Signal Recovery with Generative Priors

Paul Hand

Northeastern University

Funding: National Science Foundation Collaborators: V. Voroninski, O. Leong, W. Huang, R. Heckel, A. Ahmed, M. Asim, J. Cocola, M. Daniels

Examples of inverse problem Examples of inverse problems

$\Phi(x_0)$

Sparsity can be sometimes be optimized via a convex relaxation

$\min_{x \in \mathbb{R}^n} ||x||_0$ s.t. $\Phi(x) = \Phi(x_0)$

 $\min_{x \in \mathbb{R}^n} ||x||_1$ Relaxation s.t. $\Phi(x) = \Phi(x_0)$

min k*x*k¹ s.t. *Ax* = *Ax*⁰

Recovery guarantee for sparse signals Recovery Guarantee for Sparse Signals

Fix *k*-sparse vector $x_0 \in \mathbb{R}^n$. Let $A \in \mathbb{R}^{m \times n}$ be a random gaussian matrix with $m = \Omega(k \log n)$.

(L1)

Theorem (Candes, Romberg, Tao. 2004. Donoho, 2004.) *The global minimizer of (L1) is x*⁰ *with high probability.*

$$
\frac{\|x\|_1}{Ax} = Ax_0
$$

reity appeare to fail in Compressive Phase Retrieva Sparsity appears to fail in Compressive Phase Retrieval

Open problem: there is no known efficient algorithm to recover *s*-sparse x_0 from $O(s)$ generic measurements

Theorem (Li and Voroninski, 2012) minimizes Sparse PhaseLift, $m = \Omega(s^2/\log^2 n)$.

$$
\|X\|_1
$$

 $\int_{i}^{k} (x_0 x_0^*) a_i, \quad i = 1 \dots m$

If $x_0 \in \mathbb{R}^n$ is *s*-sparse with constant-magnitude coefficients, and $a_i \sim \mathcal{N}(0,I)$, then with high probability: If $\exists \lambda \in \mathbb{R}$ such that $x_0 x_0^*$

With generic measurements, Sparse With generic measurements, Sparse PhaseLift gives suboptimal sample complexity

 $\min \quad \lambda \operatorname{tr}(X) + \|$ s.t. $a_i^* X a_i = a_i^* (x_0 x_0^*)$ $X \succ 0$

Deep Generative Models

In Given samples in \mathbb{R}^n **from distribution** π_0 **, learn** π_0 **.** $I \cap M$ Model π_0 as $G(Z)$, where $Z \sim \mathcal{N}(0, I_{k \times k})$ and $G : \mathbb{R}^k \to \mathbb{R}^n$.

Visualization of a generative model and its latent space

Dinh et al., 2017

Inference $x \sim \hat{p}_X$ $z = f(x)$

Generation $z \sim p_Z$

$$
x = f^{-1}(z)
$$

1. Train generative model to output signal class:

How are generative models used in inverse problems? How are generative models used in inverse problems?

2. Directly optimize over range of generative model via empirical risk:

$$
\Phi(G(z)) - \Phi(x_0)\Big\|^2
$$

$$
AG(z)-Ax_0\Big\|^2
$$

Compressed Sensing with Gen Compressed Sensing with Generative Models

Bora, Jalal, Price, Dimakis

12

Our formulation: Deep Phase Retrieval Our formulation: Phase Retrieval with Generative Models

$$
\left\| |AG(z)| - |Ax_0| \right\|^2
$$

with a low-differential go Geometric picture of signal recovery with a low-dimensional generative prior

Random generative priors allow rigorous recovery guarantees

- Let: $G: \mathbb{R}^k \to \mathbb{R}^n$ $G(z) =$ relu(W_d ... relu($W₂$ relu($W₁$ *z*))...) $\textsf{Given: } W_i \in \mathbb{R}^{n_i \times n_{i-1}}, A \in \mathbb{R}^{m \times n}, y := AG(z_0) \in \mathbb{R}^m$ Find: x_0
- **Expansivity**: Let $n_i > cn_{i-1}$ log n_{i-1}
- **E** Gaussianicity: Let *W_i* and *A* have iid Gaussian entries.
- \triangleright **Biasless:** No bias terms in \mathcal{G} .

14

- 2. network layers are sufficiently expansive
- 3. A and weights of G have i.i.d. Gaussian entries

Theorem (Hand, Leong, Voroninski)

Jompressive phase retrieval from generic measurements s possible at optimal sa Compressive phase retrieval from generic measurements is possible at optimal sample complexity

1. $\#$ measurements $= \Omega(k)$, up to log factors

The objective function has a strict descent direction in latent space outside of two small neighborhoods of the minimizer and a negative multiple thereof, with high probability.

Proof requires concentration of discontinuous matrixvalued random functions Proof Requires Concentration of Discontinuous Matrix-Valued Random ooi requ

Lemma: Fix ϵ . Let $W \in \mathbb{R}^{n \times k}$ have i.i.d. $\mathcal{N}(0, 1/n)$ entries. If $n > ck \log k$, then with probability at least $1 - 8ne^{-\gamma k}$, we have for all $x,y \neq 0 \in \mathbb{R}^k$,

$$
\left\|\frac{1}{n}\sum_{i=1}^n 1_{w_i\cdot x>0}1_{w_i\cdot y>0}\cdot w_iw_i^T - \mathbb{E}[\cdots]\right\| \leq \epsilon
$$

The constants depend polynomially on ϵ .

Compressive Phrase Retrieval on MNIST

Fienup (200 m)

Gerchberg Saxton (200 m)

Wirtinger Flow (200 m)

X.

SPARTA (200 m)

Deep phase retrieval can outperform sparse phase retrieval in the low measurement regime

Is there a catch?

GANs can have significant representation error

GANs can have very poor performance far off distribution

Signal Recovery Under Generative Priors

- Generative priors can be optimally exploited for some nonlinear problems
- Generative priors could provide tighter representations of natural images
- Low dim. nonconvex optimization replaces high dim. convex optimization
- Generative priors may outperform sparsity priors for a variety of problems

References

Deep Compressive Sensing

- Bora et al. 2017 *ICML*
- Hand and Voroninski 2019 *IEEE Trans IT*
- Huang et al. 2021 *J. Fourier Anal. App.*

Other Inverse Problems

- Denoising: Heckel et al. 2020 - *Information and Inference*
- Phase Retrieval: Hand, Leong, and Voroninski 2018 - *NeurIPS*
- Spiked Matrix Recovery: Aubin et al. 2020 - *IEEE Trans IT* Cocola et al. 2020 - *NeurIPS, Entropy*
- Blind Demodulation: Hand and Joshi 2018 - *NeurIPS*

Generalization of Assumptions

- Convolutional Generators Ma, Ayaz, and Karaman 2018 - *NeurIPS*
- **Better Expansivity Condition** Daskalakis et al. 2020 - *NeurIPS*

Normalizing Flow Priors

• Asim et al. 2020 - *ICML*

Review Articles

- Lucas et al. 2018 *IEEE Sig. Proc. Mag.*
- Ongie et al. 2020 *IEEE JSAIT*

Workshops

• 2019, 2020, 2021 NeurIPS Workshops