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Refuting CSPs

Input: An instance 𝝓 of  k-SAT with m clauses on n variables.
Output: A value 𝒗 ∈ [𝟎, 𝟏].
Correctness: 𝒗𝒂𝒍 𝝓 ≤ 𝒗.

Refutation Algorithm: 

The algorithm weakly refutes a formula 𝜙 if  𝑣 < 1.
strongly refutes     ….        if  𝑣 < 1 − 𝛿 𝛿 > 0, abs. const.

refutation = certificate that 𝑣𝑎𝑙 𝜙 ≤ 𝑣

“𝑣𝑎𝑙 𝜙 = max frac of  constraints satisfiable” 

Goal: refute largest possible family of  instances 𝜙: 𝑣𝑎𝑙 𝜙 < 0.99.



A Tale of  Two Worlds

# of  constraints m
(in log-scale)

Exponent of  
run-time

∼ 𝑛!"# ∼ 𝑛!

The story of  worst-case k-sat.

[Håstad’99],[Moshkovitz-Raz’08]
[Arora-Karger-Karpinski’95]

[Fotakis-Lampis-Paschis’16]

Sub-exp time algorithms when 𝑚 > 𝑛!"#$% .
Poly time algorithms if𝑚 = Θ 𝑛! .

Evidence of  sharpness: ETH
Exp of  
run- time



Exp of  
run- time

𝑛 𝑛!/'

[Allen,O’Donnell,Witmer’15]

𝑂(1)

∼ 𝑛

[Raghavendra,Rao,Schramm’16]

[Coja-Oghlan-Goerdt-Lanka’03]
[Barak-Moitra’15]

[K,Mori,O’Donnell,Witmer’17]
[Barak,Chan,K’15]

Evidence of  sharpness: sum-of-squares LBs
The story of  random k-sat.

A Tale of  Two Worlds

“spectral threshold”

𝒏𝑶 ℓ time algo when 𝑚 ≥ 2𝑶(𝑛) ⋅ .
ℓ

!
""#.

Poly time algorithms if𝑚 = 2𝑶 𝑛!/' .

# of  constraints m
(in log-scale)

For k=3, 𝟐𝒏𝜹algo when𝑚 ≥ 2𝑶 𝑛#.1"%/' .



Exp of  
run- time

𝑛 𝑛!/'

𝑂(1)

∼ 𝑛
Evidence of  sharpness: sum-of-squares LBs

The story of  random k-sat.

A Tale of  Two Worlds

𝑛!/'"%!

[Feige-Kim-Ofek’06]: poly-time verifiable refutations exist.

∼ 𝑛$.& for k=3

[Witmer’16]

# of  constraints m
(in log-scale)



How does the complexity of  k-sat interpolate between the two worlds?

Does the randomness of  the clause structure matter?

Is worst-case world pessimistic? Are random instances idealistic?

Do algorithms/certificates generalize beyond random? 



Smoothed CSPs

1: Generate worst-case instance 𝜙 of  k-SAT.
2: Negate each literal with prob 0.01 independently to produce 𝝓𝒔. 

Smoothed CSPs 

Fact: 𝑣𝑎𝑙 𝝓𝒔 ≤ 1 − 2()* whp. 

[Feige’07]

• clause structure (i.e., instance hypergraph) is worst-case.
• only randomness in literals: via small random perturbation. 



Exp of  
run- time

𝑛 𝑛!/'

𝑂(1)

∼ 𝑛

The story of  smoothed k-sat.

This Work: Algorithms
[Guruswami,K,Manohar’21]:

# of  constraints m
(in log-scale)

Prior Work: 
Same trade-off  for random k-SAT [RRS’16, AOW’15]
Weak ref  for smoothed 3-SAT with 2𝑂(𝑛!.#) clauses. 
Ø Extends to 3-CSPs but not to strong ref  or >3-CSPs.
Strong ref  for semi-random k-SAT with !𝑂(𝑛!/#) clauses. 

[Fei’07]

[Abascal-Guruswami-K’20]



Exp of  
run- time

𝑛 𝑛!/'

𝑂(1)

∼ 𝑛

The story of  smoothed k-sat.[Guruswami,K,Manohar’21]:

# of  constraints m
(in log-scale)

Prior Work: 
Smoothed: no strong ref  algo for even 3-SAT at any point in trade-off.
Semirandom: one end of  trade-off  known and our direct inspiration.

This Work: Algorithms



Exp of  
run- time

𝑛 𝑛!/'

𝑂(1)

∼ 𝑛

The story of  smoothed k-sat.

This Work: Certificates

𝑛!/'"%!

[Guruswami,K,Manohar’21]:

∼ 𝑛$.& for k=3
# of  constraints m

(in log-scale)

poly-time verifiable 
refutations exist.

Generalizes FKO to arbitrary clause-structures.
Key Ingredient: Resolving Feige’s 2008 conjecture. 



Feige’s Conjecture
An extremal conjecture about girth of  hypergraphs.

Question: What’s the maximum girth of  a graph on n vertices and &'
(

edges?
for d=2: clearly, n (e.g., n-cycle).
for d>2: ≤ 2 log+($ 𝑛+2 [Alon,Hoory,Linial’02]

sharp up to the factor 2 (e.g., some Ramanujan graphs)
“Moore Bound”



Feige’s Conjecture
An extremal conjecture about girth of  hypergraphs.

Moore bound: max girth of  a graph on n vertices and &'
(

edges is ∼ 2 log+($ 𝑛

What about 3 (and more generally, k)-uniform hypergraphs?

Hypergraph Cycles (Even Covers)

A cycle is a subgraph that touches every vertex an even # of  times.

A hypergraph cycle = set of  hyperedges touching each vertex an. even # of  times.

= size of  a smallest linearly-dependent subset of  k-sparse linear equations mod 2. 



Feige’s Conjecture
An extremal conjecture about girth of  hypergraphs.

Moore bound: max girth of  a graph on n vertices and &'
(

edges is ∼ 2 log+($ 𝑛

Hypergraph Cycles (a.k.a. even covers)
A hypergraph cycle = set of  hyperedges touching each vertex an. even # of  times.

Feige’s Conjecture (2008):
Every hypergraph with 𝑚 ∼ 𝑛 ⋅ ,

ℓ

($%($) hyperedges has a cycle of  length ≤ ℓ log0 𝑛.

= rate-distance trade-off  for linear codes with column k-sparse parity-check matrices. 

Random hypergraphs known to achieve it (up to log factor slack in m).   

for 𝑘 = 3, every hypergraph with 𝑚 ∼ 𝑛 ,
ℓ

has a cycle of  length ≤ ℓ log0 𝑛 .



An extremal conjecture about girth of  hypergraphs.
Feige’s Conjecture (2008):
Every hypergraph with 𝑚 ≥ 𝑛 ⋅ ,

ℓ

($%($) hyperedges has a cycle of  length ≤ ℓ log0 𝑛.

Feige’s Conjecture: A brief  history

[Feige,Kim,Ofek’06]:

True for random k-uniform hypergraphs via a “2nd moment method” argument. 

there are 𝑂( 1
ℓ 234% ,

) hyperedge-disjoint cycles of  length ≤ ℓ log0 𝑛.

Non-trivial weak refutation for random k-XOR.

“non-trivial weak refutation of  k-XOR” à weak refutation of  k-SAT.



An extremal conjecture about girth of  hypergraphs.
Feige’s Conjecture (2008):
Every hypergraph with 𝑚 ≥ 𝑛 ⋅ ,

ℓ

($% ($) hyperedges has a cycle of  length ≤ ℓ log0 𝑛.

[Naor-Verstraete’08],[Feige’08]:

True for all hypergraphs for ℓ = 𝑂(1) up to a log log 𝑛 factor slack in 𝑚.

[Feige,Wagner’16]: A combinatorial approach via sub-hypergraphs of  bounded min-degree.

Feige’s Conjecture: A brief  history

[Feige,Kim,Ofek’06]:

True for random k-uniform hypergraphs via a “2nd moment method” argument. 

[Alon,Feige’09]: A suboptimal trade-off  for k=3: 𝑚 ∼ $!

ℓ
for ℓ log& 𝑛 length cycles.



Theorem [Guruswami, K, Manohar’21]
Feige’s conjecture is true for all 𝒌 and ℓ up to a log() 𝑛 factor slack in m

An extremal conjecture about girth of  hypergraphs.
Feige’s Conjecture (2008):
Every hypergraph with 𝑚 ≥ 𝑛 ⋅ ,

ℓ

($% ($) hyperedges has a cycle of  length ≤ ℓ log0 𝑛.

Feige’s Conjecture: Our Result

“Spectral double counting” : a conceptually simple connection between hypergraph 
cycles and sub-exp size spectral refutations below spectral threshold. 



Time for some actual math!



Regular even-XOR

Feige’s Conjecture

Row Bucketing

Row Pruning
refutation

Semi-random k-XOR
Hypergraph Regularity
Decomposition

Regular odd-XOR

Smoothed k-SAT

Structure of  
KikuchiMatrices

[Wein, Alaoui,Moore’19]
Introduced Kikuchi matrices to simplify tensor PCA and even-arity 
random k-XOR refutation.

[Abascal,Guruswami,K’20]



“You’ve got to look at the Kikuchi matrices if  
you want to prove something about 
CSPs…or hypergraphs…or tensors…”



Tightly refuting random 4-XOR

{ 𝑥#𝑥'𝑥9𝑥: = ±1,… }Over 𝑥 ∈ ±1 ., 4-XOR constraints are of  the form:

𝜙 𝑥 =
1
𝑚 @

;∈ℋ

𝑏;𝑥;5𝑥;"𝑥;6𝑥;7 =
1
𝑚 @

;∈ℋ

𝑏;𝑥;

…is a deg 4 polynomial that computes “advantage over ½” of  assignment 𝑥.  

Goal: Certify that 𝜙 𝑥 ≤ 𝜖 for all 𝑥 ∈ {±1}.

Instance: A 4-uniform hypergraph ℋ and a set of  “RHS” 𝑏8 for each 𝐶 ∈ ℋ.

Let’s start with the case of  ℓ = 𝑂(1) .



Goal: Certify that 𝜙 𝑥 = !
"
∑#∈ℋ 𝑏#𝑥# ≤ 𝜖 for all 𝑥 ∈ {±1}.

Idea: write 𝜙(𝑥) as the quadratic form of  some matrix! 

{𝑖, 𝑗}

{𝑘, ℓ}

𝑏{:,<,*,ℓ}
Then, 𝜙 𝑥 = $

>
𝑥⨀ 0 @

A 𝑥⨀ 0 .

≤ $
>

𝑥⨀ 0
0

0
A 0.

𝐴 =

Analysis: Succeeds in refuting if  𝑚 ≥∼ 𝑛(. 
Matrix Chernoff, trace method,…all work easily to bound 𝐴 (

Tightly refuting random 4-XOR

[Goerdt,Krivilevich’01…]



Goal: Certify that 𝜙 𝑥 = $
1
∑8∈ℋ 𝑏8𝑥8 ≤ 𝜖 for all 𝑥 ∈ {±1},

use a “symmetrized tensor power matrix” who quad. form is 𝜙 𝑥 0ℓ

Issue: Fairly technical application of  the trace method
Crucially uses randomness of  ℋ.

[RRS’16]

Two recent papers                                            succeed in simplifying for even k. 

[Wein-Alaoui-Moore’19] Introduce Kikuchimatrix and significantly simplify even-
arity random k-XOR refutation.
This is our starting point!

Full trade-off  for 4-XOR?   𝑛>(ℓ) time vs 𝑚 ∼ ."

ℓ
constraints. 

Tightly refuting random 4-XOR

[Ahn’19,Wein-Alaoui-Moore’19]



Goal: Certify that 𝜙 𝑥 = !
"
∑#∈ℋ 𝑏#𝑥# ≤ 𝜖 for all 𝑥 ∈ {±1}.

Idea: write 𝜙(𝑥) as the quadratic form of  a .
ℓ ×

.
ℓ matrix. 

𝑆

𝑇

Then, 𝜙 𝑥 = $
Cℓ

𝑥⨀ ℓ @A 𝑥⨀ ℓ = $
Cℓ
∑D,E 𝐴 𝑆, 𝑇 𝑥D𝑥E

𝐴! =

Tightly refuting random 4-XOR

𝑏8 if  𝑆Δ𝑇 = 𝐶
0 otherwise

𝐴 = #
1∈ℋ

𝐴1

[𝑛]
ℓ

∋

=
1
𝐷ℓ
A
',)

𝐴 𝑆, 𝑇 𝑥'*) ≤
1
𝐷ℓ

𝑛
ℓ A &



Goal: Certify that 𝜙 𝑥 = !
"
∑#∈ℋ 𝑏#𝑥# ≤ 𝜖 for all 𝑥 ∈ {±1}.

Idea: write 𝜙(𝑥) as the quadratic form of  a .
ℓ ×

.
ℓ matrix. 

𝑆

𝑇

Then, 𝜙 𝑥 = $
Cℓ

𝑥⨀ ℓ @A 𝑥⨀ ℓ

≤ $
Cℓ

&
ℓ A 0.

𝐴! =

Analysis: How can we bound 𝐴 (?

Tightly refuting random 4-XOR

𝑏8 if  𝑆Δ𝑇 = 𝐶
0 otherwise

𝐴 = #
1∈ℋ

𝐴1

[𝑛]
ℓ

∋



𝑆

𝑇

𝐴 =

How can we bound 𝐴 (?

Tightly refuting random 4-XOR

𝐴 = -
+∈ℋ

𝐴+

independent, random matrices.

Analysis: Apply matrix Chernoff  inequality.

Succeeds in refuting if  𝑚 ≥∼ &!

ℓ
. 



Whp, random 4-uniform ℋ with ∼ ,%

ℓ
hyperedges has a ∼ ℓ log0 𝑛 length cycle.

Small Cycles via Spectral Double Counting
Prop:

Proof  Idea:
If  not, our refutation algo (with same ℓ) from previous slide works for arbitrary
RHS 𝒃𝑪s. Since there are satisfiable k-XOR instances (𝑏+= 1 ∀𝐶), contradiction.

Key Step:
If  there are no cycles of  length ∼ ℓ log0 𝑛, then regardless of  𝑏8𝑠, can prove an upper 
bound on 𝑨 𝟐that matches the one when 𝑏8s are indep. random. 

fixed, deterministic matrix.



Whp, random 4-uniform ℋ with ∼ ,%

ℓ
hyperedges has a ∼ ℓ log0 𝑛 length cycle.

Small Cycles via Spectral Double Counting
Prop:

Key Step:
If  there are no cycles of  length ∼ ℓ log0 𝑛, then regardless of  𝑏8𝑠, can prove an upper 
bound on 𝑨 𝟐that matches the one when 𝑏8s are indep. random. 

𝑨 𝟐 ∼ 𝑻𝒓 𝑨𝟐𝒓
𝟏
𝟐𝒓 for 𝑟 ∼ log $

ℓ ∼ ℓ log& 𝑛 .Trace Method:

𝑻𝒓 𝑨𝟐𝒓 = ∑(𝑺𝟏,𝑺𝟐,…,𝑺𝟐𝒓)𝑨 𝑺𝟏, 𝑺𝟐 𝑨 𝑺𝟐, 𝑺𝟑 ⋯𝑨(𝑺𝟐𝒓, 𝑺𝟏)

“2r-length walk” on “vertices” of  the “Kikuchi Graph”



Whp, random 4-uniform ℋ with ∼ ,%

ℓ
hyperedges has a ∼ ℓ log0 𝑛 length cycle.

Small Cycles via Spectral Double Counting
Prop:

𝑨 𝟐 ∼ 𝑻𝒓 𝑨𝟐𝒓
𝟏
𝟐𝒓 for 𝑟 ∼ log $

ℓ ∼ ℓ log& 𝑛 .Trace Method:

𝑻𝒓 𝑨𝟐𝒓 = ∑(𝑺𝟏,𝑺𝟐,…,𝑺𝟐𝒓)𝑨 𝑺𝟏, 𝑺𝟐 𝑨 𝑺𝟐, 𝑺𝟑 ⋯𝑨(𝑺𝟐𝒓, 𝑺𝟏)

Each term contributes a +1 or 0. So RHS is the number of  contributing walks.
Recall: 𝐴 𝑆/, 𝑆( = 𝑏+ if  𝑆/Δ 𝑆( = C ⇔ 𝑆/⊕𝑆( = 𝐶 for some 𝐶 ∈ ℋ.

When 𝑏+𝑠 are independent ±1, only “even returning walks” contribute. 
Returning Walk: walk that uses the same “edge” (i.e., 𝑇, 𝑈 ) an even # of  times. 

Observation: If  ℋ has no cycle of  length ∼ log ,
ℓ , exact same set of  walks 

contribute regardless of  𝑏8𝑠.  



Whp, random 4-uniform ℋ with ∼ ,%

ℓ
hyperedges has a ∼ ℓ log0 𝑛 length cycle.

Small Cycles via Spectral Double Counting
Prop:

𝑻𝒓 𝑨𝟐𝒓 = ∑(𝑺𝟏,𝑺𝟐,…,𝑺𝟐𝒓)𝑨 𝑺𝟏, 𝑺𝟐 𝑨 𝑺𝟐, 𝑺𝟑 ⋯𝑨(𝑺𝟐𝒓, 𝑺𝟏)

Recall: 𝐴 𝑆/, 𝑆( = 𝑏+ if  𝑆/Δ 𝑆( = C ⇔ 𝑆/⊕𝑆( = 𝐶 for some 𝐶 ∈ ℋ.
Observation: If  ℋ has no cycle of  length ∼ log "

ℓ , only even returning walks contribute. 

Proof: Any contributing term (𝑆$, 𝑆0, … , 𝑆0L) corresponds to 𝑆$, 𝐶$, 𝐶0, … , 𝐶0L .

𝑆/⊕𝑆( = 𝐶/
𝑆(⊕𝑆0 = 𝐶(

…

𝑆(1 ⊕𝑆/ = 𝐶(1

Add both sides modulo 2,

𝐶/⊕𝐶(⋯⊕𝐶(1 = 0



Whp, random 4-uniform ℋ with ∼ ,%

ℓ
hyperedges has a ∼ ℓ log0 𝑛 length cycle.

Small Cycles via Spectral Double Counting
Prop:

𝑻𝒓 𝑨𝟐𝒓 = ∑(𝑺𝟏,𝑺𝟐,…,𝑺𝟐𝒓)𝑨 𝑺𝟏, 𝑺𝟐 𝑨 𝑺𝟐, 𝑺𝟑 ⋯𝑨(𝑺𝟐𝒓, 𝑺𝟏)

Recall: 𝐴 𝑆/, 𝑆( = 𝑏+ if  𝑆/Δ 𝑆( = C ⇔ 𝑆/⊕𝑆( = 𝐶 for some 𝐶 ∈ ℋ.
Observation: If  ℋ has no cycle of  length ∼ log "

ℓ , only even returning walks contribute. 

Proof: Any contributing term (𝑆$, 𝑆0, … , 𝑆0L) corresponds to 𝑆$, 𝐶$, 𝐶0, … , 𝐶0L .

𝐶/⊕𝐶(⋯⊕𝐶(1 = 0
If  all 𝐶:s are distinct, must be a cycle of  length 2𝑟 in ℋ.
So, can happen only if  each 𝐶: occurs an even number of  times.
⇔ the corresponding walk is even returning. 



What about semi-random instances?
Goal: Certify that 𝜙 𝑥 = $

1
∑8∈ℋ 𝑏8𝑥8 ≤ 𝜖 for all 𝑥 ∈ {±1},

ℋ arbitrary (worst-case), 𝑏+s indep. random.

Spectral norm of  A is too large and cannot work.

Obs: “Offending” quadratic forms are on sparse vectors. 
While we only care about “flat” vectors. 

“Row bucketing” allows bounding flat quadratic forms of  semirandom matrices.
[Abascal,Guruswami,K’20]



What about odd-arity instances?
Goal: Certify that 𝜙 𝑥 = $

1
∑8∈ℋ 𝑏8𝑥8 ≤ 𝜖 for all 𝑥 ∈ {±1},

ℋ arbitrary (worst-case), 𝑏+s indep. random.

Define an appropriate Kikuchi matrix. 
Spectral norm of  A is too large and cannot work even for random 3-XOR!.

Idea: “Row Pruning” – removing some appropriate rows enough for random case.

More generally, works for hypergraphs with small spread.

Hypergraph Regularity Decomposition:
Decompose a k-uniform hypergraph into k’-uniform hypergraphs for 𝑘2 ≤ 𝑘 + 
“error” such that each non-error piece has small spread. 



Main take-away:

If  you randomly perturb each literal independently with small prob,
the k-SAT instance becomes as easy as random with same # of  
constraints. 
For both algorithms, and FKO style certificates.  

This work:

Kikuchi matrices are beautiful and can solve all life’s problems. 



Thank you.


