An analytical and geometric perspective on adversarial learning.

Nicolás García Trillos UNIVERSITY OF WISCONSIN-MADISON

• Adversarial training / learning.

(AT) inf Sup [E<sub>žnje</sub> [l(ž, ∂)]
∂∈ → µ: D(µ, je) ≤ E
dirhibo on 2 = (x, y) x ∈ le<sup>Q</sup>, y ∈ 2<sup>e</sup>, i}
− ⊕ por euler of statistical model
− l(·, ·)
− D(·, ·)

· Regularized Risk minimization. (R) inf [Ezy [2(2,0)] + 2 R(0) 0 e @ - Classical statistics. - Inverso Problens - Graph-Based Leenning.

Q: what is the relationship between adversarial training and regularization? Some times a veny direct one. Consider the following setup:

$$- (H) = |R^{d}$$

$$- \mathcal{L}(z, \Theta) = (\langle \Theta, x \rangle - y \rangle^{2}$$

$$- \mathcal{D}(\mu, \mu) = W_{e_{\mu}}(\mu, \mu)$$

$$:= \inf \int \varphi(z, \overline{z}) d\pi(z, \overline{z})$$

$$\pi \in P(\mu, \mu)$$
where  $C_{\mu}(z, \overline{z}) = \int ||x - \overline{x}||_{\mu}$  if  $y = \overline{y}$ 

$$+ \infty$$
 if  $y \neq \overline{y}$ .

Then:

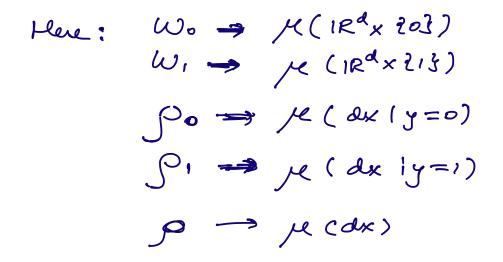
inf sup  $\theta \in \Theta$   $\overline{\mu}: \mathcal{D}(\widehat{\mu}, \mu) \leq \varepsilon$   $[E(\overline{x}, \overline{v}) \sim \overline{\mu}: \mathcal{D}(\widehat{x}, \theta)]$  $inf \left( \sqrt{IE_{(x,y),ny}} \left( e(2,0) \right) + \sqrt{E} \left[ \left( \Theta(I_q) \right)^2 \right] \right)$  $\frac{1}{p}$ 

Today's tak Based on:

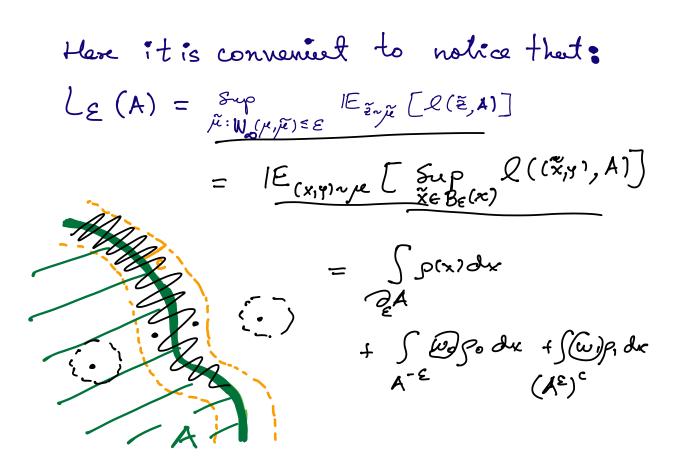
[NGT, NURRAY 20']: "Adversarial clussification: nacessary conditions and geometric flows".
[C. GARCIA TRILLOS, NGT 21']
"On the regularized risk of distributionally robust laarning over deep neural retworks".
[DUNGERT, NGT, HURRAY, 21']

"The geometry of adversarial learning in binary clussification"

Setup:  
- (-): Borel Subsets of IR<sup>d</sup>  
From now on use 
$$A \leq IR^d$$
 instead of  $\theta$   
-  $(x,y) \in IR^d \times \{0,1\}$ .  
-  $D(p^e, j^e) = W_{\infty}(p^e, j^e)$   
 $d(z,z) := \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) := \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) := \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ +\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ -\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ -\infty & if ydy \end{cases}$   
 $U(z,z) = \begin{cases} d(x,z) & \text{if } y=y \\ -\infty & if ydy \end{cases}$   
 $U(z,z) = (1, 1, 2)$   
 $U(z,z) = (1, 2)$   
 $U(z,z)$ 



Q: How should the boundary of  
Ao\* charge to track solutions  
to inf 
$$L_{\varepsilon}(A)$$
 as  $\varepsilon$  grows?  
 $A = E \varepsilon(0, \varepsilon_0) \rightarrow A \varepsilon$   
 $A = A_0^*$   
 $s.t A_{\varepsilon} \in argmin L_{\varepsilon}(A)$ 

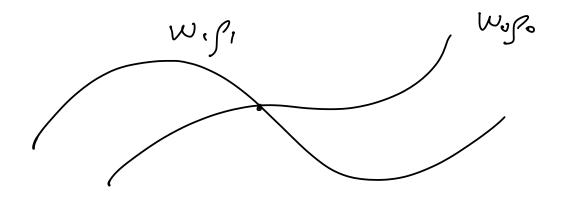


ENGT, HURRAY, 20']  
In 10 First: Suppose Bayes closoifier  
hose the form 
$$A_0 = \bigcup_{K=1}^{U} Ca_K(0), b_K(0)$$
  
Under a "strict crossing" condition  
for Wopo and W. p., the  
Following system of ODEs  
tracks solutions for all  
small enough E:

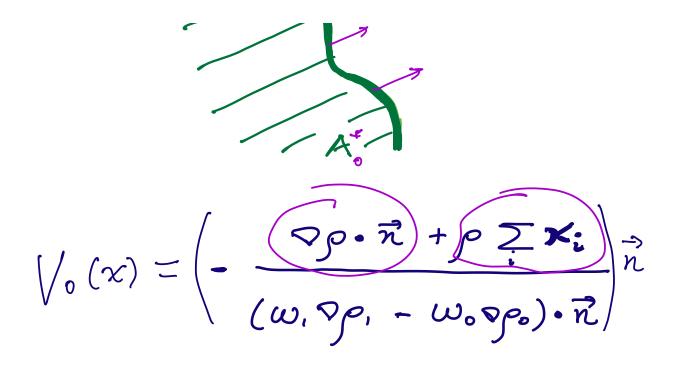
$$\int \frac{db_{\kappa}(\varepsilon)}{d\varepsilon} = -\left( \frac{\omega_{0}\rho_{0}^{\prime}(b_{\kappa}+\varepsilon) + \omega_{0}\rho_{1}^{\prime}(b_{\kappa}-\varepsilon)}{\omega_{0}\rho_{0}^{\prime}(b_{\kappa}+\varepsilon) - \omega_{0}\rho_{1}^{\prime}(b_{\kappa}-\varepsilon)} \right)$$

$$\frac{b_{\kappa}(0)}{b_{\kappa}(0)}$$

and similar egns for QK.



<u>Commento:</u> ( Connection to Optimul Truspol problem: - [Bhagoji et al 19'] } Wo=ω, -[Pydi + Jog 19'] } (2) 1D setting does not reveal the gametric structure of the general problem ... • In d>1: Marsy equations (existence?) but at  $\varepsilon = 0$  no con try to ans ner how the boundary of A. changes infinitesimally: × Vo(×)



SAME infinitasimol change as if we near tracking

solutions of: (R') inf {[Ezne[l(2,A]]+EPor(A)] A

where:

 $Per(A) = \int \mathcal{D}(\lambda) d\mathcal{H}^{d'}(x)$ 

Comments:

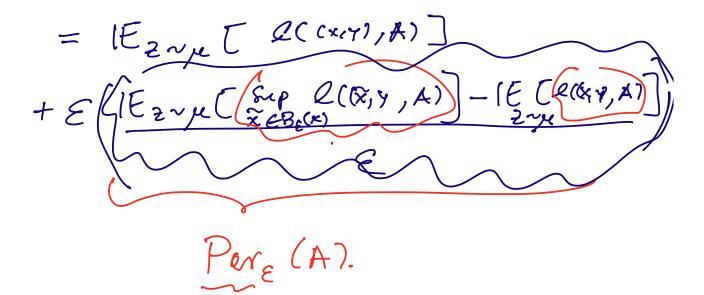
(1) So Perineeter is connected to the regularization induced by (AT).

Now, is (R') equivalent to (AT)?

NO, <u>BUT</u>:

## Take:

IEzye [Sup l((x,y), A)] x ∈ Bo(x)



Theorem : [ Bungert, NGT, MURRAY, 2) (AT) = inf { [Ezme [ e((x,y), A)] + e Pore(A)} hhere :

()  $Per_{e}(A) \ge 0 \quad \forall A$ .

(2)  $Por_{\varepsilon}(\cdot)$  is <u>submodulor</u>:  $A, B \leq IR^{\mathcal{A}}$   $Per_{\varepsilon}(A \cup B) + Por_{\varepsilon}(A \cap B)$  $\leq Por_{\varepsilon}(A) + Por_{\varepsilon}(B)$ 

(3) let 00 TVE (u) := S Pore ({u≥t})dt  $u: \mathbb{R}^d \to \mathbb{R}.$ Then: TVE is convex, 1-honogeour, and R.s.c W.r.t appropriate topologgy. (4) The problem: min { (E<sub>(x,rinn</sub> [1g(x)-y1]+ETK(g))

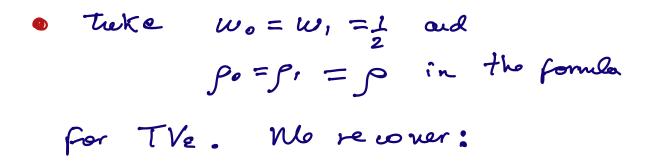
is an exact convex relevation OF (AL).

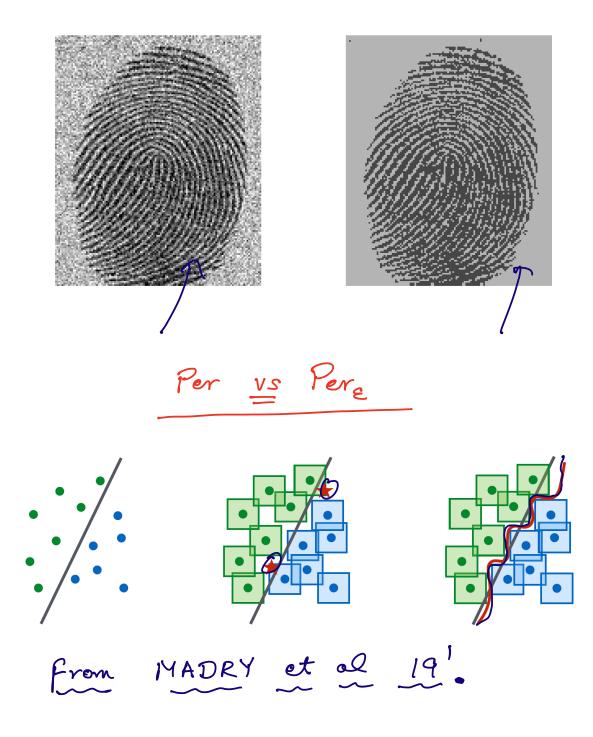
Remerk:

•  $TV_{\varepsilon}(u) =$ 

+  $\frac{\omega_0}{\varepsilon} \int (\sup_{k \in B_{\varepsilon}(x)} - u(x)) \int \partial(dx)$ 

· Notice that TVe depends on the full pe !  $(Per_{e}(A) = TV_{e}(1A) \frac{too}{too})$ 





Q: what is the connection with

Different adversarial model:  
• Nature chooses 
$$\tilde{x} \sim \mathcal{PL}_{B_{\varepsilon}(x)}$$
  
Adversary decides to accept / reject  
 $\tilde{x}$  (with the good of maximizing their  
 $pay=ff$ ).  
(AL')

$$= \inf \left\{ I \in [I_{\mathcal{U}}(x) - y] + \in \widetilde{IV_{\mathcal{E}}}(u) \right\}$$
  
$$\mathcal{U}: \mathbb{R}^{d} \to [0,1]$$

where  $\widetilde{TV}_{\mathcal{E}}(u) =$ 

$$\frac{\omega_{i}}{\varepsilon} \int \int \frac{\gamma_{\varepsilon}(1\times-\tilde{x}I)}{[\kappa^{d} \ R^{d}} \int \frac{\varphi(1\times-\tilde{x}I)}{\varphi(2\varepsilon)} (\omega(\infty) - \omega(\tilde{x})) + \varphi(2\tilde{x}) \rho(dx)$$

+ 
$$\frac{\omega_{o}}{\varepsilon} \int \int \frac{\gamma_{\varepsilon}(1 \times -\tilde{\chi}_{I})}{R^{d} R^{d} P^{(B_{\varepsilon}(\chi))}} (u(\chi) - u(\tilde{\chi})) \frac{g(\tilde{g})}{P^{o}(d\chi)}$$

Remark: 
$$\omega_{n} = \omega_{n} = \frac{1}{2}$$
  
 $\mathcal{P}_{0} = \mathcal{P}_{n} = \mathcal{P}_{1}$ :

$$\frac{1}{2\varepsilon} \int \int \frac{\Im e^{(1x-\widehat{x})}}{\mathcal{P}(Be(x))} |u(x)-u(\widehat{x})| \mathcal{P}(d\widehat{x})\mathcal{P}(dx)$$

When 
$$p(dx) = \int_{n}^{n} \frac{\partial x}{\partial x}$$

$$-\mathcal{P}(Be(x)) = degree \circ f geonetricgraph
$$\int \frac{1}{2n^{2}E} \sum_{i=j}^{2} \frac{\gamma_{e}(1x_{i}-x_{j}1)}{d_{e}(x_{i})} |u(x_{i})-u(x_{j})|$$$$

## Thank you for your attention!

## Special thanks to:

-NSF Grant: DMS-2005797 -All my collaborators.

