/m+ tym)

X0 X1

mass variations, based on vertical displacements
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Unbalanced OT

Definition /theorem (Wasserstein-Fisher-Rao)

For po, p1 € M*(Q) and K > 0
WFR2(po, p1) = m|n {/ / = (Jve(x)? + K3|re(x)]?) dpe(x) dt

s.t. Oepr +div(prve) = ptrt}

is a distance on M™(Q) with nice properties [KMV 16, LMS '18, CPSV '18]

Infimal convolution between horizontal Wasserstein and vertical Fisher-Rao
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Some convex analysis

Orpr + div(peve) = pere / / |2 + H2|I‘t X)|2) dpt(x) dt

@ mass/momentum variables, convex 1-homogeneous action

G + K|
p

(p, G, f)=(p,pv,pr)  and (v +r*r*)p =

@ convex constraint/functional over measures (p, G, f) € Mt x M9 x M

1 1 G: |2 2|£12
Bepe + div G = f; 5/ /Mdt
0
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The bulk/interface setup
(AKA the ring-road )

Key ingredients:
v’ transport in the city
v’ transport on the road
v atoll cost k >0

Q = downtown, ' = 9Q = ring-road
8/21



Bulk/interface interactions

Think w = cars in the city , and v = cars on the road I

POQ) = {p = (w,7) EMT(Q) x MT(T) st ||+ = 1}
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The ring-road distance

Definition /theorem [M '20]
For po, p1 € PP(Q)

F2 G2 2f2
W2(po, p1) = min / IFel dt+/ /‘ d +h|t|
0o Ja 2wt

Orwt +div(F:) =0 inQ . .
s.t. Fi .tn _ ft( t) on 5Q and  O0:yr + div(Gt) = f¢ in F}

is a distance on P®(Q), and minimizing geodesics t — p; always exist with

ot = wr + 7t € P(Q).

@ only coupled through the flux condition
o weak formulation allows f # 0 even if F =0

o local stoichiometry w = v with rate 0y = f = —0rw
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A typical proof: W (po, p1) < +00

{8tw+d|vF—0 in £ and Oy+divG=f inl

F-n=f on 9Q

wo

0
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70

X*
Step 1: pure Wasserstein transport inside Q with f =0,G =0

finite cost szz < 00
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A typical proof: Wy (po, p1) < +00

and Oy+divG=f inl
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Step 3: pure Fisher-Rao reaction w = v with F=0,G=0and f >0

finite cost FR2 < oo
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A typical proof: Wy (po, p1) < +00

and Oy+divG=f inl

Otw+divF =0 inQ
F-n=f on 9Q

x*

Conclusion: we just connected any arbitrary pg to p* = (0, d,+) with finite cost.
O
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Duality
Existence by Fenchel-Rockafellar (von Neumann min-max)

inf A
(w,v)EL
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Duality
Existence by Fenchel-Rockafellar (von Neumann min-max)

inf A= infsup{A+ L} =sup mf {A + L}
(weL W b1 b

Proposition (Hamilton-Jacobi duality)

W:%(Pmﬂl) = ZU!Z { /ﬂ¢1w1 — ¢owo +/¢1’Y1 — Yoo st ¢, € C! and
, r

drd+ 1|VP2 <0 in (0,1) x Q
Bt + 3IVHI2 + 555l — ¢2 <0 in (0,1) x T

y
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Duality
Existence by Fenchel-Rockafellar (von Neumann min-max)

inf A= infsup{A+ L} =sup mf {A + L}
(weL W b1 b

Proposition (Hamilton-Jacobi duality)

WE:(POMJI) = Zufl: { /Q¢1w1 — ¢owo +/¢1’Y1 — Yoo st ¢, € C! and
, r

dep+ 3IVe2 <0 in (0,1) x Q
Bt + 3IVHI2 + 555l — ¢2 <0 in (0,1) x T

Corollary

For fixed pg, p1 the map k — Wi (po, p1) is monotone 1

Proof: S,/ C S, for k' < k.
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Optimality and geodesics

Wﬁ(po, p1) = sup { /Q Prw1 — Powo + /l' Y171 — Yoo st (P, ) subsolutions}

Hopf-Lax monotonicity suggests saturating HJ inequalities

Theorem (certification)

drw + div(wVe) =0 e drd+ LIVe2 =0 w—ae.
= | 0y + div(y V) =y 252 O+ SV + 35 —¢2 =0 v—ae

w2

then t — p; = (wt,vt) € PP is a minimizing geodesic between pg, p1.

@ allows to check optimality of possible ansatz

o determines the built-in Riemannian structure a /la Otto
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One-point geodesics

In classical OT, Eulerian/Lagrangian duality d?(xo,x1) = W?(x,,6x, )

Pt = 5Xr v

X0 Xt X1

minimizing VV-geodesics constant-speed particles
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One-point geodesics

XR

Question J

Compute the W, distance and geodesic between pg = (dx,,0) and p1 = (0, xz)?

o clearly a 1D problem along I, coordinate r € [0, R] with R = |xg — xo

@ cannot simply be a traveling Dirac (co cost)
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Theorem (one-point geodesics)

For po = (d0,0) and p1 = (0,0r) we have

2 1 « 2 2 R2
WK(PO,P1)=§ﬁ(R + ak?®) a=1+ 1+§>2

and the geodesic is

Rt\“ 1
wr =« (T) 7X[Rt,R](r)dr and v = t%
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Theorem (one-point geodesics)

For po = (d0,0) and p1 = (0,0r) we have

1 «
W2 (po, p1) = Eﬁ(m + ax?)

and the geodesic is

@=il4F

R2
1+7>2
K
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Theorem (one-point geodesics)

For po = (d0,0) and p1 = (0,0r) we have

2 1 « 2 2 R2
Wn(p07pl):§ﬁ(R + ak?®) a=1+ 1+§>2

and the geodesic is

Rt\“ 1
wt =« (T) ?X[Rt,R](r)dr and v =t

@ Mass splitting and unbounded speeds # classical OT

0
o W2(po, p1) “2%% oo and W2(po, p1) “2% 1R2
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Idea of proof

(clever ansatz + certification)

y €10, Yd] e

% R T

© superposition of Lagrangian particles (Xty)ye[OJ] with mass dy
@ constant speeds, only keep y € [0, Y¢]

Y d
wi(e) = / dxr(e)dy and —X{ = U(y)
0 t dt
© optimize with respect to U(-)
1 rr(v) 1 )
cost = / / 5dy|U(y)| dt + “reaction”
o Jo
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Theorem

Geometrical /topological properties

Writing o; = wi + ;i € P(2), there holds

Moreover

Wi (o, 01) < W2(po, p1) < Wa(wo,w1) + WE(v0,71)
—_——

Tfnm

We(pn,p) = 0 iff  wy X w and Yn X y

and (PP, W) is complete.

1)

Remarks:

o Completeness needed for the “Italian voodoo” [AGS '08]

o For fixed k all inequalities are sharp but can be strict

o In (1) the r.h.s. can be +oo if |wg| # |w1| or |y0| # |11l
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The small- and large-toll limits

Theorem
There holds

,.!TOW’%(pO’pl):WS%(Qle) with o=w+7vy

and
nﬂToo W2 (po, p1) = W3 (wo,w1) + W(70,71) € [0, +o0]

and geodesics converge as well (Gamma-limit).

Interpretation:
o As k — 0 the (w,~) cars need not be distinguished and superpose into p = w +

@ As k — 400 transfer of mass becomes infinitely expensive, hence independent
OT problems in Q,T
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Perspectives

static formulation 77
gradient-flows and PDEs
dynamical evolution of interfaces [Canceés-Merlet?]

complex structures, different flux costs

2
2 _fl
0(w,7)

numerics, with T. Gallouét and M. Laborde (ALG2-JKO)

eg O(w,y)=[w—7]"
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Thank you for listening
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