Algorithms and Certificates for Refuting CSPs "smoothed is no harder than random"

Pravesh Kothari

Venkat Guruswami CMU

Peter Manohar CMU

Refuting CSPs

Refutation Algorithm:

Input: An instance ϕ of k-SAT with **m** clauses on **n** variables.

Output: A value $v \in [0, 1]$.

Correctness: $val(\phi) \le v$. " $val(\phi) = \max$ frac of constraints satisfiable"

The algorithm *weakly refutes* a formula ϕ if v < 1. *strongly refutes* if $v < 1 - \delta$ $\delta > 0$, abs. const.

Goal: refute largest possible family of instances ϕ : $val(\phi) < 0.99$.

refutation = *certificate* that $val(\phi) \le v$

A Tale of Two Worlds

A Tale of Two Worlds

A Tale of Two Worlds

How does the complexity of k-sat interpolate between the two worlds?

Is worst-case world pessimistic? Are random instances idealistic?

Do algorithms/certificates generalize beyond random?

Does the randomness of the clause structure matter?

Smoothed CSPs

Smoothed CSPs [Feige'07]

- **1:** Generate worst-case instance ϕ of k-SAT.
- **2:** Negate each literal with prob 0.01 independently to produce ϕ_s .

Fact: $val(\phi_s) \leq 1 - 2^{-ck}$ whp.

- clause structure (i.e., instance hypergraph) is worst-case.
- only randomness in literals: via small random perturbation.

This Work: Algorithms

This Work: Algorithms

This Work: Certificates

Feige's Conjecture

An extremal conjecture about girth of hypergraphs.

Question: What's the maximum girth of a graph on n vertices and $\frac{nd}{2}$ edges? for d=2: clearly, n (e.g., n-cycle). for d>2: $\leq 2 \log_{d-1} n+2$ [Alon,Hoory,Linial'02] "Moore Bound" sharp up to the factor 2 (e.g., some Ramanujan graphs)

Feige's Conjecture

An extremal conjecture about girth of hypergraphs.

Moore bound: max girth of a graph on n vertices and $\frac{nd}{2}$ edges is ~ $2 \log_{d-1} n$ What about 3 (and more generally, k)-uniform hypergraphs?

A cycle is a subgraph that touches every vertex an even # of times.

Hypergraph Cycles (Even Covers)

A hypergraph cycle = set of hyperedges touching each vertex an. even # of times.

= size of a smallest *linearly-dependent subset* of *k-sparse* linear equations mod 2.

Feige's Conjecture

An extremal conjecture about girth of hypergraphs.

Moore bound: max girth of a graph on n vertices and $\frac{nd}{2}$ edges is ~ $2 \log_{d-1} n$ Hypergraph Cycles (a.k.a. even covers)

A hypergraph cycle = set of hyperedges touching each vertex an. even # of times.

Feige's Conjecture (2008):

Every hypergraph with $m \sim n \cdot \left(\frac{n}{\ell}\right)^{\left(\frac{\kappa}{2}-1\right)}$ hyperedges has a cycle of length $\leq \ell \log_2 n$.

= raterd/stangetrendehyffengnalphearither des with balumryklesparkengahity-ellogkmatrices.

Random hypergraphs known to achieve it (up to log factor slack in m).

Feige's Conjecture: A brief history

An extremal conjecture about girth of hypergraphs.

Feige's Conjecture (2008):

Every hypergraph with $m \ge n \cdot \left(\frac{n}{\ell}\right)^{\binom{k}{2}-1}$ hyperedges has a cycle of length $\le \ell \log_2 n$. there are $O\left(\frac{m}{\ell \log_2 n}\right)$ hyperedge-disjoint cycles of length $\le \ell \log_2 n$.

[Feige,Kim,Ofek'06]:

True for *random* k-uniform hypergraphs via a "2nd moment method" argument.

Non-trivial weak refutation for random k-XOR.

"non-trivial weak refutation of k-XOR" \rightarrow weak refutation of k-SAT.

Feige's Conjecture: A brief history

An extremal conjecture about girth of hypergraphs.

Feige's Conjecture (2008): Every hypergraph with $m \ge n \cdot \left(\frac{n}{\ell}\right)^{\binom{k}{2}-1}$ hyperedges has a cycle of length $\le \ell \log_2 n$.

[Feige,Kim,Ofek'06]:

True for *random* k-uniform hypergraphs via a "2nd moment method" argument.

[Naor-Verstraete'08], [Feige'08]:

True for all hypergraphs for $\ell = O(1)$ up to a $\log \log n$ factor slack in m.

[Alon,Feige'09]: A suboptimal trade-off for k=3: $m \sim \frac{n^2}{\ell}$ for $\ell \log_2 n$ length cycles.

[Feige,Wagner'16]: A combinatorial approach via sub-hypergraphs of bounded min-degree.

Feige's Conjecture: Our Result

An extremal conjecture about girth of hypergraphs.

Feige's Conjecture (2008): Every hypergraph with $m \ge n \cdot \left(\frac{n}{\ell}\right)^{\binom{k}{2}-1}$ hyperedges has a cycle of length $\le \ell \log_2 n$.

Theorem [Guruswami, K, Manohar'21]

Feige's conjecture is true for all k and ℓ up to a $\log^{2k} n$ factor slack in m

"Spectral double counting": a conceptually simple connection between hypergraph cycles and sub-exp size spectral refutations below spectral threshold.

Time for some actual math!

"You've got to look at the *Kikuchi* matrices if you want to prove something about CSPs...or hypergraphs...or tensors..."

Let's start with the case of $\ell = O(1)$.

Over $x \in \{\pm 1\}^n$, 4-XOR constraints are of the form: $\{x_1x_2x_3x_4 = \pm 1, ...\}$

Instance: A 4-uniform hypergraph \mathcal{H} and a set of "RHS" b_C for each $C \in \mathcal{H}$.

$$\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_{C_1} x_{C_2} x_{C_3} x_{C_4} = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C$$

... is a deg 4 polynomial that computes "advantage over $\frac{1}{2}$ " of assignment x.

Goal: Certify that $\phi(x) \leq \epsilon$ for all $x \in \{\pm 1\}^n$

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$

Idea: write $\phi(x)$ as the quadratic form of some matrix! [Goerdt, Krivilevich'01...] $\{k, \ell\}$ $A = \{i, j\} - b_{\{i, j, k, \ell\}}$ Then, $\phi(x) = \frac{1}{6} (x^{\odot 2})^{\mathsf{T}} A(x^{\odot 2}).$ $\leq \frac{1}{6} ||(x^{\odot 2})||_{2}^{2} ||A||_{2}.$

Analysis: Succeeds in refuting if $m \ge \sim n^2$. Matrix Chernoff, trace method,...all work easily to bound $||A||_2$

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$ Full trade-off for 4-XOR? $n^{O(\ell)}$ time vs $m \sim \frac{n^2}{\ell}$ constraints.

[RRS'16] use a "symmetrized tensor power matrix" who quad. form is $\phi(x)^{2\ell}$

Issue: Fairly technical application of the trace method Crucially uses randomness of \mathcal{H} .

Two recent papers [Ahn'19,Wein-Alaoui-Moore'19] succeed in simplifying for even k.

[Wein-Alaoui-Moore'19] Introduce *Kikuchi* matrix and significantly simplify evenarity random k-XOR refutation. This is our starting point!

Idea: write $\phi(x)$ as the quadratic form of a $\binom{n}{\ell} \times \binom{n}{\ell}$ matrix.

Tightly refuting *random* 4-XOR **Goal:** Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$ **Idea:** write $\phi(x)$ as the quadratic form of a $\binom{n}{\rho} \times \binom{n}{\rho}$ matrix. b_C if $S\Delta T = C$ **0** otherwise $A = \sum A_C$ $\overline{C \in \mathcal{H}}$ Then, $\phi(x) = \frac{1}{D_{\ell}} (x^{\odot \ell})^{\mathsf{T}} \mathsf{A}(x^{\odot \ell})$ $\leq \frac{1}{D_{\ell}} {n \choose \ell} ||\mathsf{A}||_2.$

Analysis: How can we bound
$$||A||_2$$
?

Analysis: Apply matrix Chernoff inequality.

Succeeds in refuting if $m \ge \sim \frac{n^2}{\ell}$.

Small Cycles via Spectral Double Counting

Prop: Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle.

Proof Idea:

If not, our refutation algo (with same ℓ) from previous slide works for *arbitrary* **RHS** b_C s. Since there are satisfiable k-XOR instances ($b_C = 1 \forall C$), contradiction.

Key Step:

If there are no cycles of length $\sim l \log_2 n$, then regardless of $b_C s$, can prove an **upper bound on** $||A||_2$ that matches the one when $b_C s$ are indep. random.

fixed, deterministic matrix.

Small Cycles via Spectral Double Counting

Prop: Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle. **Key Step:**

If there are no cycles of length $\sim l \log_2 n$, then regardless of $b_C s$, can prove an **upper bound on** $||A||_2$ that matches the one when $b_C s$ are indep. random.

Trace Method: $||A||_2 \sim Tr(A^{2r})^{\frac{1}{2r}}$ for $r \sim \log\binom{n}{\ell} \sim \ell \log_2 n$.

$$Tr(A^{2r}) = \sum_{(S_1, S_2, \dots, S_{2r})} A(S_1, S_2) A(S_2, S_3) \cdots A(S_{2r}, S_1)$$

"2r-length walk" on "vertices" of the "Kikuchi Graph"

Small Cycles via Spectral Double Counting

Prop: Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle. **Trace Method:** $||A||_2 \sim Tr(A^{2r})^{\frac{1}{2r}}$ for $r \sim \log\binom{n}{\ell} \sim \ell \log_2 n$.

$$Tr(A^{2r}) = \sum_{(S_1, S_2, \dots, S_{2r})} A(S_1, S_2) A(S_2, S_3) \cdots A(S_{2r}, S_1)$$

Recall: $A(S_1, S_2) = b_C$ if $S_1 \Delta S_2 = C \Leftrightarrow S_1 \bigoplus S_2 = C$ for some $C \in \mathcal{H}$.

Each term contributes a + 1 or 0. So RHS is the number of contributing walks. When $b_C s$ are independent ± 1 , only "even returning walks" contribute. **Returning Walk**: walk that uses the same "edge" (i.e., (T, U)) an even # of times.

Observation: If \mathcal{H} has no cycle of length $\sim \log\binom{n}{\ell}$, exact same set of walks contribute regardless of $b_C s$.

Small Cycles via Spectral Double Counting Prop: Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle. $Tr(A^{2r}) = \sum_{(S_1, S_2, \dots, S_{2r})} A(S_1, S_2) A(S_2, S_3) \cdots A(S_{2r}, S_1)$ Recall: $A(S_1, S_2) = b_C$ if $S_1 \Delta S_2 = C \Leftrightarrow S_1 \bigoplus S_2 = C$ for some $C \in \mathcal{H}$.

Observation: If \mathcal{H} has no cycle of length $\sim \log\binom{n}{\ell}$, only *even returning walks* contribute.

Proof: Any contributing term $(S_1, S_2, ..., S_{2r})$ corresponds to $S_1, C_1, C_2, ..., C_{2r}$.

$S_1 \oplus S_2 = C_1$	Add both sides modulo 2,
$S_2 \oplus S_3 = C_2$	$C_1 \oplus C_2 \cdots \oplus C_{2r} = 0$
$S_{2r} \oplus S_1 = C_{2r}$	

Small Cycles via Spectral Double CountingProp: Whp, random 4-uniform \mathcal{H} with $\sim \frac{n^2}{\ell}$ hyperedges has a $\sim \ell \log_2 n$ length cycle. $Tr(A^{2r}) = \sum_{(S_1, S_2, \dots, S_{2r})} A(S_1, S_2) A(S_2, S_3) \cdots A(S_{2r}, S_1)$

Recall: $A(S_1, S_2) = b_C$ if $S_1 \Delta S_2 = C \Leftrightarrow S_1 \bigoplus S_2 = C$ for some $C \in \mathcal{H}$. **Observation:** If \mathcal{H} has no cycle of length $\sim \log\binom{n}{\ell}$, only *even returning walks* contribute.

Proof: Any contributing term $(S_1, S_2, \dots, S_{2r})$ corresponds to $S_1, C_1, C_2, \dots, C_{2r}$.

$C_1 \oplus C_2 \cdots \oplus C_{2r} = 0$

If all C_i s are distinct, must be a cycle of length 2r in \mathcal{H} . So, can happen only if each C_i occurs an even number of times. \Leftrightarrow the corresponding walk is **even returning**. What about *semi-random* instances?

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$

 \mathcal{H} arbitrary (worst-case), b_C s indep. random.

Spectral norm of A is too large and cannot work.

Obs: "Offending" quadratic forms are on *sparse* vectors. While we only care about "flat" vectors.

"Row bucketing" allows bounding flat quadratic forms of semirandom matrices. [Abascal,Guruswami,K'20]

What about odd-arity instances?

Goal: Certify that $\phi(x) = \frac{1}{m} \sum_{C \in \mathcal{H}} b_C x_C \le \epsilon$ for all $x \in \{\pm 1\}^n$

 \mathcal{H} arbitrary (worst-case), b_C s indep. random.

Define an appropriate Kikuchi matrix. Spectral norm of A is too large and cannot work *even for random 3-XOR!*.

Idea: "Row Pruning" – removing some appropriate rows enough for random case. More generally, works for hypergraphs with *small spread*.

Hypergraph Regularity Decomposition:

Decompose a k-uniform hypergraph into k'-uniform hypergraphs for $k' \leq k +$ "error" such that each non-error piece has *small spread*.

This work:

If you randomly perturb each literal independently with small prob, the k-SAT instance becomes **as easy as random** with same # of constraints.

For both algorithms, and FKO style certificates.

Main take-away: Kikuchi matrices are beautiful and can solve all life's problems.

