The Mirror Langevin Algorithm Converges

with Vanishing Bias

Andre Wibisono
Yale University

Joint work with Ruilin Li, Molei Tao, Santosh Vempala (Georgia Tech)
arXiv:2109.12077

Simons Workshop on Sampling Algorithms and Geometries on Probability Distributions

September 27, 2021



Plan

Mirror Langevin Algorithm



Sampling Problem

Goal: Sample from a probability distribution v o< e~f on X C R?

e Assume v has density < e~f wrt Lebesgue measure dx on R

® Assume f: X — R differentiable, can compute Vf: X — R4
¢ Nice theory for log-concave sampling (when X and f convex)

® Nice connection to optimization mi)r} f(x)
x€e



Unconstrained Sampling with Langevin

To sample from v x e~ f on X = RY, we can use:
® In continuous time, the Langevin Dynamics:
dXy = —VF(X;) dt + V2 dW,

where W, is the standard Brownian motion in R

® |n discrete time, the Unadjusted Langevin Algorithm:
Xk+1 = Xk — th(Xk) + V2h Zy

where h > 0 is step size and zx ~ N(0,/) is an independent
Gaussian random variable in R



“Distance” between Distributions

® \Wasserstein distance

W — inf  E[|X = Y|??
2(p,v) oo [l NE

¢ KL divergence (relative entropy)

Hu(p) =B, [L1052] = / p(x) log E §dx

¢ y2-divergence

X>(p) = Var, (8) = /X pLx)° dx —1

v v(x)




Langevin Dynamics in Continuous Time

dX; = —VF(X;) dt + V2 dW,

® Optimization interpretation as the gradient flow for minimizing KL
divergence with W, metric in the space P of distributions over R?

[Jordan, Kinderlehrer, & Otto. The variational formulation of the
Fokker—Planck equation. SIAM Journal on Mathematical Analysis, 1998]

® If v oc e~ is strongly log-concave (< f strongly convex), then
LD has exponential contraction in W, distance

® Exponential convergence when v satisfies isoperimetry (log-Sobolev
inequality (LSI) or Poincaré inequality)

This yields a mixing time bound with log(1/¢) dependence on error €



Unadjusted Langevin Algorithm in Discrete Time

Xk4+1 = Xk — th(Xk) + V2hz

® Biased: xx ~ py converges to v, # v, bias scales with h.
This yields a mixing time with poly(1/€) dependence on error €

® Can show mixing time in W, under strong convexity, smoothness

[Dalalyan, Further and stronger analogy between sampling and optimization:
Langevin Monte Carlo and gradient descent, COLT 2017]

[Durmus & Moulines, Nonasymptotic convergence analysis for the unadjusted
Langevin algorithm, Annals of Applied Probability, 2017]

® Can show mixing time in KL divergence under LSI, smoothness
[Vempala & Wibisono, Rapid Convergence of the Unadjusted Langevin

Algorithm: Isoperimetry Suffices, NeurlPS 2019]

® Can correct bias with accept-reject: Metropolis-Adjusted Langevin
Algorithm (MALA) has mixing time log(1/€) in TV distance



Constrained Sampling

Suppose we are in the constrained setting: X C RY
How to sample from v o< e~f supported on X'?

® e.g. v = uniform or Gaussian distribution on X = polytope




Constrained Sampling
Some approaches:

1. Projected Langevin Algorithm: ULA + projection
Xk+1 = Projy (Xk — hVf(x) + \/ﬂzk)

o Discretization of reflected Langevin dynamics
o Mixing time bound in TV distance

[Bubeck, Eldan, & Lehec, Finite-Time Analysis of Projected Langevin
Monte Carlo, NeurlPS 2015]




Constrained Sampling

2. Dikin walk: Ball walk with ellipsoid defined by the Hessian of
the log-barrier function

o Similar to interior point methods in optimization

o Converges in O(md) steps for v = uniform on a polytope with
m facets in d dimensions.
[Kannan & Narayanan, Random walks on polytopes and an affine interior
point method for linear programming, Mathematics of OR, 2012]

o Converges in O(d?) using weighted barrier function

[Laddha, Lee & Vempala, Strong self-concordance and sampling, STOC
2020]




Constrained Sampling

3. Mirror Langevin Algorithm: Use mirror map and apply
Langevin update in dual space

® Similar to mirror descent in optimization

® Discretization of the Mirror Langevin Dynamics in
continuous time

® Proposed by [Zhang, Peyré, Fadili & Pereyra, Wasserstein control
of Mirror Langevin Monte Carlo, COLT 2020]

® See also related approach by [Hsieh, Kavis, Rolland & Cevher,
Mirrored Langevin Dynamics, NeurlPS 2018]

X v y



Mirror Langevin Algorithm

The Mirror Langevin Algorithm (MLA) is:
seer = V6 (Voo = HVFs) + V2hy/T20() 2.

with step size h > 0 and zx ~ N(0, /) independent Gaussian

® ¢: X — Ris a convex Legendre function, V¢: X — R is bijective,
and V¢*(y) = arg maxxex (x,y) — ¢(x) where ¢* is dual function.

® Can write MLA in mirror descent form:
X1 = arg r'rg/@ {(th(Xk) — V2h\/V2p(xk) zk, x — xx) + D¢(X,Xk)}

where Dy (x, x") = ¢(x) — p(x") — (Vo(x'), x — x") is Bregman divergence



Mirror Langevin Algorithm

Mirror Langevin Algorithm (MLA):

X1 = V§* (w(xk) AV () + V2 V20(x) zk)

This is a discretization of the Mirror Langevin Dynamics:

Ye = Vo(Xe)
dY; = —VF(Xp)dt 4+ v2/V2p(X;)dW;

Question: Why is this the correct dynamics to use?
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Continuous Time Dynamics



Metric
Endow X C R with a Riemannian metric g, as a matrix g(x) = 0
(u, v)x := u' g(x)v

® Euclidean metric: g(x) =/

® Hessian metric: g(x) = V2¢(x) for some ¢: X — R convex

15/56



Review for Optimization

Suppose we want to minyey f(x) with metric g

Riemannian Gradient Flow (RGF):

X = —g(Xe) TVF(Xe)

—1

differential _____g_(:_()___) gradient
ViG] ()1~ F(x)
X



Review for Optimization

Suppose we want to minimize f: X — R with metric g on X
Riemannian Gradient Flow (RGF):

d
Xt Ixt g(Xt)ilv'((Xt)

e If f is geodesically strongly convex (strongly convex along
geodesics), then RGF is exponentially contracting

® If f is gradient dominated (||grad f(x)||2 > 2a(f(x) — miny f)),
then f(X;) converges exponentially fast:

f(X:) — min f < e 2t (f(Xo) — min f)



Review for Optimization

Suppose we use Hessian metric: g(x) = V24(x) = 0
RGF becomes the Natural Gradient Flow (NGF):

Xi = —V2¢(X:) 1VF(Xe)

® Discretizing NGF gives the Natural Gradient Descent:

Xk+1 = Xk — hV2¢(xk)_1Vf(xk)

[Amari, Natural gradient works efficiently in learning, Neural Computation, 1998]



Review for Optimization

Use the mirror map V¢: X — RY to work in the dual space

y = Vé(x)

® Function f: X — R is pushed forward to the function fiRY 5 R
Fy) = f(Vo* ()

® Metric V2¢ on X is pushed forward to the metric V2¢* on R



Review for Optimization

NGF: X, = —V2¢(X;)"1Vf(X,)
In dual space Y; = V¢(X;), NGF becomes Mirror Flow (MF):

Ye = —VIi(Ve' (V1))

* This is also NGF for minimizing f = f o V¢* with metric V2¢*
® Discretizing MF gives the Mirror Descent algorithm:

Xpp1 = arg)r(réi/r‘l {(th(Xk), x — xi) + Dg(x, xk)}



For Sampling

Suppose we want to sample from v x e~ supported on X C R?

We endow X with a metric g(x) = 0

® Assume g(x) — oo as x — OX, so process does not leave X’

What continuous-time dynamics to use?




Riemannian Langevin Dynamics

We want to sample from v o< e~ on X C R? with metric g

Riemannian Langevin Dynamics (RLD):

dXe = (V- (&(Xe) ™) — g(Xe) ™ VA(X0)) dt + V2, g(Xe) "1 dW,

® See e.g. [Girolami & Calderhead, Riemann manifold Langevin and Hamiltonian
Monte Carlo methods, Journal of the Royal Statistical Society: Series B, 2011]

® Euclidean case (g(x) = /): This gives the Langevin Dynamics

e Stationary distribution is v(x) oc e ) (density with respect to dx)



Riemannian Langevin Dynamics

dX; = (V- (g(Xe) ™) — g(Xe) L VF(Xe)) dt + v24/g(Xe) 1 dW,

® Density of X; ~ p; follows the Fokker-Planck equation:

e Optimization interpretation: Gradient Flow for minimizing
relative entropy with respect to Wasserstein metric W5, on
the space of probability distributions over (X, g)

® Exponential convergence when v satisfies isoperimetry w.r.t. g

o Log-Sobolev inequality (LSI) = in KL divergence
o Poincaré inequality = in x2-divergence



Mirror Langevin Dynamics

Suppose we use Hessian metric: g(x) = V2¢(x) = 0.

Mirror Langevin Dynamics (MLD):
X, = (V- (V26(Xe) 1) = V2(X,) " VE(X,)) de+v2y/V26(X0) L dW,

In the dual space Y; = V@(X¢), MLD becomes:

dY, = —VF(Ve*(Yy)) dt + 1/2V2¢*(Y,) 1 dW,

® If v satisfies LSI/Poincaré w.r.t. V2¢ (“mirror Poincaré inequality”),
then we have exponential convergence in KL or y?-divergence

e Studied by [Zhang et al. (2020)] and [Chewi et al. (2020)]

® Discretizing MLD in dual space gives Mirror Langevin Algorithm



Newton Langevin Dynamics

Let ¢ = f. Newton Langevin Dynamics (NLD):

dY; = —Yidt +V24/V2F*(Y,)~ 1 dW,
® Remarkable property: Brascamp-Lieb inequality = v o e~ satisfies
Poincaré with constant 1 w.r.t. metric V2f, for any strictly convex f

e This implies x2-divergence converges exponentially fast with
uniform rate for any strictly log-concave v

e Studied by [Chewi et al. (2020)] and [Fathi (2019)]



Optimization: Newton Flow

Choose ¢ = f. Newton Flow:
X: = —V2f(X:) " 1VF(X)
In dual space Y; = V@(X;), this becomes:

Yt — —Yt

Therefore, VF(X;) = etV (Xp)

® Exponential convergence with uniform rate for any strictly convex f

® |n discrete time, Newton’s Method with self-concordance property
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Main Result: Convergence of MLA with Vanishing Bias



Mirror Langevin Algorithm: Previous Result

Xk+1 = V(b* <V¢(Xk) — th(Xk) + Vv 2h\ / V2¢(Xk) Zk>
[Zhang et al. (2020)] showed a convergence analysis of MLA with
non-vanishing bias (does not go to 0 with step size).

® Required assumption (among others):

(A1) ¢ satisfies modified self-concordance with constant o > 0:

IVV2p(x') = /V20(x) s < VallVo(x') = Ve(x)l2
® Showed bias is O(v/dh +/da)

® Conjectured non-vanishing bias is unavoidable

Question: Do we need a better algorithm or a better analysis?



Mirror Langevin Algorithm: Alternative Discretization

Alternative discretization of Mirror Langevin Dynamics:

X1 = V' (Vo(x) — hVF(x))
X1 = Vo™ (Xn)

where dX; = /2V2¢*(X;)~1 dW; from Xy = Xjep1

® [Ahn & Chewi. Efficient constrained sampling via the mirror-Langevin
algorithm. arXiv:2010.16212, 2020]

® Nice analysis with vanishing bias under self-concordance

® But requires solution of Brownian motion with changing
covariance



Mirror Langevin Algorithm: Our Result

We study the basic MLA:

Xei1 = Vo <v¢(xk) — KV F(xe) + v/2h V26 () zk>

® \We show a convergence analysis of MLA with vanishing bias
under a subset of the assumptions of [Zhang et al. (2020)].

® Proof technique uses the mean-square analysis framework.

e Will apply to the dual space yx = Vé(xk):

Yi+1 = Yk — hVE(Vo* (vi)) + \/ma



Mirror Langevin Algorithm: Assumptions

We assume:
(A1) ¢ satisfies modified self-concordance with constant a > 0:

1/ V26(x') = \/V26(x) 55 < VallVo(x) — Vo (x)]l2
(A2) f is M-smooth with respect to ¢:
IVF(X') = VE() ]2 < M[V(X) = Vé(x)ll2
(A3) f is m-strongly convex with respect to ¢:

(VF(X') = VF(x),Vo(x') — Vo(x)) > m||Vo(x') — Vo(x)|)3.

These are a subset of the assumptions in [Zhang et al. (2020)]
(they also need bound on moment of V2¢ and commutator of V?f, V2¢)



Mirror Langevin Algorithm: Assumptions

Equivalently for A(y) = /V2¢*(y)~T and g(y) = VF(V¢*(y))

(A1) ¢ satisfies modified self-concordance < A is \/a-Lipschitz

Iy/V200x') = /V26() lns < Vall F(x') = Vo)l

IAGY') = A(y)llus < Vally' =yl

(A2) fis M-smooth w.r.t. ¢ < g is M-Lipschitz

IVE(x') = VF(x)ll2 < M[[Ve(x') = Ve(x)]l2
(") —gW)ll2< Mlly" =yl
(A3) f is m-strongly convex w.r.t. ¢ < g is m-monotone
(VE(X') = VE(x), Vo(X') = V(x)) > m||[V(X') = Vo(x)|l5

8(y)—gly)y —y)=mly —yll3



Mirror Langevin Algorithm: Main Result

Theorem:! Assume (A0), (A1), (A2) with o < m/2. If we run

. . o (m72a)2 ~
MLA in dual space with h < hypax = O M2 18a) from yo ~ po,
then

Wa(p, ) < e (M=20hk Wi (50, 5) + CuraVh

where Gyra = O (W) and & = (V) uv.

m—2«

® Equivalently, MLA in the primal space satisfy
Wa,s(pi,v) < e ™20k W 4(po, v) + Curavh

where W 4(p, v)? = " X/)igg(p D)E[HV(;S(X) - Vo(x)|?]

® This shows MLA has vanishing bias O(v/dh)

![Li, Tao, Vempala, & Wibisono, (2021), Theorem 3.1]



Mirror Langevin Algorithm: Mixing Time

Corollary: Assume (A0), (A1), (A2) with o < m/2.
To reach Wa(p, ) < €, can run MLA with h = €2/CZy 5 for
k = T, (€) iterations where

w9-0 () -0(3)

® Compare with ULA:
f is smooth, strongly convex: bias O(v/dh) = mixing time O(d/e?)

f is also third-order smooth: bias O(v/dh) = mixing time O(v/d /)
[Li et al. (2021)]: mean-square analysis

® MLA bias has v/h dependence due to multiplicative noise
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Proof: Mean-Square Analysis



Classical Mean-Square Analysis

How to bound the error of a discretization y, of a diffusion Y;?

ei = Elllyk — Youl’]
Classical Mean-Square Analysis:

® Studies how local integration error propagates to global error

® Assume one step yx — Yk+1 has bounded local error.
Then can show global error ¢, is bounded for k < K.

® Error bound only holds in finite time: constant C — oo as K — oo

® [Milstein & Tretyakov, Stochastic numerics for mathematical physics,
Springer, 2013]



Improved Mean-Square Analysis

® ldea: If the diffusion process is contracting, then can show the
global error bound holds for all time

® Proposed and analyzed by [Li et al. (2019)] for speeding up ULA:

[Xuechen Li, Denny Wu, Lester Mackey, & Murat Erdogdu. Stochastic
Runge-Kutta accelerates Langevin Monte Carlo and beyond. NeurlPS 2019]

® We will use a recent extension by [Li et al. (2021)] with a weaker
requirement on the local errors:

[Ruilin Li, Hongyuan Zha, & Molei Tao. Sqrt(d) dimension dependence
of Langevin Monte Carlo. arXiv preprint arXiv:2109.03839, 2021]



Mean-Square Analysis: Ingredients

® Consider a continuous-time diffusion process Y; € RY, e.g.
following an SDE:

dY: = —g(Y:) dt + V2A(Y:) dW,

We assume g: RY — R? and A: R? — R9%? are Lipschitz.

® Consider a discrete-time algorithm Alg,, that tries to simulate
the solution Y} at time t = h from Yp. We study the iterates

Vi1 = Algp(y)

® We want to bound the error between the continuous-time
process and the discrete-time algorithm:

e = Elll ik — vll?]



Mean-Square Analysis: Assumptions

We assume:

(M1) Diffusion is contracting with rate > 0: there is to > 0 such
that for any two solutions Y%, Y/ with synchronous coupling,

E[ Y - Vel < e E[IYg - YolP]  VO0<t<t

(MO0) Since g and A are Lipschitz, have short-time deviation bound:
3 ty, Co > 0 such that for any synchronous solutions Y;, Y/,

E[(Yi=Yo)=(Ye=Yo)I’l < GE[lIYs-YolP] t Y0O<t<t



Algorithm and Local Error

From any Yy, let Y}, be the solution to the diffusion process at
time t = h, and let Y7 = Alg,(Yo) the output of the algorithm

® We say Alg, has local weak error of order p; if 3 hy, Gi, D; > O:
IE[Y; — Vi)l < (q + Dy E[||Y0||2) W YO<h<h
® We say Alg, has local strong error of order p, if 3 hy, G5, D> > 0:

E[||Ys — Yall?] < (G + DZE[|Yo|*) h** VYO < h< hy

® Dy = Dy = 0: Uniform bounds [Li, Wu, Mackey, & Erdogdu (2019)]



Mean-Square Analysis: Assumptions

(MO0) Diffusion has Lipschitz coefficients = short-time deviation:

E[I(Y! = Yg) = (Ve = YO)I’1 < GE[|Yg — YollPl t  VO<t<t

(M1) Diffusion is contracting with rate > 0:

E[lY! - Y] < e E[|Yg - Yol®]  vO0<t<t
(M2) Algorithm has local weak error of order p; and local strong
error of order po with % <pp<p1— %:

IE[Ys — V4| < (c1 4D ]E[||v0||2) WPt W0 <h<h
E[|Ys — Vi|?] < (C3 + DIE[||Yo|[?) ¥ VO<h<h,



Mean-Square Analysis: Conclusion

Theorem:? Assume (M0), (M1), and (M2). There is hypax > 0
and C > 0 such that if we run Alg, with 0 < h < hpax from any
Yo ~ po, the global error remains bounded at all time:

E[|| Yk — vell2] < Ch?™2 ¥ k>0

Here yx = Alg,(yk—1) and Yj is diffusion solution from Yy = yo.

® The constant is explicit:

1 <C1 + GG + U(Dy + GDy)

C=—— 73 +C2+DzU)

VB
where U = /E[[|Yol[2] + E,[||Y]?]

?[Li, Zha, & Tao, (2021), Theorem 3.3]



Mean-Square Analysis: Conclusion

Theorem:®> Assume (M0), (M1), and (M2).

VE[| Yik — vill2l < Ch7272 Y k>0

Idea: Show Ex = \/E[|| Yak — y«kl||?] satisfies one-step recursion

Nitker)
- 1
B2,y < e PhED 1 Eghth 4 1%

Ye#

3[Li, Zha, & Tao, (2021), Theorem 3.3]



Mean-Square Analysis: Conclusion

Corollary:* Assume (M0), (M1), and (M2). From any yy ~ po,
if we run Alg,, with 0 < h < hmax, then yx = Algp(vk—1) ~ pk has:

Wa(pi,v) < e K Wy(po,v) + Ch”™2 ¥ k >0

To reach Wh(pk,v) <€, can run Alg,, with h = (e/C)l/(m_%) for
k > 7(€) iterations, where

5 Cl/(Pz—%
=0 LDy

4[Li, Zha, & Tao, (2021), Theorem 3.4]



Mean-Square Analysis of MLA

Dynamics for MLA is the Mirror Langevin Dynamics:

dY; = —g(Y:) dt + V2A(Y:) dW;

where g(y) = VF(V™(y)), Aly) = /V26*(y)~.
Recall assumptions:

(A1) Ais y/a-Lipschitz:
IA(Y") = AY)lles < Vally' = yll2
(A2) g is M-Lipschitz:
lg(y") —gW)ll2 < Mlly" =yl
(A3) g is m-monotone

gy ) —gW).y' —y)=mly —y|3



Mean-Square Analysis of MLA

Lemma: Assume (Al), (A2), and (A3) with o < . Then:

1. MLD is contractive with rate 8 = m — 2a.
2. MLD has deviation bound:
E[|(Y{ = ¥5) = (Ye = Yo)|*] < 4ME[|| Yg — Yol’] t

forall t >0



Contraction of MLD

Suppose we have two synchronous solutions Y/, Y; of MLD:
dY! = —g(Y/)dt + V2A(Y/})dW;
dY; = —g(Yy)dt + V2A(Y:)dW,.

Then

SE]|Y, ~ VilP) = —2E[(g(Y)) — g(Ye). Y{ — Vi)l +4E[A(Y]) — A(Y:)[fas]
< =2(m = 20)E[]| Y{ — Ye[3]-

Exponential contraction if m > 2a:

E[||Y{ — Yel|’] < e "2 E[|| Y — Yo||?]

® Shows modified self-concordance (< A Lipschitz) is natural for
mean-square analysis

® |n general threshold on « is needed for convergence of SDE, e.g.
Geometric Brownian Motion: dY; = —Y;: dt + V2a Y: dW;



Mean-Square Analysis of MLA

Lemma: Assume (Al), (A2), and (A3) with o < 7.

Then MLA with maximum step size h; = W8 has:

1. Local weak error of order p; > % with constants

G =M/(1+8a)C" Dy=MV1+8a

2. Local strong error of order pp = 1 with constants

G =(1+8a)C  Dy=(1+8a)

where €' = (|ly*|| + | A(y*) s + &llg(v*))) = O(/d), with
y* = Vo(x*) and x* = arg mel)r} f(x)



Mean-Square Analysis of MLA

Proof of Main Theorem:

Assume (A1), (A2), and (A3) with a < 7.

. . . o (m—2a)?
Then MLA with maximum step size hpmax = O M2 80)
satisfies mean-square assumptions with p; > % and p, = 1.

Therefore:

Wa(px, ) < e~ (M2 W (5, ) + Curavh

m—2«

where Cyipa = O (w) = O(Vd) and 7 = (V) 4.



Discussion

We show MLA converges in W5 with vanishing bias O(v dh)
= Mixing time bound in W distance is O(d/¢?)

Limitations and questions:

1. Result is in W, distance w.r.t. Euclidean metric in ) = R9. This is
isometric to W, distance w.r.t squared Hessian metric (V2¢)? in X

® Want result in W5 distance w.r.t. Hessian metric V2¢* in)
(isometric to W, distance w.r.t. Hessian metric V2¢ in X).

® Or want result in KL divergence, x2-divergence



Discussion

2. Result assumes relative smoothness and strong convexity of f
w.r.t. ¢, requires mV2¢(x) = V2f(x) < MV2(x)

® Since V2¢(x) — oo, also need V2f(x) — 0o as x — 0X

® Can we have result under weaker condition?

e.g. to sample from uniform (f = 0) or Gaussian distribution
(f = quadratic) on polytope with ¢ = log-barrier function



Discussion

3. Result assumes ¢ satisfies modified self-concordance (MSC)
with parameter oo < m/2

® In 1 dimension, self-concordance (SC) is equivalent to MSC;
but in d > 1 dimensions they are different.

® |In particular, SC is affine-invariant, MSC is not.
® Can find example where MSC constant is arbitrarily large.

® Want to have analysis of MLA with the more natural SC.



Example: Log-Barrier
Let X be polytope

X={xecR%:alx>b Vi=1,...,m}

for some a; € RY with ||a;|| = 1, and b; € R. Let ¢ be log-barrier:
¢(x) =~ _log(a/ x - b;)
i=1

® Recall Self-Concordance constant of ¢ is 2.

® Can show Modified Self-Concordance constant « scales as:

1
o0
Umin(A)2

where omin(A) is smallest singular value of the constraint
matrix A= (a1 - am).



Example: Log-Barrier
Consider polyhedron in d = 2 for small € > 0:

X ={x=(x1,%): x1>0,VV1—€x3 +exp >0}

® 0min(A) = V1-V1-€exe/V2

® Can choose x = (1,0), x' = (2, —%) such that

LIV - VPRl 12
IV — VOB omn(AR @




Discussion

4. Mean-square analysis requires continuous-time process is
exponentially contracting
® Can we have analysis when the process is converging?
® We have this e.g. for ULA in KL divergence under LSI

[Vempala & Wibisono, Rapid Convergence of the Unadjusted
Langevin Algorithm: Isoperimetry Suffices, NeurlPS 2019]



Mirror Langevin Algorithm Converges with Vanishing Bias

Ruilin Li, Molei Tao, Santosh Vempala, Andre Wibisono

arXiv:2109.12077

Thank You!

Questions?
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