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The problem of sampling

@ The target density
7(8) o exp ( — £(8)), f:RP 5 R,
- 1/q
wam) = [ 101gno)a0) <+, g2
RP

Conditions on f: gradient Lipschitz + convex
|VF(u) = Vi), <Mlu—v], &  V?*f(u)=0.

Example: posterior of the multivariate logistic regression.
Goal: find a distr. v easy to sample and s.t. Wy (v, ) is small.

Constant sampling: if v = do, then Wy (v, 7) < pg().

Equiv. of moments: there is A, s.t. for all log-concave 7,

Nq(”) < Aq.“2(77)

(explicit expression leading to A; < 3.5, A, < 4.6).
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First-order MCMC methods

Gradient oracle: assume that at any 6 € RP, we can evaluate Vf(6).
@ Langevin Monte Carlo (LMC)

I = IMC — hVF(IMC) +V2h € k=0,1,... (LMQ)

where {£,} is iid N,(0,1,) indep. of 9. Set vFMC = £(9M).
@ Langevin Monte Carlo with averaging (LMCa)

9MC = MC - unif(1,... k), k=0,1,... (LMCa)

and set 12tMC = £(93-MC),

@ Metropolis adjusted Langevin Algorithm (MALA)
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First-order MCMC methods

Gradient oracle: assume that at any 6 € RP, we can evaluate Vf(6).
@ Langevin Monte Carlo (LMC)

I = IMC — hVF(IMC) +V2h € k=0,1,... (LMQ)
where {£,} is iid N,(0,1,) indep. of 9. Set vFMC = £(9M).
@ Langevin Monte Carlo with averaging (LMCa)
IMC = 9tMS 7~ Unif(1,...,k), k=0,1,... (LMCa)
and set 12tMC = £(93-MC),
@ Kinetic Langevin Monte Carlo (KLMC, aka underdamped LMC)
Go(h)vi = 1 (h)V(9) 1 T ls‘tll
i+ 1(h)vi — Ya(h)VF(Iy) 522421

Vil

o ] (KLMC)

@ Metropolis adjusted Langevin Algorithm (MALA)
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An illustration and the objective

Sampling guarantees

Figure: The blue lines represent different paths of a discretized
Langevin process. We see that the histogram of the state at time
t = 30 is close to the target density (the dark blue line).

Main goal: number of gradient evaluations that are sufficient to get
e-accuracy in W, (especially for g =1 and g = 2).
Mixing time of an approximate sampling algorithm Alg:

Kaig,w,(p,e) = min {k € N : Wq(uflg,ﬂ) < epg(m), Ve P}
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Quick overview

Order of magnitude of the mixing time of various first-order samplers.

k=Mu3/p| LMCa MALA | a-LMC | a-KLMC
W, _ _ sz/Eﬁ /@1'5p2/55
Wl _ _ Hp2/€4 H1'5p2/53
drv ‘ kp? et A ‘ p3(k/e)3/? ‘ w2p3 /et [ ‘ -

@ A behavior of the LMC with averaging [Durmus et al., 2019].
@ < derived from [Dwivedi et al., 2018]
@ [ behavior of the LMC [Dalalyan, 2017].
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First approach

Wasserstein from TV
@ Proposition For any pair of probability measures (v, 1), and for

@ Proof optimal coupling X ~ v and Y ~ v/ for the TV-distance:
drv(v,v') = P(X # Y) and Wy(v,v') < E[IX - Y|3]"/

any g > 1, we have:

W) < inf { () + 1 (01)) ()

Sl
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First approach

Wasserstein from TV

@ Proposition For any pair of probability measures (v, 1), and for
any g > 1, we have:

Wa(r,') < inf { (e0) + () e, )3~
r>q
@ Proof optimal coupling X ~ v and Y ~ v/ for the TV-distance:
drv(v,v') = P(X # Y) and Wo(v,v') < E[|X = Y|[31xev]"/7.
Use the Holder inequality to conclude.

Sie
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First approach

Wasserstein from TV

@ Proposition For any pair of probability measures (v, 1), and for
any g > 1, we have:

Wa(v, /) < inf { (e (v) + () dru(, ') 5~
r=q
@ Proof optimal coupling X ~ v and Y ~ v/ for the TV-distance:
drv(v,v') =P(X # Y) and

@ If 7 log-concave, y1(v) < pa(7) and dry (v, 7) < (¢/A,) /=1
then

~ i

Wi (v, ) < epp(m).
@ If 7 log-concave, po(v) < pa(m) and dry (v, 7) < (¢/A,)*H4/(=2)

then
Wa(v, ) < epia().
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Quick overview

Order of magnitude of the mixing time of various first-order samplers.

k=Mi3/p| LMCa | MALA | -LMC | a-KLMC
W, A§p2/€8+8/r A§p3/€3+3/r p2/€6 P2/€5
W, A¢p2/€4+4/r A§/2p3/€3/2+1/r p2/€4 p2/53
drv ‘ p2/e* A ‘ p3/€3/2 ‘ p3/e* O ‘ _

@ dependence on p is not better than for the penalized LMC.
@ The results for MALA involve very large constants.

@ Good dependence on ¢ requires large r, but then the constants
A, blow up
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Second approach: Poincaré inequality

@ 7 satisfies the Poincaré inequality if
Var, ] < Ce [ [V4(6)[5 7(6) db.
We call Cp the Poincaré constant.
@ For any log-concave 7, Cp < 0.

@ The Langevin diffusion satisfies ([Chewi et al., 2020, Lehec, 2021,
Vempala and Wibisono, 2019]

Wg(l/hﬂ')2 < 2CPX2(Z/0,7T)e_t/CP, t>0.

Theorem [Lehec, 2021, Thm 3] If 7 is log-concave and f is L-
Lipschitz, then LMC with step-size h < p/L? satisfies

Wa(vi, ) < 4Cpx2(vo, m)e ™ /% 4 3Lkh*/2/p.

If 99 ~ N (x., (p/L?)1) then log x*(vo,7) < p + plog(L*Cp/p).
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Quick overview

Order of magnitude of the mixing time of various first-order samplers.

k=Mi3/p| LMCa | MALA | -LMC | a-KLMC
W A§p2/€8+8/r A§p3/53+3/r p2/56 p2/55
W, A¢p2/54+4/r A§/2p3/53/2+1/r p?/e* p2/e3
drv ‘ p?/e* A ‘ p3/€3/2 ‘ p3/e* O ‘ _

@ Lehec’s result leads to

3,22
Kime,w, = 9<CP P >

4

@ Mathematically elegant result, but dependence on Cp is annoying.

@ f global-Lipschitz assumption might be violated.
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Third approach
Adding a quadratic penalty

@ If f is a-strongly log-concave, then one has Cp < 1/ and
WQ(Vt,W) < efatWQ(l/oﬂr).

@ Define the str. convex surrogate f,(0) := f(6) + «||0||3/2 and
e_fa(e)

a(0) = ——F—F~—.
T ( ) pr e—fa(V)dy
@ Proposition We have

drv(m,ma) < au%(w) W;’(w,wa) < anu2(7r)q+2.

In particular, CG; <22 and G, < 111.
@ Define a-LMC as LMC for f£,.
@ Use the triangle inequality

dist(v, %, 7) < dist(vj 8, 7o) + dist(q, 7). (1)
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Main result for a-LMC

Theorem
Suppose that the potential f is convex and M-Lipschitz. Let
q € [1,2]. Then, for every o < M/20 and h < 1/(M + ), we have

1/q
Wq(V;_LMC,ﬂ') < \/,LTQ(]. _ Ozh)K/2+ (2,1hMp/Oé)1/2 + (anlu';hLz) :

—_——
error due to the lack
of strong-convexity

error due to the discretization error
time finiteness

@ FAQ: why « is in the discretization error as well 7

@ Optimizing wrt to « and h, we get

15p
Ka-tme,wy <5 X 104M€i4 log(100/¢)

15p
Ka-mc,w, < 4 X 106/\/1&%6 log(100/¢).
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Main result for a-KLMC

Theorem
Suppose f is convex and M-Lipschitz. Let g € [1,2]. Then for every
a< M/20, v > VM4 2« and h < a/(4v(M + «)), we have

30h K 1/q
W, (vgKMC 1) < /2102 (1 _ 46;) + 1.5MpY/2(h/a) + (anu§’+2) )
N—
N——————

error due to the lack
of strong-convexity

discretization error
error finite time

Optimizing wrt to a and h, we get

Kokime.w, (p, €) < 9.2 x 103(Mp3)*/2(p*/? /&%) log(150/¢)
Kokime,w, (p, €) < 4.4 x 10°(Mp2)3/2(p*/2 /%) log(150/¢).
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Conclusions and outlook

@ Non-asymptotic sampling guarantees for convex (but not
strongly convex) and gradient-Lipschitz potentials.

@ The simple convexification trick is still “competitive”.

@ Faster rates are obtained under additional smoothness
(Hessian Lipschitz) assumptions.
@ Current work: variable step-size hy + variable penalty oy +

randomized mid-point discretization [Shen and Lee, 2019].

@ Time-continuous bound in [Karagulyan and Dalalyan,
2020]: if a(t) = 1/(t + p3(x)) then

1043 (1 + log(1 + t/p3))

\t+ 13
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Conclusions and outlook

@ Non-asymptotic sampling guarantees for convex (but not
strongly convex) and gradient-Lipschitz potentials.

@ The simple convexification trick is still “competitive”.

@ Faster rates are obtained under additional smoothness
(Hessian Lipschitz) assumptions.

@ Current work: variable step-size hy + variable penalty oy +
randomized mid-point discretization [Shen and Lee, 2019].

@ Time-continuous bound in [Karagulyan and Dalalyan,
2020]: if a(t) = 1/(t + p3(r)) then

1043 (1 + log(1 + t/p3))
\t+ 13

Interested in a postdoc in Paris: send me an email.
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