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Planted clique problem
Erdds-Rényi random graph G ~ G(n,1/2) G' = G + K, where G ~ G(n,1/2) and k > 2logn

w.h.p. largest clique has size w(G) ~ 2logn
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vV v v Vv

Many results for planted clique actually prove lower bound for refutation problem
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Clique problem: prove G has no k-clique
Erdds-Rényi random graph G ~ G(n,1/2)

w.h.p. largest clique has size w(G) ~ 2logn

» Brute-force algorithm proves G has no clique of size £ > w(G) in time nOWw(G))

» J algorithm that proves G has no k-clique for w(G) < k < +4/n in poly-time?
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Clique problem: prove G has no k-clique
Erdds-Rényi random graph G ~ G(n,1/2)

w.h.p. largest clique has size w(G) ~ 2logn

» Brute-force algorithm proves G has no clique of size £ > w(G) in time nOWw(G))

» J algorithm that proves G has no k-clique for w(G) < k < +4/n in poly-time?

» J proof that GG has no k-clique for w(G) < k < y/n in poly-size?
algorithmically hard

impossible I I algorithmically easy

2logn K <.n
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Clique problem: prove G has no k-clique
Erdds-Rényi random graph G ~ G(n,1/2)

w.h.p. largest clique has size w(G) ~ 2logn

Focuson k = w(G) + 1

» Brute-force algorithm proves G has no clique of size £ > w(G) in time nOWw(G))

» J algorithm that proves G has no k-clique for w(G) < k < +4/n in poly-time?

» J proof that GG has no k-clique for w(G) < k < y/n in poly-size?
algorithmically hard

impossible I provably hard I provably easy I algorithmically easy

2logn K <.n
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Clique problem: prove G has no k-clique

» Formula Clique(G, k)
states that G has a k clique
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Clique problem: prove G has no k-clique

Variable z,; =
[vertex v is ith member of clique]

» Formula Clique(G, k)
states that G has a k clique

> Prove Clique(G, k) is unsatisfiable

\V 2vi  viewn

A vertex can only be once in clique
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Non-neighbors are not both in clique
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» Formula Clique(G, k)
states that G has a k clique

> Prove Clique(G, k) is unsatisfiable

\V 2vi  viewn

A vertex can only be once in clique

» Lower bound size of refutation?
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Clique problem: prove G has no k-clique

Variable z,; =
[vertex v is ith member of clique]

» Formula Clique(G, k)
states that G has a k clique

> Prove Clique(G, k) is unsatisfiable

\V 2vi  viewn

A vertex can only be once in clique

» Lower bound size of refutation?

» Can we show that “brute-force”,

YveV
Vi #£ i’ € k]

size n®(F) refutation is optimal? Toi \V Tt

» Natural candidate hard instances: _ o
Non-neighbors are not both in clique

Erdés-Rényi random graph G ~ G(n, p) - = V(u,v) € E
p close to k-clique threshold Tui V Toif Vi il e %]
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Other candidate hard formulas
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Other candidate hard formulas

» Random k-SAT

* Choose each of the 2* (Z’) possible clauses with probability p
* Choose m clauses of 2%(7!) possible clauses uniformly at random
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Other candidate hard formulas

» Random k-SAT

* Choose each of the 2* (2’) possible clauses with probability p
* Choose m clauses of 2%(7!) possible clauses uniformly at random

» Clause-variable incidence graph (here, no signs)
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rVuyVz
- » Related easy formula: random k-XOR
rViyVuw e Only 2(}) possible XOR constraints
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Other candidate hard formulas

» Random k-SAT

* Choose each of the 2* (2’) possible clauses with probability p
* Choose m clauses of 2%(7!) possible clauses uniformly at random

» Clause-variable incidence graph (here, no signs)

rVuyVz
- » Related easy formula: random k-XOR
rViyVuw e Only 2(}) possible XOR constraints
° Yy cexPbyPbz=0orxPhbydhz=1
: 5 » Rewrite constraint in CNF

e xt B yDd z = 0 becomes 4 clauses:

w (xVyVZ)A(xeVyVZIA(xVyVz)AN(TVyV z)
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k-coloring formula

» Quite different from k-clique
e NP-hard for £k = 3
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k-coloring formula

Formula Color(G, k):
» Quite different from k-clique
« NP-hard for k = 3 Variable x,; = [vertex v is colored 7]

Every vertex has a color

\/ Loi YvoeV

A vertex has only one color

YoeV

Lai V Tos
vt vi! Vi #£ i € [k

Neighbors don't have same color

V(u,v) € B

Tui V Toi k]
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k-coloring formula

Formula Color(G, k):
» Quite different from k-clique
« NP-hard for k = 3 Variable x,; = [vertex v is colored 7]

Every vertex has a color
» Natural hard candidate:

* Erdés-Rényi random graph G ~ G(n, p) \/ Tos Vo eV
p close to k-colorable threshold i€ (k]

A vertex has only one color

YvoeV
Vi #£ i’ € k]

ffui V E'vz”

Neighbors don't have same color

V(u,v) € B

Tui V Toi k]
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Reasons for studying average-case proof complexity

» Stronger statement than worst-case: almost all graphs are hard
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» There are not many natural hard candidates (to prove lower bounds
for stronger proof systems)

 Many lower bounds are for “easy formulas”: pigeonhole principle, Tseitin,
clique-coloring principle “a (k-1)-colorable graph does not contain a k-clique”
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Reasons for studying average-case proof complexity

» Stronger statement than worst-case: almost all graphs are hard

» There are not many natural hard candidates (to prove lower bounds
for stronger proof systems)

 Many lower bounds are for “easy formulas”: pigeonhole principle, Tseitin,
clique-coloring principle “a (k-1)-colorable graph does not contain a k-clique”

* This talk: focus on average-case complexity of three NP-hard problems

» Many combinatorial formulas are of independent interest
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Proof Systems
and Lower Bounds




Proof Systems

» Given unsat CNF formula, how can we refute it?
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Proof Systems

» Given unsat CNF formula, how can we refute it?

» Define some proof systems

[ Sum-of-sq uares]

R

[Polynomial calculus] [Cutting pIanes]

[Resolution ]

Tree-like
resolution
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Resolution
UNSAT k-CNF formula F: (yVZ)A (@ VZ)A(xVy) A(zVYV2)A(TV 2)

Resolution rule: CVz  DVzx
CcvD

Refutation: Derivation of empty clause L o
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Refutation: Derivation of empty clause L o
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Resolution
UNSAT k-CNF formula F: (yVZ)A (@ VZ)A(xVy) A(zVYV2)A(TV 2)

Resolution rule: CVz  DVzx
CvD

Refutation: Derivation of empty clause L o

Proof size: # clauses in proof
Proof width: max # literals in a clause

w = smallest width of any refutation of F e °

Algorithm in time ~ n"

Theorem [BWO01] @ @

Proof size > exp (Q (M))
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Resolution
UNSAT k-CNF formula F: (yVZ)A (@ VZ)A(xVy) A(zVYV2)A(TV 2)

Resolution rule: CVz  DVzx
CvD

Refutation: Derivation of empty clause L o

Proof size: # clauses in proof
Proof width: max # literals in a clause

w = smallest width of any refutation of F e °

Algorithm in time ~ n"

Theorem [BWO01] @ @
12

Proof size > exp (Q (M))
n

Tree-like: proof DAG is a tree @ @ @ @ @
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Polynomial calculus Cutting planes

UNSAT Ek-CNF formula F: (VZ)A(ZVZ)A(xVYyY) A(zVGV2z)A(TV2)
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Polynomial calculus Cutting planes

UNSAT Ek-CNF formula F: (VZ)A(ZVZ)A(xVYyY) A(zVGV2z)A(TV2)

(xVygVz)~1—-2)y(l—2)=0 (xVyVz)~z+(1—-y)+2>1
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Polynomial calculus Cutting planes

UNSAT Ek-CNF formula F: (VZ)A(ZVZ)A(xVYyY) A(zVGV2z)A(TV2)

(xVygVz)~(1—2)y(l—2)=0 (xVygVz)~zx+(1—y)+2z2>1
Boolean axioms: 22 —x =0
Linear combination: p=0 ¢=0
over F ap + g =0
Multiply by variable: 2= Y
xp =0

Refutation: Derivation of 1 =0
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Polynomial calculus Cutting planes

UNSAT Ek-CNF formula F: (VZ)A(ZVZ)A(xVYyY) A(zVGV2z)A(TV2)

(xVygVz)~(1—2)y(l—2)=0 (xVygVz)~zx+(1—y)+2z2>1
Boolean axioms: 22 —x =0
Linear combination: p=0 ¢=0
over F ap + g =0
Multiply by variable: 2= Y
xp =0

Refutation: Derivation of 1 =0

Proof size: # monomials in proof
Proof degree: max degree of any polynomial
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Polynomial calculus Cutting planes

UNSAT Ek-CNF formula F: (VZ)A(ZVZ)A(xVYyY) A(zVGV2z)A(TV2)

(xVygVz)~(1—2)y(l—2)=0 (xVygVz)~zx+(1—y)+2z2>1
Boolean axioms: 22 — z = () Boolean axioms: 0 < x <1
Linear combination: p=0 ¢=0 Linear combination: b= A 9= b
over F ap + Bqg =0 ap + B8qg > aA+ BB
Multiply by variable: p=0 Division: Z’L ca;z; > A
xp =0 > aix; > [Afc]
Refutation: Derivation of 1 =10 Refutation: Derivation of —1 >0

Proof size: # monomials in proof
Proof degree: max degree of any polynomial
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Polynomial calculus Cutting planes

UNSAT Ek-CNF formula F: (VZ)A(ZVZ)A(xVYyY) A(zVGV2z)A(TV2)

(xVygVz)~(1—2)y(l—2)=0 (xVygVz)~zx+(1—y)+2z2>1
Boolean axioms: 22 — z = () Boolean axioms: 0 < x <1
Linear combination: p=0 ¢=0 Linear combination: P = A g2 B

over ¥ ap+ Bq =0 ap+ g > oA+ BB
Multiply by variable: p=0 Division: Z’L ca;z; > A

xp =0 > aix; > [Afc]

Refutation: Derivation of 1 =0 Refutation: Derivation of —1 >0
Proof size: % monomials in proof Proof size: # inequalities in proof

Proof degree: max degree of any polynomial
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Sum of squares
UNSAT Ek-CNF formula F: (VZ)A(ZVZ)A(xVYyY) A(zVGV2z)A(TV2)
(xVygVz)~(1—2)y(l—2)=0 (xVygVz)~zx+(1—y)+2z2>1

Boolean axioms: x° —x = 0 Boolean axioms: 0 < x <1

[ Sum-of-sq uares]

R

[Polynomial calculus] [ Cutting planes]

Resolution
Tree-like
resolution
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Sum of squares
UNSAT Ek-CNF formula F: (VZ)A(ZVZ)A(xVYyY) A(zVGV2z)A(TV2)
(xVygVz)~1—-2)y(l—2)=0 (xVyVz)~z+(1—-y)+2>1

Boolean axioms: x° —x = 0 Boolean axioms: 0 < x <1

Polynomials P ={P, =0,P, =0,...,P, =0;Q1 > 0,02 >0,...,Q, > 0}

SoS refutation of P: Ry, R>,..., R,,;51,59,...,5/ s.t.
Z R P _I_ Z SzQZ o [Sum—of—squares]
1€[m] i€[f] R

[Polynomial calculus] [Cutting planes]

Resolution
Tree-like
resolution

where each S; is a sum of squares
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Sum of squares
UNSAT Ek-CNF formula F: (VZ)A(ZVZ)A(xVYyY) A(zVGV2z)A(TV2)
(xVyVz)~(1—-2)y(l—2)=0 (xVyVze)~zx+(1l—y)+2z>1

Boolean axioms: x° —x = 0 Boolean axioms: 0 < x <1

Polynomials P ={P, =0,P, =0,...,P, =0;Q1 > 0,02 >0,...,Q, > 0}

SoS refutation of P: Ry, R>,..., R,,;51,59,...,5/ s.t.
Z R P _I_ Z S?,Q?, o [Sum—of—squares]
1€[m] i€[f] R

[Polynomial calculus] [Cutting planes]

where each S; is a sum of squares

Proof size: % monomials when we expand proof —
ree-like
Proof degree: max degree of any polynomial
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Average-case hardness results

| kediaue | kecoloring 3-SAT xR

Tree-like HARD [Chvatal, Szemerédi ’88]
Resolution Improved [Ben-Sasson, Galesi '01] (size exp(n/A'™¢)) A =m/n

Resolution HARD [Chvétal, Szemerédi ‘88]  exp(n/A%Te)
Improved [Beame, Karp, Pitassi, Saks ‘98], [Ben-Sasson '01]

Polynomial
Calculus

Sum of
Squares

Cutting
Planes
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Average-case hardness results
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Tree-like HARD [Chvatal, Szemerédi ’88]
Resolution Improved [Ben-Sasson, Galesi '01] (size exp(n/A'™¢)) A =m/n

Resolution HARD [Chvétal, Szemerédi ‘88]  exp(n/A%Te)
Improved [Beame, Karp, Pitassi, Saks ‘98], [Ben-Sasson '01]

Polynomial F 49 HARD [Ben-Sasson, Impagliazzo ’99]
Calculus
HARD [Alekhnovich, EASY
F=2
Razborov '01]
Sum of HARD
Squares [Grigoriev ‘01, Schoenebeck '08]

Cutting
Planes
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Average-case hardness results

| kediaue | kecoloring 3-SAT xR

Tree-like HARD [Chvatal, Szemerédi ’88]
Resolution Improved [Ben-Sasson, Galesi '01] (size exp(n/A'™¢)) A =m/n

Resolution HARD [Chvétal, Szemerédi ‘88]  exp(n/A%Te)
Improved [Beame, Karp, Pitassi, Saks ‘98], [Ben-Sasson '01]

Polynomial F 49 HARD [Ben-Sasson, Impagliazzo ’99]
Calculus
F—9 HARD [Alekhnovich, EASY
Razborov '01]
Sum of HARD
Squares [Grigoriev ‘01, Schoenebeck ’08]
Cutting OPEN Quasi-poly EASY
MERES O(logn)-SAT [Fleming, Go6s, Impagliazzo, Pitassi,
[Fleming, Pankratov, Pitassi, Robere, Tan, Wigderson "21]
Robere ’17] [Hrubes, Pudlak '17] [Dadush, Tiwari 20]
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Average-case hardness results

Tree-like
Resolution

Resolution

Polynomial
Calculus

Sum of
Squares

Cutting
Planes

HARD [Chvatal, Szemerédi '88]
HARD Improved [Ben-Sasson, Galesi '01] (size exp(n/A'™¢)) A =m/n

[Beame, Culberson, )
Mitchell, Moore '05] HARD [Chvétal, Szemerédi ’88]  exp(n/A**c)

Improved [Beame, Karp, Pitassi, Saks ‘98], [Ben-Sasson '01]

OPEN F£2 HARD [Ben-Sasson, Impagliazzo '99]
HARD [Alekhnovich, EASY
F=2
Razborov '01]
OPEN HARD
[Kothari, Manohar 21] [Grigoriev ‘01, Schoenebeck '08]
G(n,1/2): d > Q(logn)
OPEN OPEN Quasi-poly EASY
O(logn)-SAT [Fleming, G6s, Impagliazzo, Pitassi,
[Fleming, Pankratov, Pitassi, Robere, Tan, Wigderson "21]
Robere ’17] [Hrubes, Pudlak ’17] [Dadush, Tiwari ‘20]
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Average-case hardness results

| kedique | kecoloring 3-SAT xR

Tree-like HARD (size n®*(*)) HARD [Chvatal, Szemerédi '88]
Resolution [Beyersdorff, Galesi, Lauria "11] HARD Improved [Ben-Sasson, Galesi '01] (size exp(n/A'™¢)) A =m/n
- [Beame, Culberson, ; o 5
Resolution OPEN Mitchell, Moore “05] HARD [Chvatal, Szemerédi '88] exp(n/A*t¢)
Some partial results* Improved [Beame, Karp, Pitassi, Saks ‘98], [Ben-Sasson '01]
Polynomial OPEN OPEN F 49 HARD [Ben-Sasson, Impagliazzo "99]
Calculus
F—o HARD [Alekhnovich, EASY
B Razborov '01]
Sum of OPEN OPEN HARD
Squares Some partial results™* [Kothari, Manohar 21] [Grigoriev ‘01, Schoenebeck '08]
G(n,1/2): degree = O(logn) G(n,1/2): d > Q(logn)
Cutting OPEN OPEN OPEN Quasi-poly EASY
Planes O(logn)-SAT [Fleming, Gdos, Impagliazzo, Pitassi,
[Fleming, Pankratov, Pitassi, Robere, Tan, Wigderson '21]
Robere '17] [Hrubes, Pudldk '17] [Dadush, Tiwari 20]

* [Beame, Impagliazzo, Sabharwal ‘01], [Pang '21], [Atserias, Bonacina, dR, Lauria, Nordstrém, Razborov ‘18], [Lauria, Pudlak, Rodl, Thapen ‘13]
** [Meka, Potechin and Wigderson ‘15], ..., [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
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Finding Structure in
Randomness




Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢€)|U|
» Constraint-variable graph

xr

Yy
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

Prover
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

9UNSAT ] M assignment for F' ]
O N

o

")
an

Prover

Delayer
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|

» Constraint-variable graph

9UNSAT ] M assignment for F' ]
@,}!,i

930, Jo=17)

Prover

Delayer
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

9UNSAT ] M assignment for F' ]
@,}!,i

< z=7] [g;: TRUEK’

Delayer
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

Fis UNSAT ] | know a satisfying assignment for I’ ]
xr = TRUE ﬁ)
@r};
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

Fis UNSAT ] | know a satisfying assignment for I’ ]
xr = TRUE

L

Delayer
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

Fis UNSAT ] | know a satisfying assignment for I’ ]
xr = TRUE ﬁ)
@r};

< z=7] [z = FALSE]/W

Delayer
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

Fis UNSAT ] | know a satisfying assignment for I’ ]
xr = TRUE ﬁ)
@r};

z = FALSE e
{ z=1 ] [z - FALSEK’

Delayer
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

Fis UNSAT ] | know a satisfying assignment for I’ ]
xr = TRUE

{ 5 ] z = FALSE -
w=" [ ]7

Delayer
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

Fis UNSAT ] | know a satisfying assignment for I’ ]
xr = TRUE ﬁ)
@r};

5 2z = FALSE g
{ w=" ] [w = FALSE]%W

Delayer
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

Fis UNSAT ] | know a satisfying assignment for I’ ]
xr = TRUE ﬁ)
@r};

5 z = FALSE g
{w: - ] [szRUE]/w

Delayer

Susanna F. de Rezende Average-Case Hardness in Proof Complexity



Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

| know a satisfying assignment for F' ]
— 7

v = TRUE ﬂ)

z = FALSE - @,\,/

w = TRUE [w —~ TRUE]/”“ @0

Delayer
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|
» Constraint-variable graph

Fis UNSAT ] | know a satisfying assignment for I’ ]
xr = TRUE
z = FALSE o
< | e ( €

Delayer
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Random k-SAT (and k-XOR)
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9UNSAT ] | know a satisfying assignment for I’ ]
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|

» Constraint-variable graph
9UNSAT ] M assignment for F' ]
@-@ z = FALSE A
ﬁ 4 ] w = TRUE [ ]74« g )
an /

Prover

Delayer

Delayer wins the r-game on F':
if with < 7 lines in scroll, Prover cannot exhibit falsified clause
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|

» Constraint-variable graph
Fis UNSAT ] | know a satisfying assignment for I’ ]
— 7
@-@ z = FALSE P N
ﬁ 4 ] w = TRUE [ ]% :
an /

Prover

Delayer

Delayer wins the r-game on F':
if with < 7 lines in scroll, Prover cannot exhibit falsified clause

If Delayer wins the r-game on F', then resolution requires width 7 to refute F
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Random k-SAT (and k-XOR)

> Expansion G is (s, €)-bipartite expander if VU C V: |U| < s = |[N(U)| > (1+¢)|U]|

» Constraint-variable graph
Fis UNSAT ] | know a satisfying assignment for I’ ]
— 7
@) » = FALSE 2
ﬁ 4 ] w = TRUE [ ]7 PN

Prover

Delayer

Delayer wins the r-game on F':
if with < 7 lines in scroll, Prover cannot exhibit falsified clause

If Delayer wins the r-game on F', then resolution requires width 7 to refute F

Lemma 1. If G is (s, €)-bipartite expander Delayer wins if r < es/(d + €)

Lemma 2. W.h.p. constraint-variable graph of random 3-CNF is a good expander
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Coloring hard for resolution [Beame, Culberson, Mitchell, Moore '05]
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Br(H) = # of vertices in H of degree between 1 and k — 1

Susanna F. de Rezende Average-Case Hardness in Proof Complexity



CO|Oring hard for reSO|Uti0n [Beame, Culberson, Mitchell, Moore '05]

s = maximum number s.t. any s-vertex H C G is k-colorable

Br(H) = # of vertices in H of degree between 1 and k — 1

Susanna F. de Rezende Average-Case Hardness in Proof Complexity



CO|Oring hard for reSO|Uti0n [Beame, Culberson, Mitchell, Moore '05]

s = maximum number s.t. any s-vertex H C G is k-colorable

Br(H) = # of vertices in H of degree between 1 and k — 1

Susanna F. de Rezende Average-Case Hardness in Proof Complexity



CO|Oring hard for reSO|Uti0n [Beame, Culberson, Mitchell, Moore '05]

s = maximum number s.t. any s-vertex H C G is k-colorable

Br(H) = # of vertices in H of degree between 1 and k — 1

Subcritical k-expansion e ((G) = max min H
p k(G) Jpax - min Bi(H)

H connected
t/2<V (H)<t §$ =29
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CO|Oring hard for reSO|Uti0n [Beame, Culberson, Mitchell, Moore '05]

s = maximum number s.t. any s-vertex H C G is k-colorable

Br(H) = # of vertices in H of degree between 1 and k — 1

Subcritical k-expansion e (G) = QIEaé( l{InCII(l}’ Br(H)
t<s C

H connected .
t/2<V(H S=295

0NNy

Susanna F. de Rezende Average-Case Hardness in Proof Complexity



CO|Oring hard for reSO|Uti0n [Beame, Culberson, Mitchell, Moore '05]

s = maximum number s.t. any s-vertex H C G is k-colorable

Br(H) = # of vertices in H of degree between 1 and k — 1

Subcritical k-expansion e (G) = QIEaé( l{InCII(l; Br(H)
t<s

H connected .
t/2<V(H

Rolalas ont]

Br(H)=3 pr(H
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CO|Oring hard for reSO|Uti0n [Beame, Culberson, Mitchell, Moore '05]

s = maximum number s.t. any s-vertex H C G is k-colorable

Br(H) = # of vertices in H of degree between 1 and k — 1

Subcritical k-expansion e (G) = 2121&2{ Il';[nCH(l; Br(H)
t<s

H connected
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CO|Oring hard for reSO|Uti0n [Beame, Culberson, Mitchell, Moore '05]

s = maximum number s.t. any s-vertex H C G is k-colorable

Br(H) = # of vertices in H of degree between 1 and k — 1

Subcritical k-expansion e (G) = 2121&2{ Il';[nCH(l; Br(H)
t<s

H con nected

£/2<V (H =
t=05 /? /\ % 4>- « <I
Br(H) =2 Bi(H)=3 pr(H)=3 pBr(H

AN add
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CO|Oring hard for reSO|Uti0n [Beame, Culberson, Mitchell, Moore '05]

s = maximum number s.t. any s-vertex H C G is k-colorable

Br(H) = # of vertices in H of degree between 1 and k — 1

Subcritical k-expansion e (G) = 2121&2{ Il';[nCH(l; Br(H)
t<s

H connected .
t/2<V(H

Lol ot

Br(H)=3 pr(H)=3 pBp(H)=2

Lemma 1. Resolution width of refuting Color(G, k) > er(G)
Lemma 2. Let G ~ G, for m = An. W.h.p. ex(G) > epn/ALT2/(F=2)
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Clique formula

Clique(G, k) for G ~ G(n,p) and p close to k-clique threshold
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» 2k/(n=2)"_hard for resolution for very dense graph and large k£ > n>/6
A = average degree [Beame, Impagliazzo, Sabharwal ‘01]
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» 2k/(n=2)°_hard for resolution for very dense graph and large k > n5/6

A = average degree [Beame, Impagliazzo, Sabharwal ‘01]

» 225" ") _hard for resolution for k < n'/3  [pang 21
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Clique formula

Clique(G, k) for G ~ G(n,p) and p close to k-clique threshold

» 2k/(n=2)°_hard for resolution for very dense graph and large k > n5/6

A = average degree [Beame, Impagliazzo, Sabharwal ‘01]

» 225" ") _hard for resolution for k < n'/3  [pang 21

» nf2(k)_hard for tree-like resolution [Lauria, Pudiék, Radl, Thapen ‘13]

> nﬂ(k)-hard for regular resolution [Atserias, Bonacina, dR, Lauria, Nordstrém, Razborov ‘18]

[Meka, Potechin and Wigderson ‘15], ...,
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]

» (A(logn)-degree in sum-of-squares for p = 1/2
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Clique formula

Clique(G, k) for G ~ G(n,p) and p close to k-clique threshold

6 .
» 2k/(n=2)"_hard for resolution for very dense graph and large k£ > n>/6
A = average degree [Beame, Impagliazzo, Sabharwal ‘01]

» 225" ") _hard for resolution for k < n'/3  [pang 21

» nf2(k)_hard for tree-like resolution [Lauria, Pudiék, Radl, Thapen ‘13]

> nﬂ(k)-hard for regular resolution [Atserias, Bonacina, dR, Lauria, Nordstrém, Razborov ‘18]

[Meka, Potechin and Wigderson ‘15], ...,
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]

» (A(logn)-degree in sum-of-squares for p = 1/2

Open: Show that resolution, polynomial calculus or sum of squares
requires size n‘**) to refute Clique(G, k)
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Clique formula hard for tree-like resolution  [Beyersdorff, Galesi, Lauria '11]
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Clique formula hard for tree-like resolution  [Beyersdorff, Galesi, Lauria ‘11]

common neighbors of U ﬁ(U) = N (u)

velU
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Clique formula hard for tree-like resolution  [Beyersdorff, Galesi, Lauria ‘11]

common neighbors of U ﬁ(U) = N (u)

velU

'
RN

K7
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Clique formula hard for tree-like resolution  [Beyersdorff, Galesi, Lauria ‘11]

common neighbors of U ﬁ(U) = N (u)

velU
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Clique formula hard for tree-like resolution  [Beyersdorff, Galesi, Lauria '11]

common neighbors of U: N (U) = M N (u)

velU

(G is neighbor dense if:

B

can extend any r-clique, » < k/4, in many ways, i.e.
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Clique formula hard for tree-like resolution  [Beyersdorff, Galesi, Lauria '11]

common neighbors of U: N (U) = M N (u)

velU

B

(G is neighbor dense if:

can extend any r-clique, » < k/4, in many ways, i.e.

VU CV: [U| < k/4= |NU)| 2 Vn
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Clique formula hard for tree-like resolution  [Beyersdorff, Galesi, Lauria '11]

common neighbors of U: N (U) = M N (u)

velU

(G is neighbor dense if:

RN
can extend any r-clique, » < k/4, in many ways, i.e.

VU CV: [U| < k/4= |NU)| 2 Vn

7/ Lemma 1. W.h.p. G ~ G(n,p) is neighbor dense
(for p close to k-clique threshold)

Lemma 2. Tree-like refutation of neighbor dense G
Q(k)

must have size > n
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Property not enough for stronger proof systems

(G is neighbor dense if:

can extend any r-clique, » < k/4, in many ways, i.e.

VU CV: [U| < k/4= |NU)| 2 Vn
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Property not enough for stronger proof systems
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(k — 1)-complete partite graph satisfies it!
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Cllq ue-dense property [Atserias, Bonacina, dR, Lauria, Nordstrém, Razborov ‘18]
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1. Can extend any (k/20)-clique in many ways
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Cllq ue—dense property [Atserias, Bonacina, dR, Lauria, Nordstrém, Razborov ‘18]

1. Can extend any (k/20)-clique in many ways
2. Any W C V that can extend any (k/100)-clique in many ways

can also extend almost any (k/10)-clique in many ways
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Cllq Ue—dense property [Atserias, Bonacina, dR, Lauria, Nordstrém, Razborov ‘18]

1. Can extend any (k/20)-clique in many ways
2. Any W C V that can extend any (k/100)-clique in many ways

can also extend almost any (k/10)-clique in many ways

(somewhat) more formally:
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Cllq Ue—dense property [Atserias, Bonacina, dR, Lauria, Nordstrém, Razborov ‘18]

1. Can extend any (k/20)-clique in many ways
2. Any W C V that can extend any (k/100)-clique in many ways

can also extend almost any (k/10)-clique in many ways

/
(somewhat) more formally: r = k/100 K \/;
VW C V that can extend any r-clique in many ways: gl\%%‘ /
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Summary

» Average-case proof complexity of three NP-hard problems

* Primarily interested in size of proofs

» Imply lower bounds for algorithms
» (Candidate hard instances for strong proof systems
» Lower bounds: identify structure in randomness

» Many open problems
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Average-case hardness results

| kedique | kecoloring 3-SAT xR

Tree-like HARD (size n®*(*)) HARD [Chvatal, Szemerédi '88]
Resolution [Beyersdorff, Galesi, Lauria "11] HARD Improved [Ben-Sasson, Galesi '01] (size exp(n/A'™¢)) A =m/n
- [Beame, Culberson, ; o 5
Resolution OPEN Mitchell, Moore “05] HARD [Chvatal, Szemerédi '88] exp(n/A*t¢)
Some partial results* Improved [Beame, Karp, Pitassi, Saks ‘98], [Ben-Sasson '01]
Polynomial OPEN OPEN F 49 HARD [Ben-Sasson, Impagliazzo "99]
Calculus
F—o HARD [Alekhnovich, EASY
B Razborov '01]
Sum of OPEN OPEN HARD
Squares Some partial results™* [Kothari, Manohar 21] [Grigoriev ‘01, Schoenebeck '08]
G(n,1/2): degree = O(logn) G(n,1/2): d > Q(logn)
Cutting OPEN OPEN OPEN Quasi-poly EASY
Planes O(logn)-SAT [Fleming, Gdos, Impagliazzo, Pitassi,
[Fleming, Pankratov, Pitassi, Robere, Tan, Wigderson '21]
Robere '17] [Hrubes, Pudldk '17] [Dadush, Tiwari 20]

* [Beame, Impagliazzo, Sabharwal ‘01], [Pang '21], [Atserias, Bonacina, dR, Lauria, Nordstrém, Razborov ‘18], [Lauria, Pudlak, Rodl, Thapen ‘13]
** [Meka, Potechin and Wigderson ‘15], ..., [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
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