Algorithms and Certificates for Refuting CSPs "smoothed is no harder than random"

Pravesh Kothari CMU

Venkat Guruswami CMU

Peter Manohar CMU

Refuting CSPs

Refutation Algorithm:

Input: An instance ϕ of k-SAT with **m** clauses on **n** variables.

Output: A value $v \in [0, 1]$.

Correctness: $val(\phi) \le v$. " $val(\phi) = \max$ frac of constraints satisfiable"

The algorithm *weakly refutes* a formula ϕ if $\nu < 1$. *strongly refutes* …. if $v < 1 - \delta$ $\delta > 0$, abs. const.

Goal: refute largest possible family of instances ϕ : $val(\phi) < 0.99$.

refutation = *certificate* that $val(\phi) \leq v$

A Tale of Two Worlds

A Tale of Two Worlds

A Tale of Two Worlds

How does the complexity of k-sat interpolate between the two worlds?

Is worst-case world pessimistic? Are random instances idealistic?

Do algorithms/certificates generalize beyond random?

Does the randomness of the clause structure matter?

Smoothed CSPs

Smoothed CSPs [Feige'07]

- **1:** Generate worst-case instance ϕ of k-SAT.
- **2:** Negate each literal with prob 0.01 independently to produce ϕ_s .

Fact: $val(\boldsymbol{\phi}_s) \leq 1 - 2^{-ck}$ whp.

- clause structure (i.e., instance hypergraph) is worst-case.
- only randomness in literals: via small random perturbation.

This Work: Algorithms

This Work: Algorithms

This Work: Certificates

Feige's Conjecture

An extremal conjecture about girth of hypergraphs.

Question: What's the maximum girth of a graph on n vertices and $\frac{nd}{2}$ $\frac{du}{2}$ edges? for $d=2$: clearly, n (e.g., n-cycle). for $d > 2$: $\leq 2 \log_{d-1} n + 2$ [Alon, Hoory, Linial'02] "Moore Bound" sharp up to the factor 2 (e.g., some Ramanujan graphs)

Feige's Conjecture

An extremal conjecture about girth of hypergraphs.

Moore bound: max girth of a graph on **n** vertices and $\frac{nd}{2}$ $\frac{du}{2}$ edges is ~ 2 log_{d-1} n What about 3 (and more generally, k)-uniform hypergraphs?

A cycle is a subgraph that touches every vertex an even # of times.

Hypergraph Cycles (Even Covers)

A **hypergraph cycle** = set of hyperedges touching each vertex an. even # of times.

= size of a smallest *linearly-dependent subset* of *k-sparse* linear equations *mod 2*.

Feige's Conjecture

An extremal conjecture about girth of hypergraphs.

Moore bound: max girth of a graph on **n** vertices and $\frac{nd}{2}$ $\frac{du}{2}$ edges is ~ 2 log_{d-1} n **Hypergraph Cycles (a.k.a. even covers)**

A **hypergraph cycle** = set of hyperedges touching each vertex an. even # of times.

Feige's Conjecture (2008):

Every hypergraph with $m \sim n \cdot \left(\frac{n}{e}\right)$ ℓ (\boldsymbol{k} $\frac{n}{2}$ –1) hyperedges has a cycle of length $\leq \ell \log_2 n$.

 $r = r$ ato-distance trade-hyffe for a binearid ordes with calumny desparke ngahity-check matrices.

Random hypergraphs known to achieve it (up to log factor slack in m).

Feige's Conjecture: A brief history

An extremal conjecture about girth of hypergraphs.

Feige's Conjecture (2008):

Every hypergraph with $m \geq n \cdot \left(\frac{n}{e}\right)$ ℓ (\boldsymbol{k} % $-1)$ hyperedges has a cycle of length $\leq \ell \log_2 n$. there are $O(\frac{m}{e \log n})$ ℓ $\log_2 n$) hyperedge-disjoint cycles of length $\leq \ell \log_2 n$.

[Feige,Kim,Ofek'06]:

True for *random* k-uniform hypergraphs via a "2nd moment method" argument.

Non-trivial weak refutation for random k-XOR.

"non-trivial weak refutation of k -XOR" \rightarrow weak refutation of k-SAT.

Feige's Conjecture: A brief history

An extremal conjecture about girth of hypergraphs.

Feige's Conjecture (2008):

Every hypergraph with $m \geq n \cdot \left(\frac{n}{e}\right)$ ℓ ($\frac{\pi}{2}$ – 1) hyperedges has a cycle of length $\leq \ell \log_2 n$.

[Feige,Kim,Ofek'06]:

True for *random* k-uniform hypergraphs via a "2nd moment method" argument.

 \boldsymbol{k}

[Naor-Verstraete'08],[Feige'08]:

True for all hypergraphs for $\ell = O(1)$ up to a log log *n* factor slack in *m*.

[Alon,Feige'09]: A suboptimal trade-off for k=3: $m \sim \frac{n^2}{\rho}$ $\frac{l}{\ell}$ for $\ell \log_2 n$ length cycles.

[Feige,Wagner'16]: A combinatorial approach via sub-hypergraphs of bounded min-degree.

Feige's Conjecture: Our Result

An extremal conjecture about girth of hypergraphs.

Feige's Conjecture (2008):

Every hypergraph with $m \geq n \cdot \left(\frac{n}{e}\right)$ ℓ (\boldsymbol{k} $\frac{\pi}{2}$ – 1) hyperedges has a cycle of length $\leq \ell \log_2 n$.

Theorem [Guruswami, K, Manohar'21]

Feige's conjecture is true **for all k and** ℓ up to a $\log^{2k} n$ factor slack in m

"Spectral double counting" : a conceptually simple connection between hypergraph cycles and *sub-exp size spectral refutations* **below** spectral threshold.

Time for some actual math!

"You've got to look at the *Kikuchi* matrices if you want to prove something about CSPs…or hypergraphs…or tensors…"

Tightly refuting *random* **4-XOR**

Let's start with the case of $\ell = O(1)$.

Over $x \in {\pm 1}^n$, 4-XOR constraints are of the form: $\{x_1x_2x_3x_4 = \pm 1, ...\}$

Instance: A 4-uniform hypergraph $\mathcal H$ and a set of "RHS" b_c for each $c \in \mathcal H$.

$$
\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_{C_1} x_{C_2} x_{C_3} x_{C_4} = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C
$$

... is a deg 4 polynomial that computes "advantage over $\frac{1}{2}$ " of assignment x.

Goal: Certify that $\phi(x) \leq \epsilon$ for all $x \in \{\pm 1\}^n$.

Tightly refuting *random* **4-XOR** ! $\frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \leq \epsilon$ for all $x \in \{\pm 1\}^n$ **Goal:** Certify that $\phi(x)$ = **Idea:** write $\phi(x)$ as the quadratic form of some matrix! [Goerdt, Krivilevich'01...] $\{k, \ell\}$ $\sqrt{2}$

$$
A = \{i, j\} - b_{\{i, j, k, \ell\}} \qquad \text{Then, } \phi(x) = \frac{1}{6} (x^{\odot 2})^{\top} A (x^{\odot 2}).
$$

$$
\leq \frac{1}{6} ||(x^{\odot 2})||_2^2 ||A||_2.
$$

Analysis: Succeeds in refuting if $m \geq ~ n^2$. Matrix Chernoff, trace method,...all work easily to bound ||A (

Tightly refuting *random* **4-XOR**

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \leq \epsilon$ for all $x \in {\pm 1}^n$ Full trade-off for 4-XOR? $n^{O(\ell)}$ time vs $m \sim$ n^2 $\frac{\epsilon}{\ell}$ constraints.

[RRS'16] use a "symmetrized tensor power matrix" who quad. form is $\phi(x)^{2\ell}$

Issue: Fairly technical application of the trace method Crucially uses randomness of ℋ.

Two recent papers *LAhn'19, Wein-Alaoui-Moore'19*] succeed in simplifying for *even k*.

[Wein-Alaoui-Moore'19] Introduce *Kikuchi* **matrix** and significantly simplify **evenarity random** k-XOR refutation. This is our starting point!

! **Tightly refuting** *random* **4-XOR**

Goal: Certainly that
$$
\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \leq \epsilon
$$
 for all $x \in \{\pm 1\}^n$

Idea: write $\phi(x)$ as the quadratic form of a $\binom{n}{\ell} \times \binom{n}{\ell}$ matrix.

Goal: Certify that $\phi(x)$ = ! $\frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \leq \epsilon$ for all $x \in \{\pm 1\}^n$ **Idea:** write $\phi(x)$ as the quadratic form of a $\binom{n}{\ell} \times \binom{n}{\ell}$ matrix. $\overline{\mathcal{S}}$ \overline{T} Then, $\phi(x) = \frac{1}{b}$ D_{ℓ} $\big(\chi^{\bigodot \ell} \big)^{\mathsf{T}} A \big(\chi^{\bigodot \ell}$ $\leq \frac{1}{R}$ D_{ℓ} $\binom{n}{\ell}$ ||A||₂ . $A_C =$ **Tightly refuting** *random* **4-XOR** b_C if $S \Delta T = C$ 0 otherwise $A = \sum A_C$ \overline{CCH} $\lceil n \rceil$ $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

Analysis: How can we bound (?

Tightly refuting *random* **4-XOR**

Analysis: Apply matrix Chernoff inequality.

Succeeds in refuting if $m \geq ∼$ n^2 $\frac{\epsilon}{\ell}$.

Small Cycles via *Spectral Double Counting*

Whp, random 4-uniform $\mathcal H$ with ~ $\frac{n^2}{\rho}$ **Prop:** Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle.

Proof Idea:

If not, our refutation algo (with same ℓ) from previous slide works for *arbitrary* **RHS** b_c **s.** Since there are satisfiable k-XOR instances ($b_c = 1 \forall C$), contradiction.

Key Step:

If there are no cycles of length $\sim \ell \log_2 n$, then regardless of $b_c s$, can prove an **upper bound on** $||A||_2$ that matches the one when b_c are indep. random.

fixed, deterministic matrix.

Small Cycles via *Spectral Double Counting*

Whp, random 4-uniform $\mathcal H$ with ~ $\frac{n^2}{\rho}$ **Prop:** Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle. **Key Step:**

If there are no cycles of length $\sim \ell \log_2 n$, then regardless of $b_c s$, can prove an **upper bound on** $||A||_2$ that matches the one when b_c are indep. random.

> $\left. A\right\vert \right\vert _{2}\sim Tr\bigl(A^{2r}% \overline{B}_{r}^{(1)}\bigr),\qquad \left\vert \left(A^{r}\right\vert ^{2}\bigr) \right\vert ^{2}$ $\mathbf{1}$ **Trace Method:** $||A||_2 \sim Tr(A^{2r})^{\overline{2r}}$ for $r \sim \log(\frac{n}{\ell}) \sim \ell \log_2 n$.

$$
Tr(A^{2r}) = \sum_{(S_1, S_2, \dots, S_{2r})} A(S_1, S_2) A(S_2, S_3) \cdots A(S_{2r}, S_1)
$$

"2r-length walk" on "vertices" of the "Kikuchi Graph"

Small Cycles via *Spectral Double Counting*

Whp, random 4-uniform $\mathcal H$ with ~ $\frac{n^2}{\rho}$ **Prop:** Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle. **Trace Method:** $||A||_2 \sim Tr(A^{2r})^{\overline{2r}}$ for $r \sim \log(\frac{n}{\ell}) \sim \ell \log_2 n$. $\mathbf{1}$

$$
Tr(A^{2r}) = \sum_{(S_1, S_2, ..., S_{2r})} A(S_1, S_2) A(S_2, S_3) \cdots A(S_{2r}, S_1)
$$

Recall: $A(S_1, S_2) = b_C$ if $S_1 \Delta S_2 = C \Leftrightarrow S_1 \oplus S_2 = C$ for some $C \in \mathcal{H}$.

Each term contributes $a + 1$ or 0. So RHS is the number of contributing walks.

When $b_c s$ are independent ± 1 , only "even returning walks" contribute. **Returning Walk**: walk that uses the same "edge" (i.e., (T, U)) an even # of times.

Observation: If *H* has no cycle of length ~ $log(\binom{n}{\ell})$, exact same set of walks contribute regardless of b_c s.

Whp, random 4-uniform $\mathcal H$ with ~ $\frac{n^2}{\rho}$ **Prop:** Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle. **Small Cycles via** *Spectral Double Counting* $Tr(A^{2r}) = \sum_{(S_1,S_2,...,S_{2r})} A(S_1,S_2) A(S_2,S_3) \cdots A(S_{2r},S_1)$ **Recall:** $A(S_1, S_2) = b_C$ if $S_1 \Delta S_2 = C \Leftrightarrow S_1 \oplus S_2 = C$ for some $C \in \mathcal{H}$. **Observation:** If *H* has no cycle of length ~ $log(\frac{n}{\ell})$, only *even returning walks* contribute.

Proof: Any contributing term $(S_1, S_2, ..., S_{2r})$ corresponds to $S_1, C_1, C_2, ..., C_{2r}$.

Whp, random 4-uniform $\mathcal H$ with ~ $\frac{n^2}{\rho}$ **Prop:** Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle. **Small Cycles via** *Spectral Double Counting* $Tr(A^{2r}) = \sum_{(S_1,S_2,...,S_{2r})} A(S_1,S_2) A(S_2,S_3) \cdots A(S_{2r},S_1)$

Recall: $A(S_1, S_2) = b_C$ if $S_1 \Delta S_2 = C \Leftrightarrow S_1 \oplus S_2 = C$ for some $C \in \mathcal{H}$. **Observation:** If *H* has no cycle of length ~ $log(\frac{n}{\ell})$, only *even returning walks* contribute.

Proof: Any contributing term $(S_1, S_2, ..., S_{2r})$ corresponds to $S_1, C_1, C_2, ..., C_{2r}$.

$\mathcal{C}_1 \oplus \mathcal{C}_2 \cdots \oplus \mathcal{C}_{2r} = 0$

If all C_i s are distinct, must be a cycle of length $2r$ in H . So, can happen only if each C_i occurs an even number of times. ⇔ the corresponding walk is **even returning**.

What about *semi-random* **instances?**

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \leq \epsilon$ for all $x \in {\pm 1}^n$

H arbitrary (worst-case), b_c s indep. random.

Spectral norm of A is too large and cannot work.

Obs: "Offending" quadratic forms are on *sparse* vectors. While we only care about "flat" vectors.

"Row bucketing" allows bounding flat quadratic forms of semirandom matrices. **[Abascal,Guruswami,K'20]**

What about *odd-arity* **instances?**

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \leq \epsilon$ for all $x \in {\pm 1}^n$

H arbitrary (worst-case), b_c indep. random.

Define an appropriate Kikuchi matrix. Spectral norm of A is too large and cannot work *even for random 3-XOR!*.

Idea: "Row Pruning" – removing some appropriate rows enough for random case. More generally, works for hypergraphs with *small spread.*

Hypergraph Regularity Decomposition:

Decompose a k-uniform hypergraph into k'-uniform hypergraphs for $k' \leq k$ + "error" such that each non-error piece has *small spread.*

This work:

If you randomly perturb each literal independently with small prob, the k-SAT instance becomes **as easy as random** with same # of constraints.

For both algorithms, and FKO style certificates.

Main take-away: Kikuchi matrices are beautiful and can solve all life's problems.

