On the Convergence of Monte Carlo Methods with Stochastic Gradients

Quanquan Gu

Department of Computer Science UCLA

Simons Institute Workshop on Sampling Algorithms and Geometries on Probability Distributions Joint work with Difan Zou and Pan Xu 10/1/2021

Sampling Problems

- \blacktriangleright The goal is to generate samples ${\bf x}$ from the probability density function . *π*(d**x**)**x**
- In many cases, the target distribution is represented by $\pi \propto e^{-f(x)}$, where the negative log-density function $f(\mathbf{x}): \mathbb{R}^d \to \mathbb{R}$ is known and satisfies certain regularity conditions, i.e., (strongly) convex, smooth, etc. *π* ∝ *e*−*f*(**x**) $f(\mathbf{x}): \mathbb{R}^d \rightarrow \mathbb{R}$

Sampling Problems in Large-Scale Bayesian Learning

In Bayesian Learning, the target distribution π is typically the posterior given i.i.d. observations ${\mathbf z}_i\}_{i=1,...,n}$.

π

where $f_i(\mathbf{x}) = -\log(p(\mathbf{z}_i|\mathbf{x})) - n^{-1} \cdot \log(p(\mathbf{x}))$

$$
\pi = p(\mathbf{x} | \mathbf{z}_1, ..., \mathbf{z}_n) \propto p(\mathbf{z}_1, ..., \mathbf{z}_n | \mathbf{x}) \cdot p(\mathbf{x}) = p(\mathbf{x}) \cdot \prod_{i=1}^n p(\mathbf{z}_i | \mathbf{x})
$$

Posterior Likelihood Prior

‣ Then *π* can be rewritten as

 $\pi \propto e^{-f(x)} = e^{-\sum_{i=1}^{n} (x_i - \sum_{i=1}^{n} ($ $\int_{i=1}^{n} f_i$ (x) where f

Markov Chain Monte Carlo methods

• For $t = 1, \ldots, T$

• **Proposal**: $X_{t+1} = X_t + g_f(X_t)$

• **Reject**: $\mathbf{x}_{t+1} = \mathbf{x}_t$ with probability $1 - \alpha_f(\mathbf{x}_t)$

‣ MCMC method

$$
\mathbf{y} \mathbf{1} - \left[\alpha_f(\mathbf{x}_t, \mathbf{x}_{t+1}) \right]
$$

A random vector depending on *f* and **x***^t*

Metropolis-Hasting acceptance probability

‣ Examples: random walk Metropolis [Mengersen and Tweedie, 1996], ball walk [Lovasz and Simonovits, 1990], Metropolis-adjusted Langevin algorithms (MALA) [Robert and Tweedie 1996], Hamiltonian Monte Carlo

(HMC) [Duane et. al., 1987]

Hamiltonian Monte Carlo

‣ ODE description

$$
\frac{d\mathbf{x}(t)}{dt} = \frac{\partial H(\mathbf{x}(t), \mathbf{p}(t))}{\partial \mathbf{p}} = \mathbf{p}(t)
$$

$$
\frac{d\mathbf{p}(t)}{dt} = -\frac{\partial H(\mathbf{x}(t), \mathbf{p}(t))}{\partial \mathbf{x}} = -\nabla f(\mathbf{x}(t))
$$

‣(Idealized) Hamiltonian Monte Carlo Method

• $\mathbf{x}_{t+1} = \mathbf{x}_t + \int_{\tau=0}^{t_0} \mathbf{p}(\tau) d\tau$, where *τ*0 $\int_{\tau=0}^{t_0} \mathbf{p}(\tau) d\tau$, where $\mathbf{x}(0) = \mathbf{x}_t$

Key property: When $t \to \infty$, X_t

$$
= \mathbf{x}_t, \; \mathbf{p}(0) \sim N(0, \mathbf{I})
$$

$$
\sim \pi \propto e^{-f(\mathbf{x})}
$$

Duane et. al., Hybrid monte carlo. Physics letters B, 1987

$H(\mathbf{x}, \mathbf{p}) = f(\mathbf{x}) + ||\mathbf{p}||_2^2$ Hamiltonian energy $H(\mathbf{x}, \mathbf{p}) = f(\mathbf{x}) + ||\mathbf{p}||_2^2/2$

Underdamped Langevin Dynamics

- ‣ SDE description $d**v**(t) = -\gamma \mathbf{v}(t)dt - u \nabla f(\mathbf{x}(t))dt + \sqrt{2\gamma u} \cdot dB(t)$ $d\mathbf{x}(t) = \mathbf{v}(t)dt$
- (Idealized) Underdamped Langevin MCMC Method

•
$$
\mathbf{x}_{t+1} = \mathbf{x}_t + \int_{\tau=0}^{\eta} \mathbf{v}(\tau) d\tau,
$$

\n $\mathbf{v}_{t+1} = \mathbf{v}_t + \int_{\tau=0}^{\eta} - [\gamma \mathbf{v}(\tau) + u \nabla f(\mathbf{x}(\tau))] d\tau + \sqrt{2\gamma u \eta} \cdot \boldsymbol{\xi}_t$
\nwhere $\mathbf{v}(0) = \mathbf{v}_t$, $\mathbf{x}(0) = \mathbf{x}_t$, $\boldsymbol{\xi}_t \sim N(0, \mathbf{I})$

Key property: When $t \to \infty$, $(\mathbf{x}_t, \mathbf{v}_t)$

$$
)\sim \pi \propto e^{-f(\mathbf{x})-\|\mathbf{v}\|_2^2/2}
$$

Friction Potential Brownian motion

Hendrik Anthony Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 1940.

MCMC with Stochastic Gradients

- ▶ Both HMC and underdamped LMC involve the calculation of the gradient $\nabla f(\mathbf{x})$, which becomes inefficient when *n* is large.
- ‣ A commonly used solution is to calculate the stochastic gradient using a randomly sampled mini-batch of data.

HMC with Stochastic Gradients

- ‣ Stochastic Gradient Hamiltonian Monte Carlo Method
	- \blacktriangleright Input \mathbf{x}_0 , η , T , **x**₀, $η$, T , K
	- ‣ For $t=0,...,T$
		- Let $\mathbf{p}_0 \sim \mathcal{N}(0, \mathbf{I})$
		- Let $q_0 = x_t$
		- For $k = 0, ..., K 1$

$$
\bullet \ \mathbf{p}_{k+1/2} = \mathbf{p}_k - \frac{\eta}{2} \mathbf{g}(\mathbf{q}_k, \xi_k)
$$

$$
\bullet \ \mathbf{q}_{k+1} = \mathbf{q}_k + \eta \mathbf{p}_{k+1/2}
$$

• $P_{k+1} = P_k - \frac{\eta}{2}$ 2 **g**(**q**_{*k*+1}, ξ _{*k*+1/2})

• Let $X_{t+1} = q_K$ **Skip the MH step**

‣ Output **x***T*

Proposal: Numerically solving Hamilton's equation via stochastic gradients **g**(**q***k*, *ξk*)

Zou and Gu, On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients, ICML 2021

Leapfrog numerical integrator

Key Questions in the Convergence Analysis

- using stochastic gradients?
- error?

Inner Loop: What's the approximation error of the Leapfrog integrator

‣ **Outer Loop:** Can the approximate ODE solutions lead to small sampling

Assumptions on the Target Distribution

- ‣ Assumptions:
	- Strongly log-concave distribution: $f(\mathbf{x})$ is μ -strongly convex
	- Log-smooth distribution: $f(\mathbf{x})$ is L -smooth,
	- Define $κ = L/μ$ be the condition number
	- Bounded variance: For all iterate \mathbf{q}_k , $\mathbb{E}[\|\mathbf{g}(\mathbf{q}_k,\xi_k)-\nabla f(\mathbf{q}_k)\|_2^2] \leq \sigma^2$, where the expectation is taken on both \mathbf{q}_k and $\mathbf{\xi}_k$.

Approximation Error of the Numerical ODE Solver (Inner Loop)

 \blacktriangleright Define 3 sequences ($\mathbf{q}_0 = \mathbf{x}_t$):)

$$
(\mathcal{S}_{\eta}\mathbf{q}_k, \mathcal{S}_{\eta}\mathbf{p}_k) = (\mathbf{q}_{k+1}, \mathbf{p}_{k+1})
$$

$$
(\mathcal{G}_{\eta}\mathbf{q}_{k},\mathcal{G}_{\eta}\mathbf{p}_{k})=(\mathbb{E}[\mathbf{q}_{k+1} | \mathbf{p}_{k},\mathbf{q}_{k}],\mathbb{E}[\mathbf{p}_{k+1},\mathbf{q}_{k}])
$$

$$
(\mathcal{H}_{\eta}\mathbf{q}_{k},\mathcal{H}_{\eta}\mathbf{p}_{k})=\left(\mathbf{q}_{k}+\int_{0}^{\eta}\mathbf{p}(t)\mathrm{d}t,\mathbf{p}_{k}-\int_{0}^{\eta}\nabla f(\mathbf{q}(t))\mathrm{d}t\right)
$$

• Approximation error: we want to characterize the difference between and \mathcal{H}_n^R **q**₀. K_{η} (and \mathscr{H}_{η}^{K} (η

HMC with stochastic gradient

Update via exact ODE solution

Decomposition of the Approximation Error (Inner Loop)

$$
\begin{split}\n\text{Define } \mathbf{z}_{k} &= \begin{pmatrix} \mathbf{q}_{k} \\ L^{-1/2} \mathbf{p}_{k} \end{pmatrix} = \mathcal{S}_{\eta}^{k} \begin{pmatrix} \mathbf{q}_{0} \\ L^{-1/2} \mathbf{p}_{0} \end{pmatrix} = \mathcal{S}_{\eta}^{k} \mathbf{z}_{0}, \text{ then} \\
\mathcal{E}_{k} &:= \mathbb{E} \big[\| \mathcal{S}_{\eta}^{k} \mathbf{z}_{0} - \mathcal{H}_{\eta}^{k} \mathbf{z}_{0} \|_{2}^{2} \big] = \mathbb{E} \big[\| \mathcal{S}_{\eta}^{k} \mathbf{z}_{0} - \mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} + \mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{H}_{\eta}^{k} \mathbf{z}_{0} \|_{2}^{2} \big] \\
&= \mathbb{E} \big[\| \mathcal{S}_{\eta}^{k} \mathbf{z}_{0} - \mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} \|_{2}^{2} \big] + \mathbb{E} \big[\| \mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{H}_{\eta}^{k} \mathbf{z}_{0} \|_{2}^{2} \big] \\
&= \begin{bmatrix} \mathbb{E} \big[\| \mathcal{S}_{\eta}^{k} \mathbf{z}_{0} - \mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} \|_{2}^{2} \big] + \mathbb{E} \big[\| \mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{H}_{\eta}^{k} \mathbf{z}_{0} \|_{2}^{2} \big] \\
&= \mathbb{E} \big[\| \mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{H}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} + \mathcal{H}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{H}_{\eta}^{k} \math
$$

$$
\mathcal{E}_k := \mathbb{E} \big[\| \mathcal{S}_\eta^k \mathbf{z}_0 - \mathcal{H}_\eta^k \mathbf{z}_0 \|_2^2 \big] = \mathbb{E} \big[\| \mathcal{S}_\eta^k \mathbf{z}_0 - \mathcal{G}_\eta \mathcal{S}_\eta^{k-1} \mathbf{z}_0 + \mathcal{G}_\eta \mathcal{S}_\eta^{k-1} \mathbf{z}_0 - \mathcal{H}_\eta^k \mathbf{z}_0 \|_2^2 \big] \n= \mathbb{E} \big[\| \mathcal{S}_\eta^k \mathbf{z}_0 - \mathcal{G}_\eta \mathcal{S}_\eta^{k-1} \mathbf{z}_0 \|_2^2 \big] + \mathbb{E} \big[\| \mathcal{G}_\eta \mathcal{S}_\eta^{k-1} \mathbf{z}_0 - \mathcal{H}_\eta^k \mathbf{z}_0 \|_2^2 \big]
$$
\nOne-step statistical error between \mathcal{S}_η and $\mathcal{G}_\eta = O(L^{-1} \cdot \sigma^2 \cdot \eta^2)$
\n
$$
\mathbb{E} \big[\| \mathcal{G}_\eta \mathcal{S}_\eta^{k-1} \mathbf{z}_0 - \mathcal{H}_\eta^k \mathbf{z}_0 \|_2^2 \big] = \mathbb{E} \big[\| \mathcal{G}_\eta \mathcal{S}_\eta^{k-1} \mathbf{z}_0 - \mathcal{H}_\eta \mathcal{S}_\eta^{k-1} \mathbf{z}_0 + \mathcal{H}_\eta \mathcal{S}_\eta^{k-1} \mathbf{z}_0 - \mathcal{H}_\eta^k \mathbf{z}_0 \|_2^2 \big] \n\le (1 + \alpha) \cdot \mathbb{E} \big[\| \mathcal{H}_\eta \mathcal{S}_\eta^{k-1} \mathbf{z}_0 - \mathcal{H}_\eta^k \mathbf{z}_0 \|_2^2 \big] \n+ (1 + 1/\alpha) \cdot \mathbb{E} \big[\| \mathcal{G}_\eta \mathcal{S}_\eta^{k-1} \mathbf{z}_0 - \mathcal{H}_\eta \mathcal{S}_\eta^{k-1} \mathbf{z}_0 \|_2^2 \big]
$$

One-step "discretization error" between \mathcal{G}_η and \mathcal{H}_η : = $O(Ld \cdot \eta^4)$

Decomposition of the Approximation Error (Inner Loop)

‣ Bound on [∥ℋ*^η* $\frac{k-1}{\eta} \mathbf{Z}_0 - \mathcal{H}^k_{\eta} \mathbf{Z}_0 ||_2^2$

 $\blacktriangleright \mathscr{H}_\eta$ does not have contraction property on any two different points but has bounded expansion property ℋ*^η*

[∥ℋ*^η* $\mathbf{Z}_{n}^{k-1}\mathbf{Z}_{0} - \mathcal{H}_{n}^{k}\mathbf{Z}_{0}||_{2}^{2} \leq e^{2L^{1/2}\eta} \cdot \mathbb{E} [||\mathcal{S}_{n}^{k-1}]$

 $\mathscr{H}_\eta\mathcal{S}_\eta^{k-1}\mathbf{z}_0$ $\mathscr{H}^k_{\ \eta} \mathbf{Z}_0$

$$
\cdot \mathbb{E}\left[\|\mathcal{S}_{\eta}^{k-1}\mathbf{Z}_{0}-\mathcal{H}_{\eta}^{k-1}\mathbf{Z}_{0}\|_{2}^{2}\right]=e^{2L^{1/2}\eta}\cdot\mathcal{E}_{k-1}
$$

Upper Bound of the Approximation Error ▶ Putting things together $\mathcal{E}_k \leq (1 + \alpha) \cdot e^{2L^{1/2}\eta} \cdot \mathcal{E}_{k-1} + (1 + 1/\alpha) \cdot O(Ld \cdot \eta^4) + O(L^{-1} \cdot \sigma^2 \cdot \eta^2)$ Expansion term One-step error

- ≤ $e^{(2L^{1/2}\eta + \alpha)k}$ 2*L*1/2*η* + *α* \cdot [(1 + 1/*α*) \cdot *O*(*Ld* \cdot *η*⁴
- Then we can set $\alpha = 2L^{1/2}\eta$ such that if $K\eta \leq 1/(4L^{1/2})$,
	- $\mathscr{E}_K = \mathbb{E} \left[|| \mathcal{S}_\eta^K \mathbf{q}_0 \mathcal{H}_\eta^K \mathbf{q}_0 ||_2^2 \right] \le O(d\eta^2 + L^{-3/2})$

$$
O(Ld \cdot \eta^4) + O(L^{-1} \cdot \sigma^2 \cdot \eta^2)
$$

 $1/2$ *η* such that if $Kη \leq 1/(4L^{1/2})$

$$
O(d\eta^2 + L^{-3/2} \cdot \sigma^2 \cdot \eta)
$$

Convergence Analysis of Outer Loop

• The key is to show that the approximation error will not explode.

‣ Analysis framework:

Sampling error: we will characterize the difference between ${\cal S}^{TK}_\eta {\bf x}_0$ and ${\cal H}^{TK}_\eta {\bf x}^\pi$. $T^K_{\bm{\eta}}$ and $\mathscr{H}^{TK}_{\bm{\eta}}$

Contracting term $≤ (1 - 1/(16\kappa)) ||q_0 - q'_0||_2^2$ Approximation error $= O(d\eta^2 + L^{-3/2} \cdot \sigma^2 \cdot \eta)$

Setting $\beta = 1/(32\kappa)$ can avoid error explosion.

Contraction Property in the Outer Loop

- $0 \le t \le 1/(2\sqrt{L}),$ ℋ*^t* $\left[\|\mathcal{H}_t\mathbf{q} - \mathcal{H}_t\mathbf{q}'\|^2\right]$ $\frac{2}{2}$] \leq (1 - μt
- **•** Decomposition of the error propagation $(K\eta = 1/(4L^{1/2}))$ $\left[\|\mathcal{S}_{\eta}^{K}\mathbf{q}_{0} - \mathcal{H}_{\eta}^{K}\mathbf{q}'_{0}\|_{2}^{2}\right] \leq (1+\beta)\|\mathcal{H}_{\eta}^{K}\mathbf{q}_{0} - \mathcal{H}_{\eta}^{K}$

)

$$
\mathbf{q}_0 - \mathcal{H}_{\eta}^K \mathbf{q}_0' \Vert_2^2 + (1 + 1/\beta) \mathbb{E} \left[\Vert \mathcal{S}_{\eta}^K \mathbf{q}_0 - \mathcal{H}_{\eta}^K \mathbf{q}_0 \Vert_2^2 \right]
$$

$$
1 - \left[\mu f^2\right) ||\mathbf{q} - \mathbf{q}'||_2^2 \text{ Strongly log-concave parameter}
$$

Chen and Vempala, Optimal convergence rate of Hamiltonian Monte Carlo for strongly log-concave distributions, APPROX-RANDOM 2019

 $\blacktriangleright \mathcal{H}_t$ has a good contraction property for any two points with the same velocity [Chen and Vempala19]: for any two points (\mathbf{q}, \mathbf{p}) and $(\mathbf{q}', \mathbf{p})$, then for any

Convergence Rates of Stochastic Gradient HMC

Theorem [Zou and Gu, 2021] Suppose all assumptions are satisfied, set $K = 1/(4\sqrt{L}\eta)$, then,

 $2\left(\mathbf{P}(\mathbf{x}_T), \pi\right) \leq e^{-T/(32\kappa)} \cdot \mathbb{E}\left[\|\mathbf{x}_0 - \mathbf{x}^{\pi}\right]$

$$
-\mathbf{x}^{\pi}||_2^2\big] + O(d\eta^2 + L^{-3/2} \cdot \sigma^2 \cdot \eta)
$$

Zou and Gu, On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients, ICML 2021

slowly updates the reference point \mathbf{r}_i updates the reference point \mathbf{r}_i **C** Gradient Estimators Application to Different Stochastic Gradient Estimators

- ‣ Stochastic gradients
- Mini-batch stochastic gradient (SG)
- Stochastic variance reduced gradient (SVRG) [Johnson and Zhang, 2013]
- Stochastic averaged gradient (SAGA) [Defazio et. al., 2013]
- Control variate gradient (CVG) [Baker et. al., 2018]
- \blacktriangleright Warm start: the initial point \mathbf{x}_0 is found **via SGD such that** $||\mathbf{x}_0 - \mathbf{x}^*||_2^2 = O(d/\mu)$ **. x**0
- ‣ Additional Assumptions
	- $f_i(\mathbf{x})$ is L/n -smooth *i* (\mathbf{x}) is L/n
	- $L, \mu = O(n)$

Variance of Different Stochastic Gradient Estimators

‣Mini-batch stochastic gradients

‣Stochastic variance-reduced gradients

$$
\mathbb{E}\left[\|\mathbf{g}(\mathbf{q}_k, \xi_k) - \nabla f(\mathbf{q}_k)\|_2^2\right] = \mathbb{E}\left[\left\|\frac{n}{B}\sum_{i \in \mathcal{I}_k} \nabla f_i(\mathbf{q}_k) - \sum_{i=1}^n \nabla f_i(\mathbf{q}_k)\right\|_2^2\right]
$$
\n
$$
\leq \frac{n^2}{B} \mathbb{E}\left[\left\|\nabla f_i(\mathbf{q}_k) - \frac{1}{n}\sum_{i=1}^n \nabla f_i(\mathbf{q}_k)\right\|_2^2\right] = O\left(\mathbb{E}[\|\nabla f_i(\mathbf{x}^*)\|_2^2]\right)
$$
\nwhich we assume to which we assume to

$$
\mathbb{E}\left[\|\mathbf{g}(\mathbf{q}_k,\xi_k) - \nabla f(\mathbf{q}_k)\|_2^2\right] = \mathbb{E}\left[\left\|\frac{n}{B}\sum_{i\in\mathcal{I}_k}[\nabla f_i(\mathbf{q}_k) - \nabla f_i(\tilde{\mathbf{q}})] + \nabla f(\tilde{\mathbf{q}}) - \nabla f(\mathbf{q}_k)\right\|_2^2\right]
$$

$$
\leq \frac{n^2}{B} \mathbb{E} \left[\left\| \nabla f_i(\mathbf{q}_k) - \nabla f_i(\mathbf{q}_k) \right\| \right]
$$

$$
\leq \frac{L^2}{B} \mathbb{E} \left[\|\mathbf{q}_k - \tilde{\mathbf{q}}\|^2 \right]
$$

$$
=O(N^2dn^2)
$$

which we assume to be bounded by *O*(*d*)

 $(\mathbf{q}_k) - \nabla f_i(\tilde{\mathbf{q}})$ 2 $\overline{2}$ $\tilde{\mathbf{q}} = \mathbf{q}_u$ for some $u \in [k - N, k - 1]$

Convergence Rates of Stochastic Gradient HMC

Theorem [Zou and Gu, 2021] Suppose all assumptions are satisfied, set $K = 1/(4\sqrt{L}\eta)$, then,

$$
\mathcal{W}_2^2\big(\mathbf{P}(\mathbf{x}_T),\pi\big) \leq e^{-T/(32\kappa)} \cdot \mathbb{E}\big[\|\mathbf{x}_0 - \mathbf{x}^\pi\|_2^2\big] + O(d\eta^2 + L^{-3/2} \cdot \sigma^2 \cdot \eta)
$$

- Mini-batch SG-HMC
- SVRG-HMC $\sigma^2 = O(B^{-1}L^2N^2d\eta^2)$
- SAGA-HMC $\sigma^2 = O(B^{-3}L^2n^2d\eta^2)$
- CVG-HMC $\sigma^2 = O(B^{-1}Ld)$

Zou and Gu, On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients, ICML 2021

 n^2d

Comparison of Gradient Complexities

 \blacktriangleright Number of stochastic gradient calculations such that $\mathcal{W}_2(\mathbf{P}(\mathbf{x}_T), \pi) \leq \epsilon/\sqrt{n}$, $where L, \mu = O(n).$

Zou et. al., Subsampled stochastic variance-reduced gradient Langevin dynamics UAI 2018b Dalalyan and Karagulyan, User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient. Stochastic Processes and their Applications, 2019.

 $2(\mathbf{P}(\mathbf{x}_T), \pi) \leq \frac{\varepsilon}{\sqrt{n}}$

Underdamped Langevin MCMC with Stochastic Gradients

▶ SDE description

$$
d\mathbf{v}(t) = -\gamma \mathbf{v}(t)dt - u \nabla f(\mathbf{x}(t))dt + \sqrt{2\gamma u} \cdot dB(t) \qquad d\mathbf{x}(t) = \mathbf{v}(t)dt
$$

▶ Partially solve the SDE [Cheng et. al., 2018]

$$
\mathbf{v}(t) = e^{-\gamma t} \cdot \mathbf{v}(0) - u \int_0^t e^{-\gamma(t-s)} \nabla f(\mathbf{x}(s)) ds + \sqrt{2\gamma u} \cdot \int_0^t e^{-\gamma(t-s)} dB(s)
$$

$$
\mathbf{x}(t) = \mathbf{x}(0) + \frac{1 - e^{-\gamma t}}{\gamma} \mathbf{v}(0) + \int_0^t u \int_0^r e^{-\gamma(t-s)} \nabla f(\mathbf{x}(s)) ds dr + \sqrt{2\gamma u} \cdot \int_0^t \int_0^r e^{-\gamma(t-s)} dB(s) dr
$$

-
- ▶ Discrete update using stochastic g $\mathbf{v}_{k+1} = e^{-\gamma \eta} \cdot \mathbf{v}_k - u$ *η* $\int_0^{\eta} e^{-\gamma(\eta-s)} g(\mathbf{x}_k, \xi_k) ds + \sqrt{2\gamma u} \cdot \int$

gradient (
$$
u = 1/L
$$
, $\gamma = 2$)
\n
$$
Is + \sqrt{2\gamma u} \cdot \int_0^{\eta} e^{-\gamma(\eta - s)} dB(s)
$$

$$
\mathbf{x}_{k+1} = \mathbf{x}_k + \frac{1 - e^{-\gamma\eta}}{\gamma} \mathbf{v}_k + \int_0^{\eta} u \int_0^r e^{-\gamma(r-s)} \mathbf{g}(\mathbf{x}_k, \xi_k) \, \mathrm{d} s \, \mathrm{d} r + \sqrt{2\gamma u} \cdot \int_0^{\eta} \int_0^r e^{-\gamma(r-s)} \mathrm{d} \mathbf{B}(s) \, \mathrm{d} r
$$
\nChena et al. Underdamped Lanevin MCMC: A non-asymptotic analysis CO17.2018

Cheng et. al., Underdamped Langevin MCMC: A non-asymptotic analysis, COLT 2018

γ :Friction parameter, *u* : inverse mass

Can be exactly calculated \bullet Cannot be exactly calculated via stochastic gradient

Convergence Analysis Framework

‣ Define 3 sequences:

$$
(\mathcal{S}_{\eta}\mathbf{x}_{k}, \mathcal{S}_{\eta}\mathbf{v}_{k}) = (\mathbf{x}_{k+1}, \mathbf{v}_{k+1})
$$

$$
(\mathcal{G}_{\eta}\mathbf{x}_{k},\mathcal{G}_{\eta}\mathbf{v}_{k})=(\mathbb{E}[\mathbf{x}_{k+1} | \mathbf{x}_{k},\mathbf{v}_{k}],\mathbb{E}[\mathbf{v}_{k}])
$$

$$
(\mathcal{L}_{\eta}\mathbf{x}_{k}, \mathcal{L}_{\eta}\mathbf{v}_{k}) = \left(\mathbf{x}_{k} + \int_{0}^{\eta} \mathbf{v}(s)ds, \mathbf{v}_{k} - \int_{0}^{\eta} \left[-\gamma \mathbf{v}(s) - u \nabla f(\mathbf{x}(s)) \right] ds + \sqrt{2\gamma u} \int_{0}^{\eta} d\mathbf{B}(s) \right)
$$

$(k+1 | \mathbf{X}_k, \mathbf{v}_k])$ **gradient ULD update**

ULD with stochastic gradient

Update via exact SDE solution

Sampling error: we want to characterize the difference between ${\cal S}_\eta^T{\bf x}_0$ and ${\bf x}^\pi$.

Sampling Error Decomposition

$$
\mathbf{Let } \mathbf{z}_{k} = \begin{pmatrix} \mathbf{x}_{k} \\ \mathbf{x}_{k} + \mathbf{v}_{k} \end{pmatrix} = \mathcal{S}_{\eta}^{k} \begin{pmatrix} \mathbf{x}_{0} \\ \mathbf{x}_{0} + \mathbf{v}_{0} \end{pmatrix} \text{ and } \mathbf{z}^{\pi} = \begin{pmatrix} \mathbf{x}^{\pi} \\ \mathbf{x}^{\pi} + \mathbf{v}^{\pi} \end{pmatrix}
$$

\n
$$
\mathbb{E}[\|\mathbf{z}_{k} - \mathcal{L}_{\eta}^{k} \mathbf{z}^{\pi}\|_{2}^{2}] = \mathbb{E}[\|\mathcal{S}_{\eta}^{k} \mathbf{z}_{0} - \mathcal{S}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} + \mathcal{S}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{L}_{\eta}^{k} \mathbf{z}^{\pi}\|_{2}^{2}]
$$

\n
$$
= \mathbb{E}[\|\mathcal{S}_{\eta}^{k} \mathbf{z}_{0} - \mathcal{S}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0}\|_{2}^{2}] + \mathbb{E}[\|\mathcal{S}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{L}_{\eta}^{k} \mathbf{z}^{\pi}\|_{2}^{2}]
$$

\nOne-step statistical error between \mathcal{S}_{η} and $\mathcal{S}_{\eta} = O(L^{-2} \cdot \sigma^{2} \cdot \eta^{2})$
\n
$$
\mathbb{E}[\|\mathcal{S}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{L}_{\eta}^{k} \mathbf{z}^{\pi}\|_{2}^{2}] = \mathbb{E}[\|\mathcal{S}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{L}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} + \mathcal{L}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{L}_{\eta}^{k} \mathbf{z}^{\pi}\|_{2}^{2}]
$$

\n $$

$$
\begin{split}\n\text{et } \mathbf{z}_{k} &= \begin{pmatrix} \mathbf{x}_{k} \\ \mathbf{x}_{k} + \mathbf{v}_{k} \end{pmatrix} = \mathcal{S}_{\eta}^{k} \begin{pmatrix} \mathbf{x}_{0} \\ \mathbf{x}_{0} + \mathbf{v}_{0} \end{pmatrix} \text{ and } \mathbf{z}^{\pi} = \begin{pmatrix} \mathbf{x}^{\pi} \\ \mathbf{x}^{\pi} + \mathbf{v}^{\pi} \end{pmatrix} \\
& \mathbb{E}\big[\|\mathbf{z}_{k} - \mathcal{L}_{\eta}^{k} \mathbf{z}^{\pi} \|_{2}^{2} \big] = \mathbb{E}\big[\|\mathcal{S}_{\eta}^{k} \mathbf{z}_{0} - \mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} + \mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{L}_{\eta}^{k} \mathbf{z}^{\pi} \|_{2}^{2} \big] \\
& = \mathbb{E}\big[\|\mathcal{S}_{\eta}^{k} \mathbf{z}_{0} - \mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} \|_{2}^{2} \big] + \mathbb{E}\big[\|\mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{L}_{\eta}^{k} \mathbf{z}^{\pi} \|_{2}^{2} \big] \\
& \text{one-step statistical error between } \mathcal{S}_{\eta} \text{ and } \mathcal{G}_{\eta} \colon = O(L^{-2} \cdot \sigma^{2} \cdot \eta^{2}) \\
& \mathbb{E}\big[\|\mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{L}_{\eta}^{k} \mathbf{z}^{\pi} \|_{2}^{2} \big] = \mathbb{E}\big[\|\mathcal{G}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{L}_{\eta} \mathcal{S}_{\eta}^{k-1} \mathbf{z}_{0} - \mathcal{L}_{\eta}^{k} \mathbf{z}^{\pi} \|_{2}^{2} \big] \\
& = (1 + \alpha) \mathbb{E}\big[\|\mathcal{L}_{\
$$

One-step discretization error between \mathscr{G}_η and $\mathscr{L}_{\eta} \colon = O(\mu^{-1} d \cdot \eta^4)$

Contraction Property

 $\blacktriangleright \mathscr{L}_\eta$ has a good contraction property for any two points **z** and **z**' [Cheng et. al., 2018] \mathscr{L}_{η} has a good contraction property for any two points \mathbf{z} and \mathbf{z}'

‣ Error decomposition (set *^α* ⁼ *^η*/(2*κ*)) $\left[\|\mathbf{z}_k - \mathcal{L}_\eta^k \mathbf{z}^\pi\|_2^2\right] \leq e^{-\eta/\kappa} \cdot (1+\alpha) \cdot \mathbb{E}\left[\|\mathbf{z}_{k-1} - \mathcal{L}_\eta^{k-1}\right]$ $+(1 + 1/\alpha)$. $\leq e^{-k\eta/(2\kappa)} \cdot \mathbb{E} \left[|| \mathbf{z}_0 \right]$

$$
\mathbb{E}\left[\|\mathcal{L}_{\eta}\mathbf{z}-\mathcal{L}_{\eta}\mathbf{z}'\|_{2}^{2}\right]\leq e^{-\eta/\kappa}\cdot\|\mathbf{z}-\mathbf{z}'\|_{2}^{2}
$$

$$
\mathbb{E}[\|\mathbf{z}_{k-1} - \mathcal{L}_{\eta}^{k-1} \mathbf{z}^{\pi}\|_{2}^{2}]
$$

\n
$$
O(d \cdot \eta^{4}) + O(L^{-2} \cdot \sigma^{2} \cdot \eta^{2})
$$

\n
$$
-\mathbf{z}^{\pi}\|_{2}^{2} + O(\mu^{-1}d \cdot \eta^{2}) + O(L^{-2} \cdot \sigma^{2} \cdot \eta)
$$

Cheng et. al., Underdamped Langevin MCMC: A non-asymptotic analysis, COLT 2018

$$
2\kappa)\big)
$$

Convergence Rates of Stochastic Gradient ULD

Theorem [Zou et. al., 2018a, Chatterji et. al., 2018] Suppose all assumptions are satisfied, then,

$$
\mathcal{W}_2^2(\mathbf{P}(\mathbf{x}_T), \pi) \leq (1 - \eta/(2\kappa))^T \cdot \mathbb{E}[\|\mathbf{x}_0 - \hat{\mathbf{x}}^{\pi}\|_2^2] + O(\mu^{-1}d \cdot \eta^2 + L^{-2} \cdot \sigma^2 \cdot \eta)
$$

- Mini-batch SG-ULD
- SVRG-ULD $\sigma^2 = O(B^{-1}L^2N^2d\eta^2)$
- SAGA-ULD $\sigma^2 = O(B^{-3}L^2n^2d\eta^2)$
- CVG-ULD $\sigma^2 = O(B^{-1}Ld)$

Zou et. al., Stochastic variance-reduced Hamilton Monte Carlo methods, ICML 2018 Chatterji et. al., On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo, ICML 2018

 n^2d

Comparison of Gradient Complexities

 \blacktriangleright Number of stochastic gradient calculations such that $\mathcal{W}_2(\mathbf{P}(\mathbf{x}_T), \pi) \leq \epsilon/\sqrt{n}$, $where L, \mu = O(n).$

 $2(\mathbf{P}(\mathbf{x}_T), \pi) \leq \frac{\varepsilon}{\sqrt{n}}$

Summary

- ‣ We provided a unified analysis for HMC and ULD with stochastic gradients.
- The analysis is based on three sequences of Markov chains:
	- Markov chain of the stochastic gradient MCMC
	- Markov chain of the conditional expected stochastic gradient MCMC
	- Markov chain of the idealized HMC/ULD
- The analyses are different since HMC and ULD has different contraction property:
	- ULD has contraction property for any two points (so can be used in every iteration)
	- HMC has contraction property for any two points with the same velocity (so can only be used in every *K* iterations)

• Show that the target distribution satisfies log-sobolev or Poincare inequality, which can give a weaker version of the contraction [Raginsky et. al., 2017, Vempala and Wibisono, 2019, Xu et al., 2018, Ma et. al., 2019, Zou et. al.,

What's next?

- Then how to control the approximation error of numerical solvers?
	- 2021].
- accuracy?
	- randomly sampled mini-batch data [Lee et. al., 2021]

If the target distribution is not log-concave, the contraction property does not hold.

‣ Metropolis-Hasting step is skipped when using stochastic gradients, is it possible to approximately estimate this accept/reject probability to improve the sampling

• Develop an (nearly) unbiased estimator of the MH probability using the

Reference I

• Lovasz, L. and Simonovits, M. The mixing rate of Markov Chains, an isoperimetric inequality, and computing the volume. In Proceedings [1990] 31st annual symposium on foundations of computer science, pp. 346–354. IEEE, 1990. • Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. Hybrid Monte Carlo. Physics letters B, 195(2):216–222,

• Roberts, G. O. and Tweedie, R. L. Exponential convergence of Langevin distributions and their discrete approximations.

• Chen, Z. and Vempala, S. S. Optimal convergence rate of Hamiltonian Monte Carlo for strongly logconcave distributions. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2019. • Cheng, X., Chatterji, N. S., Abbasi-Yadkori, Y., Bartlett, P. L., and Jordan, M. I. Underdamped Langevin MCMC: A non-

- Statistics, 24(1):101–121, 1996.
-
- 1987.
- Bernoulli, pp. 341–363, 1996.
-
- asymptotic analysis. In Conference on learning theory, pp. 300-323. PMLR, 2018
- Chatterji, N. S., Flammarion, N., Ma, Y.-A., Bartlett, P. L., and Jordan, M. I. On the theory of variance reduction for 6037, 2018
- International Conference on Machine Learning, pp. 6028–6037, 2018.
- 38th International Conference on Machine Learning, pp. 6028–6037, 2021.

• Mengersen, K. L., Tweedie, R. L., et al. Rates of convergence of the Hastings and Metropolis algorithms. The annals of

stochastic gradient Monte Carlo. In Proceedings of the 35th International Conference on Machine Learning, pp. 6028–

• Zou, D., Xu, P., and Gu, Q. Stochastic variance-reduced Hamilton Monte Carlo methods. In Proceedings of the 35th

• Zou, D. and Gu, Q. On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients. In Proceedings of the

Reference II

• Defazio, A., Bach, F., and Lacoste-Julien, S. Saga: A fast incremental gradient method with support for nonstrongly

• Raginsky, M., Rakhlin, A., and Telgarsky, M. Non-convex learning via stochastic gradient Langevin dynamics: a

• Dalalyan, A. S. and Karagulyan, A. User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient.

• Vempala, S. and Wibisono, A. Rapid convergence of the unadjusted langevin algorithm: Isoperimetry suffices."

• Zou, D., Xu, P., and Gu, Q. Subsampled stochastic variance reduced gradient Langevin dynamics. In Proceedings of

• Ma, Y.-A., Chen, Y., Jin, C., Flammarion, N., and Jordan, M. I. Sampling can be faster than optimization. Proceedings of

• Lee, Y.T., Shen, R. and Tian, K. Structured logconcave sampling with a restricted gaussian oracle. In Conference on

- Neural Information Processing Systems, pp. 315–323, 2013.
- convex composite objectives. In Advances in Neural Information Processing Systems, pp. 1646–1654, 2014.
- nonasymptotic analysis. In Conference on Learning Theory, pp. 1674–1703, 2017.
- Stochastic Processes and their Applications, 129(12): 5278–5311, 2019.
- Advances in neural information processing systems 32 (2019): 8094-8106.
- International Conference on Uncertainty in Artificial Intelligence, 2018.
- the National Academy of Sciences, 116(42), 20881-20885.
- Learning Theory, pp. 2993-3050, 2021.
- Sampling. In Proceedings of International Conference on Uncertainty in Artificial Intelligence, 2021.

• Johnson, R. and Zhang, T. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in

• Zou, D., Xu, P., and Gu, Q. Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave

