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Preliminaries: from Langevin
diffusion to high-order variants



Problem setup

Goal: sample from target density 7 < e~f, where f satisfies:

e (-smooth: ||Vf(x) — VIf(y)|l, < Bllx —yl,-
e p-strongly convex: (Vf(x) —Vf(y), x—y)>5|x— yH;

Example of applications:
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Key algorithmic challenge: high dimensions.



Continuous-time Langevin diffusion

(Overdamped) Langevin diffusion:

df, = —Vf(0,)dt + /2dB.

Unique stationary measure 7 o< e~ f

Synchronous coupling:
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Forward Euler method for Langevin diffusion

(Overdamped) Langevin diffusion:
do, = —V£(6,)dt + V2dB,.
Forward Euler method:
dby = —VF(0i,)dt +V2dB;, for t € [kn, (k + 1)n).

Discrete-time analysis:

e By fluctuation of Brownian motion: HVf(é\t) = Vf(akn)Hz < Vnd,
leading to O(/nd) discretization error in total [Dall7, DM17].

e Improved analysis when V2f is also Lipschitz (in operator norm):
O(nd) discretization error [DM19, MFWB19].



Taking a smoother path: underdamped Langevin diffusion

Discretization error of ULA comes mainly from O(+/nd) oscillation of
Brownian motion.
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Underdamped Langevin diffusion:
d9t = rtdt
1
drt = _vi(et) — Ertdt + \/ 25//BdBt

Proof via synchronous coupling with Lyapunov function:
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Discretization of underdamped Langevin diffusion

For the time interval t € [kn, (k + 1)7):
df, = Fdt

dr, = —%Vf( ) — £Rrdt + /26 /BdB:.

Ornstein-Uhlenbeck process, implementable with explicit solution.

An intuitive analysis: note that ||7;||, ~ O(v/d).

= |7 — fer < 0(

bc = bun| < O(Vd) :»H krtyn = Ferynlly < NFin = rienll, + O(2Vd)

t_et

, < O(nVd) = O(Vd/e) mixing time.

Avoid fluctuation of BM to enter the gradient term.



Can we do even better?

Algorithm class Mixing time bounds (in TV or Wasserstein)
Langevin diffusion [Dall7, DM17]:  O(d/e?); [DM19,
MFWB19]: O(d/e). No convexity needed.

Underdamped Langevin | [CCBJ18]: O(v/d/¢); [SL19]: O(dY/3/e?/3)
using randomized midpoint.

HMC [MS17, MS19]: O(V/d/¢); [MV18, LSV18]:
polylog(d,e~!) under incoherence assump-

tions for generalized linear model.
High-order Langevin This work: O(d*/*/e'/?) under an integra-
tion oracle (e.g. for ridge-separable func-

tions).




Difficulties with discretization
and the integration oracle



Classical discretization vs. high-dimensional discretization

Consider computing an integral RY:

n k
/ b(Xs)ds ~ 3 aib(Xs)(5i — 5i1).
0 i=1

Low-dimensional discretization: Applied to high-dimensional problems

O(n*) discretization error for k _ _ _
interpolation points with stepsize Dimension dependency grows with
n. (e.g. LMM, Runge-Kutta,

collocation).

order of smoothness, leading to
@) ((nxfd)k) discretization error.




Idea 1: computing the integral directly

Recall underdamped Langevin diffusion:

e = [ (v -en)as+ [ vaETae.

n

9 First approximate (0s)iy<s<(k+1)y, and then use
L the approximate path to compute the integral.

Questions:

e How to compute the integral ]k \ 4 )ds7

e How to incorporate the integral to approximate r;.



The integration oracle

Given f and a line segment {x + tz : t € [0, 1]}, exactly compute the
vector-valued integral:

Jr(x; z) == /OIVf(X+ tz)dt.

e.g. ridge separable function and Newton-Leibniz formula.

n

F(0) =Y ui(a/0),

i=1

1 .
/ VHO-+ tp)de = 3 (u (a0 + ) — i (a70)) -
0 7 i
e Covers most models for machine learning and Bayesian inference.

e Requires NO quantitative assumption on individual data; only
assuming the function f to be strongly convex and smooth.



Problem with the second-order Langevin diffusion

Want to compute the stochastic integral:

E—Fkn:/k;(—ﬁw >ds—/kr]§rs /k"\/ﬁds

Integration oracle Ornstein-Uhlenbeck

Not compatible! The integral affects r in the path, and enters the OU
term. Nonlinear effects exist and cannot be exactly computed.

Solution: separate the Brownian motion and integral oracle part.
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Construction of the third-order
Langevin diffusion




Further dimension lifting: the general framework

[MCF15, MFCW18]: a class of Langevin algorithms with the correct

stationary distribution oc e~ .

dZ; = —(D + Q)VH(Z:)dt + v2DdBs,
with D=0, Q=—QT and D + Q of full rank.

Design principle:

e Matrix D with less non-zero entries (smoother curve)

e Matrix @ separates the Brownian motion and path integral.
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Third-order Langevin diffusion

Continuous dynamics with noise injected only in one of three variables:

d9t = ptdt
dpr = —5V1(0:)dt + yr.dt
dre = —ypedt — Erpdt + /26 /3dBY

Continuous-time convergence: Lyapunov function
o, =E [(Zt(l) 2 Ts(zW - ZEZ’)}, with S given by

7 4 3
K +3k" 45k +K+1 K 1 1 1
4K5 I . 23I 4 (1 K3 l<;4) Kl
— K 4" 4+6K°+K+1 k+1
S: 2I 44 I 2K I
1 1 1 k41 K42
i (1= — )l 2m L an L

d 1
We have the bound Z®; < fmcbt.
Construction idea: Lyapunov stability criteria, SLT + LS <0 and S >~ 0.
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Improved discretization scheme




Main results

Theorem (informal)

Given f satisfying the uly < V2f < Bly with k := 3/u = O(1). There
exists a discretization scheme of the third-order Langevin diffusion, such
that for any € > 0, by taking stepsize:

n= 671/2d71/4,
the algorithm output 00 ~ 7() with Wy(7(K) %) < e, with iterations:
k=0 (d1/45_1/2 Iog&t_l) .

Each iteration invokes an integral oracle and additional computation
feasible within O(d) time (same as the cost of gradient oracle).
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Stage |: constructing coarse estimates for the path

Recall the third-order dynamics:

det = ptdt
dpt = —%Vf(@t)dt + ')/rtdt

drt = —’}/ptdt - frtdt + 2€/ﬁdBtr

Integration oracle for 6 available on straight line segment.

dé\ = p; 'rdta
{ t Pk] for all t & [k?’], (k + 1)77]

dry = —yprndt — Erdt + /26 /LdB],
Prepare the coarse path for computing p; using integration oracle.

0

, < OVa), g~ 7l < O(Va).
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Stage I: constructing coarse estimates for the path
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Stage |l: Using the coarse path and integration oracle

dpe = =3 V£ (0)dt + R,

(k+1)n vt € [kn, (k + 1)n].
dp; = _ﬁ (/ Vf(&t)ds> dt + r:dt, Lin. ( )l
J kn

Only the endpoint p(,1), used (for next step's stage 1). Computable
through integration oracle:

_ " 1 n - _ n .
Pkt1)yy = Pkn — = | VF(Okn + tPry)dt + / yredt
0 0

integration oracle additive Gaussian

Another coarse approximation p used in the third stage.

P(k+1)n = Pk+1yy>  |1Pe — Ptll, < O(n*Vd).
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Stage Il: Using the coarse path and integration oracle
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Stage Ill: using p to compute next-step (57)

Substituting the refined path p back to the processes 0 and ¥ to correct
the path

df, = p,dt
{ s t € [kn, (k + 1)7].

dr; = —ypedt — Erdt + /26/3 dB],
The 5d-dimensional process (5, 0, p, r,T) is jointly OU, using

pre-computed integral oracle (a deterministic quantity given the filtration
up to time k7). Implementation can be explicit!

Key properties used in the analysis:

Substituting the contraction of the Lyapunov function, leading to
O(1?V/d) final discretization error bound.

/o\t _at

< O(PVA), |7~ Fll, < 00V
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Stage Il: Using the coarse path and integration oracle
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Discussion and open problems

e High-order Langevin diffusion + special structure allowing
integration = faster high-dimensional sampling algorithm.

° O(d1/45’1/2) mixing time, best known dimension dependency for
such class, easy-to-implement explicit scheme.
Open questions:
e Integration oracle on a curve — even better dimension dependence
via further lifted dynamics.

e Use of integration oracle in other fields of computing (numerical
analysis, optimization)

e Improved dimension dependence without the integration oracle.

20



Thank you!
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