Average-Case Hardness in Proof Complexity (a biased survey)

Susanna F. de Rezende

Institute of Mathematics of the Czech Academy of Sciences

September 16, 2021

$$G' = G + K_k$$
 where $G \sim \mathcal{G}(n, 1/2)$ and $k > 2 \log n$

Erdős-Rényi random graph $G \sim \mathcal{G}(n,1/2)$ w.h.p. largest clique has size $\omega(G) \approx 2\log n$

$$G' = G + K_k$$
 where $G \sim \mathcal{G}(n, 1/2)$ and $k > 2 \log n$

▶ Brute-force algorithm proves G has no clique of size $k > \omega(G)$ in time $n^{O(\omega(G))}$

$$G' = G + K_k$$
 where $G \sim \mathcal{G}(n, 1/2)$ and $k > 2 \log n$

- lacktriangle Brute-force algorithm proves G has no clique of size $k>\omega(G)$ in time $n^{O(\omega(G))}$
- ▶ ∃ algorithm that distinguishes both distributions in poly-time?

$$G' = G + K_k$$
 where $G \sim \mathcal{G}(n, 1/2)$ and $k > 2 \log n$

- lacktriangle Brute-force algorithm proves G has no clique of size $k>\omega(G)$ in time $n^{O(\omega(G))}$
- ▶ ∃ algorithm that distinguishes both distributions in poly-time?
- ▶ \exists algorithm that proves G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-time?

$$G' = G + K_k$$
 where $G \sim \mathcal{G}(n, 1/2)$ and $k > 2 \log n$

- lacktriangle Brute-force algorithm proves G has no clique of size $k>\omega(G)$ in time $n^{O(\omega(G))}$
- ▶ ∃ algorithm that distinguishes both distributions in poly-time?
- ▶ \exists algorithm that proves G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-time?
- Many results for planted clique actually prove lower bound for refutation problem

- lacktriangle Brute-force algorithm proves G has no clique of size $k>\omega(G)$ in time $n^{O(\omega(G))}$
- ▶ ∃ algorithm that distinguishes both distributions in poly-time?
- ▶ \exists algorithm that proves G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-time?
- Many results for planted clique actually prove lower bound for refutation problem

- lacktriangle Brute-force algorithm proves G has no clique of size $k>\omega(G)$ in time $n^{O(\omega(G))}$
- lacktriangle \exists algorithm that proves G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-time?

- ▶ Brute-force algorithm proves G has no clique of size $k > \omega(G)$ in time $n^{O(\omega(G))}$
- lacktriangle \exists algorithm that proves G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-time?
- ▶ \exists proof that G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-size?

Erdős-Rényi random graph $G \sim \mathcal{G}(n,1/2)$ w.h.p. largest clique has size $\omega(G) \approx 2\log n$

- lacktriangle Brute-force algorithm proves G has no clique of size $k>\omega(G)$ in time $n^{O(\omega(G))}$
- lacktriangle \exists algorithm that proves G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-time?
- ▶ \exists proof that G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-size?

algorithmically hard

- ▶ Brute-force algorithm proves G has no clique of size $k > \omega(G)$ in time $n^{O(\omega(G))}$
- lacktriangle \exists algorithm that proves G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-time?
- ▶ \exists proof that G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-size?

- ▶ Brute-force algorithm proves G has no clique of size $k > \omega(G)$ in time $n^{O(\omega(G))}$
- lacktriangle \exists algorithm that proves G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-time?
- ▶ \exists proof that G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-size?

$$\omega(G) \le \theta(G) \le \chi(G)$$

- ▶ Brute-force algorithm proves G has no clique of size $k > \omega(G)$ in time $n^{O(\omega(G))}$
- ▶ \exists algorithm that proves G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-time?
- ▶ \exists proof that G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-size?

Focus on
$$k = \omega(G) + 1$$

- $\omega(G) \le \theta(G) \le \chi(G)$
- lacktriangle Brute-force algorithm proves G has no clique of size $k>\omega(G)$ in time $n^{O(\omega(G))}$
- ▶ \exists algorithm that proves G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-time?
- ▶ \exists proof that G has no k-clique for $\omega(G) < k < \sqrt{n}$ in poly-size?

Formula Clique(G, k)states that G has a k clique

lacktriangle Prove $\operatorname{Clique}(G,k)$ is unsatisfiable

- Formula Clique(G, k)states that G has a k clique
- ightharpoonup Prove Clique(G,k) is unsatisfiable

Variable $x_{vi} =$ [vertex v is ith member of clique]

There are k clique members

$$\bigvee_{v \in V} x_{vi} \qquad \forall i \in [k]$$

A vertex can only be once in clique

$$\overline{x}_{vi} \vee \overline{x}_{vi'} \quad \forall v \in V \\ \forall i \neq i' \in [k]$$

Non-neighbors are not both in clique

$$\overline{x}_{ui} \vee \overline{x}_{vi'} \quad \forall (u, v) \notin E \\ \forall i, i' \in [k]$$

Formula Clique(G, k)states that G has a k clique

▶ Prove Clique(G, k) is unsatisfiable

Lower bound size of refutation?

Variable $x_{vi} =$ [vertex v is ith member of clique]

There are k clique members

$$\bigvee_{v \in V} x_{vi} \qquad \forall i \in [k]$$

A vertex can only be once in clique

$$\overline{x}_{vi} \vee \overline{x}_{vi'} \quad \forall v \in V \\ \forall i \neq i' \in [k]$$

Non-neighbors are not both in clique

$$\overline{x}_{ui} \vee \overline{x}_{vi'} \quad \forall (u, v) \notin E \\ \forall i, i' \in [k]$$

Formula Clique(G, k) states that G has a k clique

ightharpoonup Prove Clique(G,k) is unsatisfiable

Lower bound size of refutation?

ightharpoonup Can we show that "brute-force", size $n^{\Theta(k)}$ refutation is optimal?

Natural candidate hard instances:

Erdős-Rényi random graph $G \sim \mathcal{G}(n,p)$ p close to k-clique threshold

Variable $x_{vi} =$ [vertex v is ith member of clique]

There are k clique members

$$\bigvee_{v \in V} x_{vi} \qquad \forall i \in [k]$$

A vertex can only be once in clique

$$\overline{x}_{vi} \vee \overline{x}_{vi'} \quad \forall v \in V \\ \forall i \neq i' \in [k]$$

Non-neighbors are not both in clique

$$\overline{x}_{ui} \vee \overline{x}_{vi'} \quad \forall (u, v) \notin E \\ \forall i, i' \in [k]$$

- ▶ Random k-SAT
 - Choose each of the $2^k \binom{n}{k}$ possible clauses with probability p
 - ullet Choose m clauses of $2^k \binom{n}{k}$ possible clauses uniformly at random

- ► Random k-SAT
 - Choose each of the $2^k \binom{n}{k}$ possible clauses with probability p
 - ullet Choose m clauses of $2^k \binom{n}{k}$ possible clauses uniformly at random
- Clause-variable incidence graph (here, no signs)

- ightharpoonup Random k-SAT
 - Choose each of the $2^k \binom{n}{k}$ possible clauses with probability p
 - Choose m clauses of $2^k \binom{n}{k}$ possible clauses uniformly at random
- ► Clause-variable incidence graph (here, no signs)

- ► Related easy formula: random *k*-XOR
 - Only $2\binom{n}{k}$ possible XOR constraints
 - $x \oplus y \oplus z = 0$ or $x \oplus y \oplus z = 1$

- Random k-SAT
 - Choose each of the $2^k \binom{n}{k}$ possible clauses with probability p
 - Choose m clauses of $2^k \binom{n}{k}$ possible clauses uniformly at random
- ► Clause-variable incidence graph (here, no signs)

- ► Related easy formula: random *k*-XOR
 - Only $2\binom{n}{k}$ possible XOR constraints
 - $ullet \ x\oplus y\oplus z=0 \ ext{or} \ x\oplus y\oplus z=1$
- Rewrite constraint in CNF
 - $x \oplus y \oplus z = 0$ becomes 4 clauses:

$$(ar{x} ee ar{y} ee ar{z}) \wedge (x ee y ee ar{z}) \wedge (x ee y ee z) \wedge (x ee ar{y} ee z) \wedge (ar{x} ee y ee z)$$

k-coloring formula

- ► Quite different from *k*-clique
 - NP-hard for k=3

k-coloring formula

- Quite different from k-clique
 - NP-hard for k=3

Formula Color(G, k):

Variable $x_{vi} = [\text{vertex } v \text{ is colored } i]$

Every vertex has a color

$$\bigvee_{i \in [k]} x_{vi} \qquad \forall v \in V$$

A vertex has only one color

$$\overline{x}_{vi} \vee \overline{x}_{vi'} \quad \forall v \in V \\ \forall i \neq i' \in [k]$$

Neighbors don't have same color

$$\overline{x}_{ui} \vee \overline{x}_{vi} \quad \begin{array}{c} \forall (u,v) \in E \\ \forall i \in [k] \end{array}$$

k-coloring formula

- ▶ Quite different from *k*-clique
 - NP-hard for k=3
- Natural hard candidate:
 - Erdős-Rényi random graph $G \sim \mathcal{G}(n,p)$ p close to k-colorable threshold

Formula Color(G, k):

Variable $x_{vi} = [\text{vertex } v \text{ is colored } i]$

Every vertex has a color

$$\bigvee_{i \in [k]} x_{vi} \qquad \forall v \in V$$

A vertex has only one color

$$\overline{x}_{vi} \vee \overline{x}_{vi'} \quad \forall v \in V \\ \forall i \neq i' \in [k]$$

Neighbors don't have same color

$$\overline{x}_{ui} \vee \overline{x}_{vi} \quad \forall (u,v) \in E \\ \forall i \in [k]$$

Stronger statement than worst-case: almost all graphs are hard

- Stronger statement than worst-case: almost all graphs are hard
- There are not many natural hard candidates (to prove lower bounds for stronger proof systems)
 - Many lower bounds are for "easy formulas": pigeonhole principle, Tseitin, clique-coloring principle "a (k-1)-colorable graph does not contain a k-clique"

- Stronger statement than worst-case: almost all graphs are hard
- There are not many natural hard candidates (to prove lower bounds for stronger proof systems)
 - Many lower bounds are for "easy formulas": pigeonhole principle, Tseitin, clique-coloring principle "a (k-1)-colorable graph does not contain a k-clique"
 - This talk: focus on average-case complexity of three NP-hard problems

- Stronger statement than worst-case: almost all graphs are hard
- There are not many natural hard candidates (to prove lower bounds for stronger proof systems)
 - Many lower bounds are for "easy formulas": pigeonhole principle, Tseitin, clique-coloring principle "a (k-1)-colorable graph does not contain a k-clique"
 - This talk: focus on average-case complexity of three NP-hard problems
- Many combinatorial formulas are of independent interest

Proof Systems and Lower Bounds

Proof Systems

Given unsat CNF formula, how can we refute it?

Proof Systems

- Given unsat CNF formula, how can we refute it?
- Define some proof systems

Resolution

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

Resolution rule: $\frac{C \lor x \quad D \lor \overline{x}}{C \lor D}$

Resolution

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

 $\overline{y} ee \overline{z}$

Resolution rule: $\frac{C \lor x \quad D \lor \overline{x}}{C \lor D}$ Refutation: Derivation of empty clause \perp Proof size: # clauses in proof Proof width: max # literals in a clause \overline{z} \boldsymbol{z} $y ee \overline{z}$ $x \lor z$

 $\overline{x} \lor \overline{z}$

 $\overline{x} \lor z$

 $x \lor y$

 $(x \lor \overline{y} \lor z)$

Resolution

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

 $\overline{y} ee \overline{z}$

Resolution rule: $\frac{C \lor x \quad D \lor \overline{x}}{C \lor D}$

Refutation: Derivation of empty clause \perp

Proof size: # clauses in proof

Proof width: max # literals in a clause

w = smallest width of any refutation of F

Algorithm in time $\approx n^w$

Resolution

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

 $\overline{y} ee \overline{z}$

Resolution rule: $\frac{C \lor x \quad D \lor \overline{x}}{C \lor D}$

Refutation: Derivation of empty clause \perp

Proof size: # clauses in proof

Proof width: max # literals in a clause

 $w = {\sf smallest}$ width of any refutation of ${\cal F}$

Algorithm in time $\approx n^w$

Theorem [BW01]

Proof size
$$\geq \exp\left(\Omega\left(\frac{(w-k)^2}{n}\right)\right)$$

Resolution

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

 $\overline{y} ee \overline{z}$

Resolution rule: $\frac{C \lor x \quad D \lor \overline{x}}{C \lor D}$

Refutation: Derivation of empty clause \perp

Proof size: # clauses in proof

Proof width: max # literals in a clause

 $w = {\sf smallest}$ width of any refutation of ${\cal F}$

Algorithm in time $\approx n^w$

Theorem [BW01]

Proof size
$$\geq \exp\left(\Omega\left(\frac{(w-k)^2}{n}\right)\right)$$

Tree-like: proof DAG is a tree

Resolution

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

 $\overline{y} ee \overline{z}$

Resolution rule: $\frac{C \lor x \quad D \lor \overline{x}}{C \lor D}$

Refutation: Derivation of empty clause \perp

Proof size: # clauses in proof

Proof width: max # literals in a clause

w = smallest width of any refutation of F

Algorithm in time $\approx n^w$

Theorem [BW01]

Proof size
$$\geq \exp\left(\Omega\left(\frac{(w-k)^2}{n}\right)\right)$$

Tree-like: proof DAG is a tree

Cutting planes

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

Cutting planes

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

$$(x \vee \overline{y} \vee z) \leadsto (1-x)y(1-z) = 0$$

$$(x \lor \overline{y} \lor z) \leadsto x + (1 - y) + z \ge 1$$

Cutting planes

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

$$(x \vee \overline{y} \vee z) \leadsto (1-x)y(1-z) = 0$$

$$(x \lor \overline{y} \lor z) \leadsto x + (1 - y) + z \ge 1$$

Boolean axioms: $x^2 - x = 0$

Linear combination:
$$\frac{p=0 \quad q=0}{\alpha p + \beta q=0}$$

Multiply by variable:
$$\frac{p=0}{xp=0}$$

Refutation: Derivation of 1 = 0

Cutting planes

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

$$(x \vee \overline{y} \vee z) \leadsto (1-x)y(1-z) = 0$$

$$(x \lor \overline{y} \lor z) \leadsto x + (1 - y) + z \ge 1$$

Boolean axioms: $x^2 - x = 0$

Linear combination:
$$\frac{p=0 \quad q=0}{\alpha p + \beta q=0}$$

Multiply by variable:
$$\frac{p=0}{xp=0}$$

$$\frac{p=0}{xp=0}$$

Refutation: Derivation of 1 = 0

Proof size: # monomials in proof

Proof degree: max degree of any polynomial

Cutting planes

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

$$(x \vee \overline{y} \vee z) \leadsto (1-x)y(1-z) = 0$$

$$(x \lor \overline{y} \lor z) \leadsto x + (1 - y) + z \ge 1$$

Boolean axioms:
$$x^2 - x = 0$$

Boolean axioms:
$$0 \le x \le 1$$

Linear combination:
$$\frac{p=0 \quad q=0}{\alpha p + \beta q = 0}$$

Linear combination:
$$\frac{p \geq A \quad q \geq B}{\alpha p + \beta q \geq \alpha A + \beta B}$$

Multiply by variable:
$$\frac{p=0}{xp=0}$$

Division:
$$\frac{\sum_{i} c a_{i} x_{i} \ge A}{\sum_{i} a_{i} x_{i} \ge \lceil A/c \rceil}$$

Refutation: Derivation of 1 = 0

Refutation: Derivation of $-1 \ge 0$

Proof size: # monomials in proof

Proof degree: max degree of any polynomial

Cutting planes

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

$$(x \vee \overline{y} \vee z) \leadsto (1-x)y(1-z) = 0$$

$$(x \lor \overline{y} \lor z) \leadsto x + (1 - y) + z \ge 1$$

Boolean axioms:
$$x^2 - x = 0$$

Boolean axioms:
$$0 \le x \le 1$$

Linear combination:
$$\frac{p=0 \quad q=0}{\alpha p + \beta q = 0}$$

Linear combination:
$$\frac{p \geq A \quad q \geq B}{\alpha p + \beta q \geq \alpha A + \beta B}$$

Multiply by variable:
$$\frac{p=0}{xp=0}$$

Division:
$$\frac{\sum_{i} c a_{i} x_{i} \ge A}{\sum_{i} a_{i} x_{i} \ge \lceil A/c \rceil}$$

Refutation: Derivation of 1=0

Refutation: Derivation of $-1 \ge 0$

Proof size: # monomials in proof

Proof size: # inequalities in proof Proof degree: max degree of any polynomial

Sum of squares

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

$$(x \vee \overline{y} \vee z) \leadsto (1-x)y(1-z) = 0$$

Boolean axioms:
$$x^2 - x = 0$$

$$(x \lor \overline{y} \lor z) \leadsto x + (1 - y) + z \ge 1$$

Boolean axioms: $0 \le x \le 1$

Sum of squares

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

$$(x \lor \overline{y} \lor z) \leadsto (1-x)y(1-z) = 0$$

$$(x \lor \overline{y} \lor z) \leadsto x + (1 - y) + z \ge 1$$

Boolean axioms: $x^2 - x = 0$

Boolean axioms: $0 \le x \le 1$

Polynomials $\mathcal{P} = \{P_1 = 0, P_2 = 0, \dots, P_m = 0; Q_1 > 0, Q_2 > 0, \dots, Q_\ell > 0\}$

SoS refutation of $\mathcal{P}: R_1, R_2, \ldots, R_m; S_1, S_2, \ldots, S_\ell$ s.t.

$$\sum_{i \in [m]} R_i P_i + \sum_{i \in [\ell]} S_i Q_i = -1$$

where each S_i is a sum of squares

Sum of squares

UNSAT k-CNF formula $F: (\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee y) \wedge (x \vee \overline{y} \vee z) \wedge (\overline{x} \vee z)$

$$(x \lor \overline{y} \lor z) \leadsto (1-x)y(1-z) = 0$$

$$(x \lor \overline{y} \lor z) \leadsto x + (1 - y) + z \ge 1$$

Boolean axioms: $x^2 - x = 0$

Boolean axioms: $0 \le x \le 1$

Polynomials $\mathcal{P} = \{P_1 = 0, P_2 = 0, \dots, P_m = 0; Q_1 \geq 0, Q_2 \geq 0, \dots, Q_\ell \geq 0\}$

SoS refutation of $\mathcal{P}: R_1, R_2, \ldots, R_m; S_1, S_2, \ldots, S_\ell$ s.t.

$$\sum_{i \in [m]} R_i P_i + \sum_{i \in [\ell]} S_i Q_i = -1$$

where each S_i is a sum of squares

Proof size: # monomials when we expand proof

Proof degree: max degree of any polynomial

	k-clique	k-coloring	3-SAT	3-XOR
Tree-like Resolution				al, Szemerédi '88] 01] (size $\exp(n/\Delta^{1+\epsilon})$) $\Delta=m/n$
Resolution				al, Szemerédi '88] $\exp(n/\Delta^{2+\epsilon})$ assi, Saks '98], [Ben-Sasson '01]
Polynomial Calculus				
Sum of Squares				
Cutting Planes				

	k-clique	k-coloring		3-SAT	3-XOR		
Tree-like Resolution				HARD [Chvátal, Szemerédi '88] Improved [Ben-Sasson, Galesi '01] (size $\exp(n/\Delta^{1+\epsilon})$) $\Delta=m/n$			
Resolution			HARD [Chvátal, Szemerédi '88] $\exp(n/\Delta^{2+\epsilon})$ Improved [Beame, Karp, Pitassi, Saks '98], [Ben-Sasson '01]				
Polynomial Calculus		$\mathbb{F} \neq 2$	Sasson, Impagliazzo '99]				
			$\mathbb{F}=2$	HARD [Alekhnovich, Razborov '01]	EASY		
Sum of Squares			HARD [Grigoriev '01, Schoenebeck '08]				
Cutting Planes							

	k-clique	k-coloring		3-SAT	3-XOR	
Tree-like Resolution				HARD [Chvátal, Szemerédi '88] Improved [Ben-Sasson, Galesi '01] (size $\exp(n/\Delta^{1+\epsilon})$) $\Delta=m/n$		
Resolution				HARD [Chvátal, Szemerédi '88] $\exp(n/\Delta^{2+\epsilon})$ Improved [Beame, Karp, Pitassi, Saks '98], [Ben-Sasson '01]		
Polynomial Calculus			$\mathbb{F} \neq 2$ HARD [Ben-Sasson, Impagliazzo '99]			
			$\mathbb{F}=2$	HARD [Alekhnovich, Razborov '01]	EASY	
Sum of Squares			HARD [Grigoriev '01, Schoenebeck '08]			
Cutting Planes			_	OPEN $\Theta(\log n) ext{-SAT}$ eming, Pankratov, Pitassi, re '17] [Hrubeš, Pudlák '17]	Quasi-poly EASY [Fleming, Göös, Impagliazzo, Pitassi, Robere, Tan, Wigderson '21] [Dadush, Tiwari '20]	

	k-clique	k-coloring		3-SAT	3-XOR	
Tree-like Resolution		HARD	HARD [Chvátal, Szemerédi '88] Improved [Ben-Sasson, Galesi '01] (size $\exp(n/\Delta^{1+\epsilon})$) $\Delta=m/n$			
Resolution		[Beame, Culberson, Mitchell, Moore '05]	HARD [Chvátal, Szemerédi '88] $\exp(n/\Delta^{2+\epsilon})$ Improved [Beame, Karp, Pitassi, Saks '98], [Ben-Sasson '01]			
Polynomial Calculus		OPEN	$\mathbb{F} eq 2$ HARD [Ben-Sasson, Impagliazzo '99]			
			$\mathbb{F}=2$	HARD [Alekhnovich, Razborov '01]	EASY	
Sum of Squares		OPEN [Kothari, Manohar '21] $\mathcal{G}(n,1/2)$: $d \geq \Omega(\log n)$	HARD [Grigoriev '01, Schoenebeck '08]			
Cutting Planes		OPEN	$\begin{array}{c} OPEN \\ \Theta(\log n)\text{-}SAT \\ [Fleming, Pankratov, Pitassi, \\ Robere~'17]~[Hrubeš, Pudlák~'17] \end{array}$		Quasi-poly EASY [Fleming, Göös, Impagliazzo, Pitassi, Robere, Tan, Wigderson '21] [Dadush, Tiwari '20]	

	k-clique	k-coloring	3-SAT		3-XOR	
Tree-like Resolution	HARD (size $n^{\Omega(k)}$) [Beyersdorff, Galesi, Lauria '11]	HARD	HARD [Chvátal, Szemerédi '88] Improved [Ben-Sasson, Galesi '01] (size $\exp(n/\Delta^{1+\epsilon})$) $\Delta=m/n$			
Resolution	OPEN Some partial results*	[Beame, Culberson, Mitchell, Moore '05]	HARD [Chvátal, Szemerédi '88] $\exp(n/\Delta^{2+\epsilon})$ Improved [Beame, Karp, Pitassi, Saks '98], [Ben-Sasson '01]			
Polynomial Calculus	OPEN	OPEN	$\mathbb{F} \neq 2$	HARD [Ben-S	Sasson, Impagliazzo '99]	
			$\mathbb{F}=2$	HARD [Alekhnovich, Razborov '01]	EASY	
Sum of Squares	OPEN Some partial results** $\mathcal{G}(n,1/2)$: degree $=\Theta(\log n)$	OPEN [Kothari, Manohar '21] $\mathcal{G}(n,1/2)$: $d \geq \Omega(\log n)$	HARD [Grigoriev '01, Schoenebeck '08]			
Cutting Planes	OPEN	OPEN	OPEN $\Theta(\log n)\text{-SAT}$ [Fleming, Pankratov, Pitassi, Robere '17] [Hrubeš, Pudlák '17]		Quasi-poly EASY [Fleming, Göös, Impagliazzo, Pitassi, Robere, Tan, Wigderson '21] [Dadush, Tiwari '20]	

^{* [}Beame, Impagliazzo, Sabharwal '01], [Pang '21], [Atserias, Bonacina, **dR**, Lauria, Nordström, Razborov '18], [Lauria, Pudlák, Rödl, Thapen '13] ** [Meka, Potechin and Wigderson '15], ..., [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]

Finding Structure in Randomness

- Expansion G is (s,ϵ) -bipartite expander if $\forall U \subseteq V \colon |U| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|U|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall U \subseteq V \colon |U| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|U|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall U \subseteq V \colon |U| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|U|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall U \subseteq V \colon |U| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|U|$
- Constraint-variable graph

- lacksquare Expansion G is (s,ϵ) -bipartite expander if $\forall U \subseteq V \colon |U| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|U|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall U \subseteq V \colon |U| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|U|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall U \subseteq V \colon |U| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|U|$
- Constraint-variable graph

- lacksquare Expansion G is (s,ϵ) -bipartite expander if $orall oldsymbol{U} \subseteq V$: $|oldsymbol{U}| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|oldsymbol{U}|$
- Constraint-variable graph

- lacksquare Expansion G is (s,ϵ) -bipartite expander if $orall oldsymbol{U} \subseteq V$: $|oldsymbol{U}| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|oldsymbol{U}|$
- Constraint-variable graph

- lacksquare Expansion G is (s,ϵ) -bipartite expander if $orall oldsymbol{U} \subseteq V$: $|oldsymbol{U}| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|oldsymbol{U}|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $orall m{U} \subseteq V$: $|m{U}| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|m{U}|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall m{U} \subseteq V \colon |m{U}| \leq s \Rightarrow |N(U)| \geq (1+\epsilon)|m{U}|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall U \subseteq V \colon |U| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|U|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall m{U} \subseteq V \colon |m{U}| \leq s \Rightarrow |N(U)| \geq (1+\epsilon)|m{U}|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall m{U} \subseteq V \colon |m{U}| \leq s \Rightarrow |N(U)| \geq (1+\epsilon)|m{U}|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall m{U} \subseteq V \colon |m{U}| \leq s \Rightarrow |N(U)| \geq (1+\epsilon)|m{U}|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall m{U} \subseteq V \colon |m{U}| \leq s \Rightarrow |N(U)| \geq (1+\epsilon)|m{U}|$
- Constraint-variable graph

- Expansion G is (s,ϵ) -bipartite expander if $\forall m{U} \subseteq V \colon |m{U}| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|m{U}|$
- Constraint-variable graph

Expansion G is (s,ϵ) -bipartite expander if $\forall m{U} \subseteq V \colon |m{U}| \leq s \Rightarrow |N(U)| \geq (1+\epsilon)|m{U}|$

Expansion G is (s,ϵ) -bipartite expander if $\forall m{U} \subseteq V \colon |m{U}| \leq s \Rightarrow |N(U)| \geq (1+\epsilon)|m{U}|$

Expansion G is (s,ϵ) -bipartite expander if $\forall m{U} \subseteq V \colon |m{U}| \leq s \Rightarrow |N(U)| \geq (1+\epsilon)|m{U}|$

Delayer wins the r-game on F:

if with $\leq r$ lines in scroll, Prover cannot exhibit falsified clause

Expansion G is (s,ϵ) -bipartite expander if $\forall U \subseteq V \colon |U| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|U|$

Delayer wins the r-game on F: if with < r lines in scroll, Prover cannot exhibit falsified clause

If Delayer wins the r-game on F, then resolution requires width r to refute F

- Expansion G is (s, ϵ) -bipartite expander if $\forall U \subseteq V : |U| \le s \Rightarrow |N(U)| \ge (1+\epsilon)|U|$
- Constraint-variable graph

Delayer wins the r-game on F: if with $\leq r$ lines in scroll, Prover cannot exhibit falsified clause

If Delayer wins the r-game on F, then resolution requires width r to refute F

Lemma 1. If G is (s,ϵ) -bipartite expander Delayer wins if $r \leq \epsilon s/(d+\epsilon)$

Lemma 2. W.h.p. constraint-variable graph of random 3-CNF is a good expander

 $s = \max \max number s.t. any s-vertex <math>H \subseteq G$ is k-colorable

 $\beta_k(H) = \#$ of vertices in H of degree between 1 and k-1

s= maximum number s.t. any s-vertex $H\subseteq G$ is k-colorable

 $\beta_k(H) = \#$ of vertices in H of degree between 1 and k-1

$$\beta_k(H) = \#$$
 of vertices in H of degree between 1 and $k-1$

s= maximum number s.t. any s-vertex $H\subseteq G$ is k-colorable

$$\beta_k(H)=\#$$
 of vertices in H of degree between 1 and $k-1$

Subcritical
$$k$$
-expansion $e_k(G) = \max_{2 \le t \le s} \min_{\substack{H \text{ connected} \\ t/2 \le V(H) \le t}} \beta_k(H)$

$$\beta_k(H)=\#$$
 of vertices in H of degree between 1 and $k-1$

Subcritical
$$k$$
-expansion $e_k(G) = \max_{2 \le t \le s} \min_{\substack{H \text{ connected} \\ t/2 \le V(H) \le t}} \beta_k(H)$

 $s = \max \max number s.t. any s-vertex <math>H \subseteq G$ is k-colorable

 $\beta_k(H)=\#$ of vertices in H of degree between 1 and k-1

Subcritical
$$k$$
-expansion
$$e_k(G) = \max_{2 \le t \le s} \min_{\substack{H \subseteq G \\ t/2 \le V(H) \le t}} \beta_k(H)$$

 $s = \max \{mum \mid number \mid s.t. \mid any \mid s-vertex \mid H \subseteq G \mid s \mid k-colorable \}$

 $\beta_k(H) = \#$ of vertices in H of degree between 1 and k-1

Subcritical
$$k$$
-expansion $e_k(G) = \max_{2 \le t \le s} \min_{\substack{H \text{ connected} \\ t/2 \le V(H) \le t}} \beta_k(H)$

s = 5

k = 3

 $\beta_k(H) = 4$

$$\beta_k(H) = 3$$

$$\beta_k(H) = 2$$

$$\beta_k(H) = 2$$

$$\beta_k(H) = 3$$
 $\beta_k(H) = 2$ $\beta_k(H) = 2$ $\beta_k(H) = 3$ $\beta_k(H) = 3$

 $s = \max \{mum \mid number \mid s.t. \mid any \mid s-vertex \mid H \subseteq G \mid s \mid k-colorable \}$

 $\beta_k(H) = \#$ of vertices in H of degree between 1 and k-1

Subcritical
$$k$$
-expansion $e_k(G) = \max_{2 \le t \le s} \min_{\substack{H \subseteq G \\ t/2 \le V(H) \le t}} \beta_k(H)$

 $\beta_k(H) = 4$

$$\beta_k(H)=2$$

$$\beta_k(H) = 3$$
 $\beta_k(H) = 2$ $\beta_k(H) = 2$ $\beta_k(H) = 3$ $\beta_k(H) = 3$

 $s = \max \{ max | mum \}$ number s.t. any s-vertex $H \subseteq G$ is k-colorable

 $\beta_k(H) = \#$ of vertices in H of degree between 1 and k-1

Subcritical
$$k$$
-expansion $e_k(G) = \max_{2 \le t \le s} \min_{\substack{H \subseteq G \\ t/2 \le V(H) \le t}} \beta_k(H)$

 $\beta_k(H) = 4$

 $\beta_k(H) = 3$

$$\beta_k(H) = 2$$

$$\beta_k(H) = 3$$

$$\beta_k(H) = 2$$
 $\beta_k(H) = 3$ $\beta_k(H) = 3$ $\beta_k(H) = 2$

 $s = \max \{ max | mum \}$ number s.t. any s-vertex $H \subseteq G$ is k-colorable

$$\beta_k(H)=\#$$
 of vertices in H of degree between 1 and $k-1$

Subcritical
$$k$$
-expansion $e_k(G) = \max_{2 \le t \le s} \min_{\substack{H \text{ connected} \\ t/2 < V(H) < t}} \beta_k(H)$

k = 3

$$\beta_k(H) = 4$$

$$\beta_k(H) = 3$$

$$\beta_k(H) = 2$$

$$\beta_k(H) = 2$$

$$\beta_k(H) = 3$$

$$\beta_k(H) = 3$$
 $\beta_k(H) = 2$ $\beta_k(H) = 2$ $\beta_k(H) = 3$ $\beta_k(H) = 3$ $\beta_k(H) = 2$

Lemma 1. Resolution width of refuting
$$Color(G, k) \ge e_k(G)$$

Lemma 2. Let $G \sim \mathcal{G}_{n,m}$ for $m = \Delta n$. W.h.p. $e_k(G) \geq \epsilon_k n / \Delta^{1+2/(k-2)}$

Clique(G,k) for $G \sim \mathcal{G}(n,p)$ and p close to k-clique threshold

 $> 2^{k/(n-\Delta)^6}$ -hard for resolution for very dense graph and large $k \ge n^{5/6}$ [Beame, Impagliazzo, Sabharwal '01]

- $> 2^{k/(n-\Delta)^6}$ -hard for resolution for very dense graph and large $k \ge n^{5/6}$ [Beame, Impagliazzo, Sabharwal '01]
- $ightharpoonup 2^{\Omega(k^{1-\epsilon})}$ -hard for resolution for $k < n^{1/3}$ [Pang '21]

- $> 2^{k/(n-\Delta)^6}$ -hard for resolution for very dense graph and large $k \ge n^{5/6}$ [Beame, Impagliazzo, Sabharwal '01]
- $ightharpoonup 2^{\Omega(k^{1-\epsilon})}$ -hard for resolution for $k \leq n^{1/3}$ [Pang '21]
- $ightharpoonup n^{\Omega(k)}$ -hard for tree-like resolution [Lauria, Pudlák, Rödl, Thapen '13]

- $> 2^{k/(n-\Delta)^6}$ -hard for resolution for very dense graph and large $k \ge n^{5/6}$ [Beame, Impagliazzo, Sabharwal '01]
- $ightharpoonup 2^{\Omega(k^{1-\epsilon})}$ -hard for resolution for $k \leq n^{1/3}$ [Pang '21]
- $ightharpoonup n^{\Omega(k)}$ -hard for tree-like resolution [Lauria, Pudlák, Rödl, Thapen '13]
- $ightharpoonup n^{\Omega(k)}$ -hard for regular resolution [Atserias, Bonacina, dR, Lauria, Nordström, Razborov '18]

- $ightharpoonup 2^{\Omega(k^{1-\epsilon})}$ -hard for resolution for $k \leq n^{1/3}$ [Pang '21]
- $ightharpoonup n^{\Omega(k)}$ -hard for tree-like resolution [Lauria, Pudlák, Rödl, Thapen '13]
- $ightharpoonup n^{\Omega(k)}$ -hard for regular resolution [Atserias, Bonacina, dR, Lauria, Nordström, Razborov '18]

Clique(G,k) for $G \sim \mathcal{G}(n,p)$ and p close to k-clique threshold

- $> 2^{k/(n-\Delta)^6}$ -hard for resolution for very dense graph and large $k \ge n^{5/6}$ [Beame, Impagliazzo, Sabharwal '01]
- $ightharpoonup 2^{\Omega(k^{1-\epsilon})}$ -hard for resolution for $k \leq n^{1/3}$ [Pang '21]
- $ightharpoonup n^{\Omega(k)}$ -hard for tree-like resolution [Lauria, Pudlák, Rödl, Thapen '13]
- $ightharpoonup n^{\Omega(k)}$ -hard for regular resolution [Atserias, Bonacina, dR, Lauria, Nordström, Razborov '18]

Open: Show that resolution, polynomial calculus or sum of squares requires size $n^{\Omega(k)}$ to refute $\operatorname{Clique}(G,k)$

[Beyersdorff, Galesi, Lauria '11]

[Beyersdorff, Galesi, Lauria '11]

common neighbors of
$${m U}$$
: $\widehat N(U) = igcap_{v \in {m U}} N(u)$

[Beyersdorff, Galesi, Lauria '11]

common neighbors of
$$oldsymbol{U}$$
: $\widehat{N}(U) = igcap_{v \in U} N(u)$

[Beyersdorff, Galesi, Lauria '11]

k = 6

common neighbors of
$$oldsymbol{U}$$
: $\widehat{N}(U) = igcap_{v \in U} N(u)$

[Beyersdorff, Galesi, Lauria '11]

common neighbors of
$$oldsymbol{U}$$
: $\widehat{N}(U) = igcap_{v \in U} N(u)$

G is neighbor dense if:

can extend any r-clique, $r \leq k/4$, in many ways, i.e.

[Beyersdorff, Galesi, Lauria '11]

common neighbors of
$$oldsymbol{U}$$
: $\widehat{N}(U) = igcap_{v \in U} N(u)$

G is neighbor dense if:

can extend any r-clique, $r \leq k/4$, in many ways, i.e.

$$orall oldsymbol{U} \subseteq V \colon |oldsymbol{U}| \le k/4 \Rightarrow |\widehat{N}(U)| \gtrsim \sqrt{n}$$

[Beyersdorff, Galesi, Lauria '11]

common neighbors of
$$oldsymbol{U}$$
: $\widehat{N}(U) = igcap_{v \in U} N(u)$

G is neighbor dense if:

can extend any r-clique, $r \leq k/4$, in many ways, i.e.

$$orall oldsymbol{U} \subseteq V \colon |oldsymbol{U}| \le k/4 \Rightarrow |\widehat{N}(U)| \gtrsim \sqrt{n}$$

Lemma 1. W.h.p. $G \sim \mathcal{G}(n,p)$ is neighbor dense (for p close to k-clique threshold)

Lemma 2. Tree-like refutation of neighbor dense G must have size $\geq n^{\Omega(k)}$

Property not enough for stronger proof systems

G is neighbor dense if:

can extend any r-clique, $r \leq k/4$, in many ways, i.e.

$$orall oldsymbol{U} \subseteq V \colon |oldsymbol{U}| \le k/4 \Rightarrow |\widehat{N}(U)| \gtrsim \sqrt{n}$$

Property not enough for stronger proof systems

G is neighbor dense if:

can extend any r-clique, $r \leq k/4$, in many ways, i.e.

$$orall oldsymbol{U} \subseteq V \colon |oldsymbol{U}| \le k/4 \Rightarrow |\widehat{N}(U)| \gtrsim \sqrt{n}$$

(k-1)-complete partite graph satisfies it!

Property not enough for stronger proof systems

G is neighbor dense if:

can extend any r-clique, $r \leq k/4$, in many ways, i.e.

$$orall oldsymbol{U} \subseteq V \colon |oldsymbol{U}| \le k/4 \Rightarrow |\widehat{N}(U)| \gtrsim \sqrt{n}$$

(k-1)-complete partite graph satisfies it!

Property not enough for stronger proof systems

G is neighbor dense if:

can extend any r-clique, $r \leq k/4$, in many ways, i.e.

$$orall oldsymbol{U} \subseteq V \colon |oldsymbol{U}| \le k/4 \Rightarrow |\widehat{N}(U)| \gtrsim \sqrt{n}$$

(k-1)-complete partite graph satisfies it!

1. Can extend any (k/20)-clique in many ways

- 1. Can extend any (k/20)-clique in many ways
- 2. Any $W\subseteq V$ that can extend any (k/100)-clique in many ways can also extend almost any (k/10)-clique in many ways

- 1. Can extend any (k/20)-clique in many ways
- 2. Any $W\subseteq V$ that can extend any (k/100)-clique in many ways can also extend almost any (k/10)-clique in many ways

(somewhat) more formally:

- 1. Can extend any (k/20)-clique in many ways
- 2. Any $W \subseteq V$ that can extend any (k/100)-clique in many ways can also extend almost any (k/10)-clique in many ways

(somewhat) more formally: r = k/100

- 1. Can extend any (k/20)-clique in many ways
- 2. Any $W \subseteq V$ that can extend any (k/100)-clique in many ways can also extend almost any (k/10)-clique in many ways

(somewhat) more formally: r = k/100

- 1. Can extend any (k/20)-clique in many ways
- 2. Any $W \subseteq V$ that can extend any (k/100)-clique in many ways can also extend almost any (k/10)-clique in many ways

(somewhat) more formally: r = k/100

- 1. Can extend any (k/20)-clique in many ways
- 2. Any $W \subseteq V$ that can extend any (k/100)-clique in many ways can also extend almost any (k/10)-clique in many ways

(somewhat) more formally: r = k/100

- 1. Can extend any (k/20)-clique in many ways
- 2. Any $W\subseteq V$ that can extend any (k/100)-clique in many ways can also extend almost any (k/10)-clique in many ways

(somewhat) more formally:

$$r = k/100$$

 $\forall W \subseteq V$ that can extend any r-clique in many ways:

 \exists small set S s.t. any ℓ -clique $\ell \leq 10r$

- 1. Can extend any (k/20)-clique in many ways
- 2. Any $W \subseteq V$ that can extend any (k/100)-clique in many ways

can also extend almost any (k/10)-clique in many ways

(somewhat) more formally: r=k/100

 $\forall W \subseteq V$ that can extend any r-clique in many ways:

 \exists small set S s.t. any ℓ -clique

- 1. Can extend any (k/20)-clique in many ways
- 2. Any $W\subseteq V$ that can extend any (k/100)-clique in many ways

can also extend almost any (k/10)-clique in many ways

(somewhat) more formally: r = k/100

 $\forall W \subseteq V$ that can extend any r-clique in many ways:

 \exists small set S s.t. any ℓ -clique $\ell \leq 10r$

1. Can extend any (k/20)-clique in many ways

2. Any $W \subseteq V$ that can extend any (k/100)-clique in many ways

can also extend almost any (k/10)-clique in many ways

(somewhat) more formally:

$$r=k/100$$

 $\forall W \subseteq V$ that can extend any r-clique in many ways:

 \exists small set S s.t. any ℓ -clique $\ell \leq 10r$

that cannot be extended in $oldsymbol{W}$ in many ways

must intersect S in many vertices

$$r = k/100$$

 $\forall W \subseteq V$ that can extend any r-clique in many ways:

 \exists small set S s.t. any ℓ -clique $\ell \leq 10r$

$$r = k/100$$

 $\forall W \subseteq V$ that can extend any r-clique in many ways:

 \exists small set S s.t. any ℓ -clique $\ell \leq 10r$

$$r = k/100$$

 $\forall W \subseteq V$ that can extend any r-clique in many ways:

 \exists small set S s.t. any ℓ -clique $\ell \leq 10r$

$$r = k/100$$

 $\forall W \subseteq V$ that can extend any r-clique in many ways:

 \exists small set S s.t. any ℓ -clique $\ell \leq 10r$

$$r = k/100$$

 $\forall W \subseteq V$ that can extend any r-clique in many ways:

 \exists small set S s.t. any ℓ -clique $\ell \leq 10r$

- Average-case proof complexity of three NP-hard problems
 - Primarily interested in size of proofs

- Average-case proof complexity of three NP-hard problems
 - Primarily interested in size of proofs
- Imply lower bounds for algorithms

- Average-case proof complexity of three NP-hard problems
 - Primarily interested in size of proofs
- Imply lower bounds for algorithms
- Candidate hard instances for strong proof systems

- Average-case proof complexity of three NP-hard problems
 - Primarily interested in size of proofs
- Imply lower bounds for algorithms
- Candidate hard instances for strong proof systems
- Lower bounds: identify structure in randomness

- Average-case proof complexity of three NP-hard problems
 - Primarily interested in size of proofs
- Imply lower bounds for algorithms
- Candidate hard instances for strong proof systems
- Lower bounds: identify structure in randomness
- Many open problems

Average-case hardness results

	k-clique	k-coloring		3-SAT	3-XOR	
Tree-like Resolution	$HARD$ (size $n^{\Omega(k)}$) [Beyersdorff, Galesi, Lauria '11]	HARD	HARD [Chvátal, Szemerédi '88] Improved [Ben-Sasson, Galesi '01] (size $\exp(n/\Delta^{1+\epsilon})$) $\Delta=m/n$			
Resolution	OPEN Some partial results*	[Beame, Culberson, Mitchell, Moore '05]	HARD [Chvátal, Szemerédi '88] $\exp(n/\Delta^{2+\epsilon})$ Improved [Beame, Karp, Pitassi, Saks '98], [Ben-Sasson '01]			
Polynomial Calculus	OPEN	OPEN	$\mathbb{F} eq 2$ HARD [Ben-Sasson, Impagliazzo '99]			
			$\mathbb{F}=2$	HARD [Alekhnovich, Razborov '01]	EASY	
Sum of Squares	OPEN Some partial results** $\mathcal{G}(n,1/2)$: degree $=\Theta(\log n)$	OPEN [Kothari, Manohar '21] $\mathcal{G}(n,1/2)$: $d \geq \Omega(\log n)$	HARD [Grigoriev '01, Schoenebeck '08]			
Cutting Planes	OPEN	OPEN	$\begin{array}{c} OPEN \\ \Theta(\log n)\text{-}SAT \\ [Fleming, Pankratov, Pitassi, \\ Robere '17] \ [Hrubeš, Pudlák '17] \end{array}$		Quasi-poly EASY [Fleming, Göös, Impagliazzo, Pitassi, Robere, Tan, Wigderson '21] [Dadush, Tiwari '20]	

^{* [}Beame, Impagliazzo, Sabharwal '01], [Pang '21], [Atserias, Bonacina, dR, Lauria, Nordström, Razborov '18], [Lauria, Pudlák, Rödl, Thapen '13] ** [Meka, Potechin and Wigderson '15], ..., [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]

Average-case hardness results

Thank you!

	k-clique	k-coloring		3-SAT	3-XOR	
Tree-like Resolution	HARD (size $n^{\Omega(k)}$) [Beyersdorff, Galesi, Lauria '11]	HARD	HARD [Chvátal, Szemerédi '88] Improved [Ben-Sasson, Galesi '01] (size $\exp(n/\Delta^{1+\epsilon})$) $\Delta=m/n$			
Resolution	OPEN Some partial results*	[Beame, Culberson, Mitchell, Moore '05]	HARD [Chvátal, Szemerédi '88] $\exp(n/\Delta^{2+\epsilon})$ Improved [Beame, Karp, Pitassi, Saks '98], [Ben-Sasson '01]			
Polynomial Calculus	OPEN	OPEN	$\mathbb{F} \neq 2$	HARD [Ben-S	Sasson, Impagliazzo '99]	
			$\mathbb{F}=2$	HARD [Alekhnovich, Razborov '01]	EASY	
Sum of Squares	OPEN Some partial results** $\mathcal{G}(n,1/2)$: degree $=\Theta(\log n)$	OPEN [Kothari, Manohar '21] $\mathcal{G}(n,1/2)$: $d \geq \Omega(\log n)$	HARD [Grigoriev '01, Schoenebeck '08]			
Cutting Planes	OPEN	OPEN	OPEN $\Theta(\log n)\text{-SAT} \qquad \text{[FI}$ [Fleming, Pankratov, Pitassi, Robere '17] [Hrubeš, Pudlák '17]		Quasi-poly EASY [Fleming, Göös, Impagliazzo, Pitassi, Robere, Tan, Wigderson '21] [Dadush, Tiwari '20]	

^{* [}Beame, Impagliazzo, Sabharwal '01], [Pang '21], [Atserias, Bonacina, dR, Lauria, Nordström, Razborov '18], [Lauria, Pudlák, Rödl, Thapen '13]

** [Make, Detection and Windowson '15], [Panel, Hanking, Kalner, Kathari, Maitra, Detection '16]

** [Meka, Potechin and Wigderson '15], ..., [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]