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Léonard Monsaingeon
IECL Nancy & GFM Lisbon

Dynamics and Discretization: PDEs, Sampling, and Optimization
Simons Institute, Berkeley

October 26th, 2021

〈φ|µ〉 Grupo deFísica Matemática
da Universidade de Lisboa

1 / 21



Motivation

[JKO ’98, Otto ’00] Fokker-Planck = gradient-flow with respect to OT geometry

[Maas ’11, Mielke ’11, Chow-Huang-Li-Zhou ’12] discrete counterpart for
irreducible reversible Markov processes

N→∞−−−−→
dXt =

√
Xt (1− Xt )dBt

or
∂tρ = ∆ (x(1− x)ρ)

Moran process i ∈ [[0,N]] Kimura eq. x ∈ [0, 1]

∃ absorbing states, delicate interactions and irreversibility [Chalub M. Ribeiro
Souza ’21]

Need for an adapted bulk/interface geometry!

(but failed in the end)
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In this talk Ω ⊂ Rd is compact and ∂Ω ⊂ Ω
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Dynamical OT

Theorem (Benamou-Brenier ’00)

For ρ0, ρ1 ∈ P(Ω) the Wasserstein distance

W2(ρ0, ρ1) = min
ρ,v

{∫ 1

0

∫
Ω

1

2
|vt (x)|2dρt (x) dt s.t. ∂tρt + div(ρt vt ) = 0

}

with ρ|t=0,1 = ρ0,1 and no-flux boundary conditions on ∂Ω
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Dynamical reaction

Definition (Fisher-Rao)

For ρ0, ρ1 ∈M+(Ω) with possibly |ρ0| 6= |ρ1|

FR2(ρ0, ρ1) = min
ρ,r

{∫ 1

0

∫
Ω

1

2
|rt (x)|2dρt (x) dt s.t. ∂tρt = ρt rt

}

popular in statistics and geometric information theory ; Fisher information metric

Fundamental example: ρ0 = δx0 , ρ1 = δx1

ρt =
[
(1− t)

√
ρ0 + t

√
ρ1

]2
x0 x1

mass variations, based on vertical displacements
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Unbalanced OT

Definition/theorem (Wasserstein-Fisher-Rao)

For ρ0, ρ1 ∈M+(Ω) and κ > 0

WFR2
κ(ρ0, ρ1) := min

ρ,v,r

{∫ 1

0

∫
Ω

1

2

(
|vt (x)|2 + κ2|rt (x)|2

)
dρt (x) dt

s.t. ∂tρt + div(ρt vt ) = ρt rt

}

is a distance on M+(Ω) with nice properties [KMV ’16, LMS ’18, CPSV ’18]

Infimal convolution between horizontal Wasserstein and vertical Fisher-Rao
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Some convex analysis

∂tρt + div(ρt vt ) = ρt rt

∫ 1

0

∫
Ω

1

2

(
|vt (x)|2 + κ2|rt (x)|2

)
dρt (x) dt

mass/momentum variables, convex 1-homogeneous action

(ρ,G , f ) = (ρ, ρv , ρr) and (|v |2 + κ2r2)ρ =
|G |2 + κ2|f |2

ρ

convex constraint/functional over measures (ρ,G , f ) ∈M+ ×Md ×M

∂tρt + div Gt = ft
1

2

∫ 1

0

∫
Ω

|Gt |2 + κ2|ft |2

ρt
dt
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The bulk/interface setup
(AKA the ring-road )

Key ingredients:

X transport in the city

X transport on the road

X a toll cost κ > 0

Ω = downtown, Γ = ∂Ω = ring-road
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Bulk/interface interactions

Ω

∂Ω = Γ

ω γ

Think ω = cars in the city Ω, and γ = cars on the road Γ

P⊕(Ω) :=

{
ρ = (ω, γ) ∈M+(Ω)×M+(Γ) s.t. |ω|+ |γ| = 1

}
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The ring-road distance

Definition/theorem [M ’20]

For ρ0, ρ1 ∈ P⊕(Ω)

W2
κ(ρ0, ρ1) = min

{∫ 1

0

∫
Ω

|Ft |2

2ωt
dt +

∫ 1

0

∫
Γ

|Gt |2 + κ2|ft |2

2γt
dt

s.t.
∂tωt + div(Ft ) = 0 in Ω
Ft · n = ft on ∂Ω

and ∂tγt + div(Gt ) = ft in Γ

}

is a distance on P⊕(Ω), and minimizing geodesics t 7→ ρt always exist with

%t = ωt + γt ∈ P(Ω).

only coupled through the flux condition

weak formulation allows f 6= 0 even if F = 0

local stoichiometry ω −⇀↽− γ with rate ∂tγ = f = −∂tω
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A typical proof: Wκ(ρ0, ρ1) < +∞{
∂tω + div F = 0 in Ω

F · n = f on ∂Ω
and ∂tγ + div G = f in Γ

x∗

ω0

γ0
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Ω <∞
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A typical proof: Wκ(ρ0, ρ1) < +∞{
∂tω + div F = 0 in Ω

F · n = f on ∂Ω
and ∂tγ + div G = f in Γ

x∗

Conclusion: we just connected any arbitrary ρ0 to ρ∗ = (0, δx∗ ) with finite cost.

11 / 21



Duality

Existence by Fenchel-Rockafellar (von Neumann min-max)

inf
(ω,γ)∈L

A

= inf
ω,γ

sup
φ,ψ
{A+ L} = sup

φ,ψ
inf
ω,γ
{A+ L}

Proposition (Hamilton-Jacobi duality)

W2
κ(ρ0, ρ1) = sup

φ,ψ

{∫
Ω
φ1ω1 − φ0ω0 +

∫
Γ
ψ1γ1 − ψ0γ0 s.t. φ, ψ ∈ C 1 and{

∂tφ+ 1
2
|∇φ|2 ≤ 0 in (0, 1)× Ω

∂tψ + 1
2
|∇ψ|2 + 1

2κ2 |ψ − φ|2 ≤ 0 in (0, 1)× Γ

}

Corollary

For fixed ρ0, ρ1 the map κ 7→ Wκ(ρ0, ρ1) is monotone ↑

Proof: Sκ′ ⊂ Sκ for κ′ < κ.
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Optimality and geodesics

W2
κ(ρ0, ρ1) = sup

{∫
Ω
φ1ω1 − φ0ω0 +

∫
Γ
ψ1γ1 − ψ0γ0 s.t. (φ, ψ) subsolutions

}

Hopf-Lax monotonicity suggests saturating HJ inequalities

Theorem (certification)

If

{
∂tω + div(ω∇φ) = 0

∂tγ + div(γ∇ψ) = γ ψ−φ
κ2

with

{
∂tφ+ 1

2
|∇φ|2 = 0 ω − a.e.

∂tψ + 1
2
|∇ψ|2 + 1

2κ2 |ψ − φ|2 = 0 γ − a.e.

then t 7→ ρt = (ωt , γt ) ∈ P⊕ is a minimizing geodesic between ρ0, ρ1.

allows to check optimality of possible ansatz

determines the built-in Riemannian structure à la Otto
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One-point geodesics

In classical OT, Eulerian/Lagrangian duality d2(x0, x1) =W2(δx0 , δx1 )

ρt = δxt

x0 x1xt

v

⇐⇒

minimizing W-geodesics constant-speed particles
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One-point geodesics

xR

x0

I

Ω

Γ

Question

Compute the Wκ distance and geodesic between ρ0 = (δx0 , 0) and ρ1 = (0, δxR )?

clearly a 1D problem along I , coordinate r ∈ [0,R] with R = |xR − x0|
cannot simply be a traveling Dirac (∞ cost)
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Theorem (one-point geodesics)

For ρ0 = (δ0, 0) and ρ1 = (0, δR ) we have

W2
κ(ρ0, ρ1) =

1

2

α

α− 1

(
R2 + ακ2

)
α = 1 +

√
1 +

R2

κ2
> 2

and the geodesic is

ωt = α

(
Rt

r

)α 1

r
χ[Rt,R](r)dr and γt = tα

I

0 R r

ω0 γ1
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ωt = α

(
Rt

r

)α 1

r
χ[Rt,R](r)dr and γt = tα

0 R r

γ1
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Theorem (one-point geodesics)

For ρ0 = (δ0, 0) and ρ1 = (0, δR ) we have

W2
κ(ρ0, ρ1) =

1

2

α

α− 1

(
R2 + ακ2

)
α = 1 +

√
1 +

R2

κ2
> 2

and the geodesic is

ωt = α

(
Rt

r

)α 1

r
χ[Rt,R](r)dr and γt = tα

Mass splitting and unbounded speeds 6= classical OT

W2
κ(ρ0, ρ1)

κ→∞−−−−→ +∞ and W2
κ(ρ0, ρ1)

κ→0−−−→ 1
2

R2
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Idea of proof
(clever ansatz + certification)

0 R rX y
t

U(y)

ωt

γty ∈ [0,Yt ]

1 superposition of Lagrangian particles (X y
t )y∈[0,1] with mass dy

2 constant speeds, only keep y ∈ [0,Yt ]

ωt (•) =

∫ Yt

0
δX

y
t

(•) dy and
d

dt
X y

t = U(y)

3 optimize with respect to U(·)

cost =

∫ 1

0

∫ τ(y)

0

1

2
dy |U(y)|2dt + “reaction”

16 / 21



Geometrical/topological properties

Theorem

Writing %i = ωi + γi ∈ P(Ω), there holds

W2
Ω(%0, %1) ≤ W2

κ(ρ0, ρ1)︸ ︷︷ ︸
↑ in κ

≤ W2
Ω(ω0, ω1) +W2

Γ(γ0, γ1) (1)

Moreover

Wκ(ρn, ρ)→ 0 iff ωn
∗
⇀ ω and γn

∗
⇀ γ

and (P⊕,Wκ) is complete.

Remarks:

Completeness needed for the “Italian voodoo” [AGS ’08]

For fixed κ all inequalities are sharp but can be strict

In (1) the r.h.s. can be +∞ if |ω0| 6= |ω1| or |γ0| 6= |γ1|
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The small- and large-toll limits

Theorem

There holds

lim
κ→0
W2
κ(ρ0, ρ1) =W2

Ω(%0, %1) with % = ω + γ

and
lim

κ→+∞
W2
κ(ρ0, ρ1) =W2

Ω(ω0, ω1) +W2
Γ(γ0, γ1) ∈ [0,+∞]

and geodesics converge as well (Gamma-limit).

Interpretation:

As κ→ 0 the (ω, γ) cars need not be distinguished and superpose into % = ω + γ

As κ→ +∞ transfer of mass becomes infinitely expensive, hence independent
OT problems in Ω, Γ
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Perspectives

static formulation ??

gradient-flows and PDEs

dynamical evolution of interfaces [Cancès-Merlet?]

complex structures, different flux costs

κ2 |f |2

θ(ω, γ)
e.g. θ(ω, γ) = [ω − γ]+

numerics, with T. Gallouët and M. Laborde (ALG2-JKO)
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Thank you for listening
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