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The problem of sampling

The target density

π(θ) ∝ exp
(
− f (θ)

)
, f : Rp → R,

µq(π) =

(∫
Rp

‖θ‖q2 π(θ) dθ

)1/q

< +∞, q = 2.

Conditions on f : gradient Lipschitz + convex∥∥∇f (u)−∇f (v)
∥∥
2
≤ M‖u − v‖2 & ∇2f (u) � 0.

Example: posterior of the multivariate logistic regression.

Goal: find a distr. ν easy to sample and s.t. Wq(ν, π) is small.

Constant sampling: if ν = δ0, then Wq(ν, π) ≤ µq(π).

Equiv. of moments: there is Aq s.t. for all log-concave π,

µq(π) ≤ Aqµ2(π)

(explicit expression leading to A3 ≤ 3.5,A4 ≤ 4.6).
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First-order MCMC methods

Gradient oracle: assume that at any θ ∈ Rp, we can evaluate ∇f (θ).

Langevin Monte Carlo (LMC)

ϑLMC
k+1 = ϑLMC

k − h∇f (ϑLMC
k ) +

√
2h ξk+1; k = 0, 1, . . . (LMC)

where {ξk} is iid Np(0, Ip) indep. of ϑ0. Set νLMC
k = L(ϑLMC

k ).

Langevin Monte Carlo with averaging (LMCa)

ϑaLMC
k = ϑLMC

τ ; τ ∼ Unif(1, . . . , k), k = 0, 1, . . . (LMCa)

and set νaLMC
k = L(ϑaLMC

k ).

Kinetic Langevin Monte Carlo (KLMC, aka underdamped LMC)[
v k+1

ϑk+1

]
=

[
ψ0(h)v k − ψ1(h)∇f (ϑk)

ϑk + ψ1(h)v k − ψ2(h)∇f (ϑk)

]
+
√

2γ

[
ξ
(1)
k+1

ξ
(2)
k+1

]
(KLMC)

Metropolis adjusted Langevin Algorithm (MALA)
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An illustration and the objective
Sampling guarantees

Figure: The blue lines represent different paths of a discretized

Langevin process. We see that the histogram of the state at time

t = 30 is close to the target density (the dark blue line).

Main goal: number of gradient evaluations that are sufficient to get

ε-accuracy in Wq (especially for q = 1 and q = 2).

Mixing time of an approximate sampling algorithm Alg:

KAlg,Wq (p, ε) = min
{
k ∈ N : Wq(νAlgk , π) ≤ εµq(π), ∀π ∈ P

}
.
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Quick overview

Order of magnitude of the mixing time of various first-order samplers.

κ = Mµ2
2/p LMCa MALA α-LMC α-KLMC

W2 − − κp2/ε6 κ1.5p2/ε5

W1 − − κp2/ε4 κ1.5p2/ε3

dTV κp2/ε4 4 p3(κ/ε)3/2� κ2p3/ε4 � −

4 behavior of the LMC with averaging [Durmus et al., 2019].

� derived from [Dwivedi et al., 2018]

� behavior of the LMC [Dalalyan, 2017].
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First approach
Wasserstein from TV

Proposition For any pair of probability measures (ν, ν′), and for

any q ≥ 1, we have:

Wq(ν, ν′) ≤ inf
r≥q

{
(µr (ν) + µr (ν

′)) dTV(ν, ν′)
1
q−

1
r

}
.

Proof optimal coupling X ∼ ν and Y ∼ ν′ for the TV-distance:

dTV(ν, ν′) = P(X 6= Y ) and Wq(ν, ν′) ≤ E[‖X − Y ‖q2 ]1/q

If π log-concave, µ1(ν) . µ2(π) and dTV(ν, π) ≤ (ε/Ar )
1+1/(r−1)

then

W1(ν, π) ≤ εµ2(π).

If π log-concave, µ2(ν) . µ2(π) and dTV(ν, π) ≤ (ε/Ar )
2+4/(r−2)

then

W2(ν, π) ≤ εµ2(π).
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Quick overview

Order of magnitude of the mixing time of various first-order samplers.

κ = Mµ2
2/p LMCa MALA α-LMC α-KLMC

W2 A8
r p

2/ε8+8/r A3
r p

3/ε3+3/r p2/ε6 p2/ε5

W1 A4
r p

2/ε4+4/r A
3/2
r p3/ε3/2+1/r p2/ε4 p2/ε3

dTV p2/ε4 4 p3/ε3/2� p3/ε4 � −

dependence on p is not better than for the penalized LMC.

The results for MALA involve very large constants.

Good dependence on ε requires large r , but then the constants

Ar blow up
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Second approach: Poincaré inequality

π satisfies the Poincaré inequality if

Varπ[h] ≤ CP
∫
‖∇h(θ)‖22 π(θ) dθ.

We call CP the Poincaré constant.

For any log-concave π, CP <∞.

The Langevin diffusion satisfies ([Chewi et al., 2020, Lehec, 2021,

Vempala and Wibisono, 2019]

W2(νt , π)2 ≤ 2CPχ2(ν0, π)e−t/CP , t ≥ 0.

Theorem [Lehec, 2021, Thm 3] If π is log-concave and f is L-

Lipschitz, then LMC with step-size h ≤ p/L2 satisfies

W2(νk , π) ≤ 4CPχ2(ν0, π)e−kh/CP + 3Lkh3/2
√
p.

If ϑ0 ∼ N (x∗, (p/L
2)I) then logχ2(ν0, π) ≤ p + p log(L2CP/p).
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Quick overview
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κ = Mµ2
2/p LMCa MALA α-LMC α-KLMC

W2 A8
r p

2/ε8+8/r A3
r p

3/ε3+3/r p2/ε6 p2/ε5

W1 A4
r p

2/ε4+4/r A
3/2
r p3/ε3/2+1/r p2/ε4 p2/ε3

dTV p2/ε4 4 p3/ε3/2� p3/ε4 � −

Lehec’s result leads to

KLMC ,W2 = Θ

(
C3PL2p2

ε4

)
Mathematically elegant result, but dependence on CP is annoying.

f global-Lipschitz assumption might be violated.
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Third approach
Adding a quadratic penalty

If f is α-strongly log-concave, then one has CP ≤ 1/α and

W2(νt , π) ≤ e−αtW2(ν0, π).

Define the str. convex surrogate fα(θ) := f (θ) + α‖θ‖22/2 and

πα(θ) :=
e−fα(θ)∫

Rp e−fα(v)dv
.

Proposition We have

dTV(π, πα) ≤ αµ2
2(π) W q

q (π, πα) ≤ Cqαµ2(π)q+2.

In particular, C1 ≤ 22 and C2 ≤ 111.

Define α-LMC as LMC for fα.

Use the triangle inequality

dist(νAlgk,α, π) ≤ dist(νAlgk,α, πα) + dist(πα, π). (1)
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Main result for α-LMC

Theorem
Suppose that the potential f is convex and M-Lipschitz. Let

q ∈ [1, 2]. Then, for every α ≤ M/20 and h ≤ 1/(M + α), we have

Wq(να-LMC
K , π) ≤ √µ2(1− αh)K/2︸ ︷︷ ︸

error due to the
time finiteness

+ (2.1hMp/α)1/2︸ ︷︷ ︸
discretization error

+
(
Cqαµ

q+2
2

)1/q
︸ ︷︷ ︸

error due to the lack
of strong-convexity

.

FAQ: why α is in the discretization error as well ?

Optimizing wrt to α and h, we get

Kα-LMC,W1 ≤ 5× 104M
µ2
2p

ε4
log(100/ε)

Kα-LMC,W2 ≤ 4× 106M
µ2
2p

ε6
log(100/ε).
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Main result for α-KLMC

Theorem
Suppose f is convex and M-Lipschitz. Let q ∈ [1, 2]. Then for every

α ≤ M/20, γ ≥
√
M + 2α and h ≤ α/(4γ(M + α)), we have

Wq(να-KLMC
K , π) ≤

√
2µ2

(
1− 3αh

4γ

)K

︸ ︷︷ ︸
error finite time

+ 1.5Mp1/2(h/α)︸ ︷︷ ︸
discretization error

+
(
Cqαµ

q+2
2

)1/q
︸ ︷︷ ︸

error due to the lack
of strong-convexity

.

Optimizing wrt to α and h, we get

Kα-KLMC,W1(p, ε) ≤ 9.2× 103(Mµ2
2)3/2(p1/2/ε3) log(150/ε)

Kα-KLMC,W2(p, ε) ≤ 4.4× 105(Mµ2
2)3/2(p1/2/ε5) log(150/ε).
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Conclusions and outlook

Non-asymptotic sampling guarantees for convex (but not

strongly convex) and gradient-Lipschitz potentials.

The simple convexification trick is still “competitive”.

Faster rates are obtained under additional smoothness

(Hessian Lipschitz) assumptions.

Current work: variable step-size hk + variable penalty αk +

randomized mid-point discretization [Shen and Lee, 2019].

Time-continuous bound in [Karagulyan and Dalalyan,

2020]: if α(t) = 1/(t + µ22(π)) then

W2(νt , π) ≤
10µ22

(
1 + log(1 + t/µ22)

)√
t + µ22

.
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Interested in a postdoc in Paris: send me an email.
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