Signal Recovery with Generative Priors

Paul Hand

Northeastern University

Collaborators: V. Voroninski, O. Leong, W. Huang, R. Heckel, A. Ahmed, M. Asim, J. Cocola, M. Daniels

Funding: National Science Foundation

Examples of inverse problems

Sparsity can be sometimes be optimized via a convex relaxation

$$\min_{x \in \mathbb{R}^n} \|x\|_0$$

$$\text{Relaxation} \qquad \min_{x \in \mathbb{R}^n} \|x\|_1$$

$$\text{s.t. } \Phi(x) = \Phi(x_0)$$

$$\text{s.t. } \Phi(x) = \Phi(x_0)$$

Recovery Guarantee for Sparse Signals

Fix k-sparse vector $x_0 \in \mathbb{R}^n$.

Let $A \in \mathbb{R}^{m \times n}$ be a random gaussian matrix with $m = \Omega(k \log n)$.

$$\begin{array}{ll}
\min & ||x||_1 \\
\text{s.t.} & Ax = Ax_0
\end{array} \tag{L1}$$

Theorem (Candes, Romberg, Tao. 2004. Donoho, 2004.)

The global minimizer of (L1) is x_0 with high probability.

Sparsity appears to fail in Compressive Phase Retrieval

$$\begin{bmatrix} A & x_0 & b \\ m \times n & \end{bmatrix} \begin{bmatrix} x_0 & b \\ -x & x_0 \end{bmatrix} = \begin{bmatrix} b \\ -x & x_0 \end{bmatrix}$$
 m non-linear measurements

Open problem: there is no known efficient algorithm to recover s-sparse x_0 from O(s) generic measurements

With generic measurements, Sparse PhaseLift gives suboptimal sample complexity

$$\min \quad \lambda \operatorname{tr}(X) + \|X\|_1$$
 s.t.
$$a_i^* X a_i = a_i^* (x_0 x_0^*) a_i, \quad i = 1 \dots m$$

$$X \succeq 0$$

Theorem (Li and Voroninski, 2012)

If $x_0 \in \mathbb{R}^n$ is s-sparse with constant-magnitude coefficients, and $a_i \sim \mathcal{N}(0,I)$, then with high probability: If $\exists \lambda \in \mathbb{R}$ such that $x_0x_0^*$ minimizes Sparse PhaseLift, $m = \Omega(s^2/\log^2 n)$.

Deep Generative Models

- ▶ Given samples in \mathbb{R}^n from distribution π_0 , learn π_0 .
- ▶ Model π_0 as G(Z), where $Z \sim \mathcal{N}(0, I_{k \times k})$ and $G: \mathbb{R}^k \to \mathbb{R}^n$.

Visualization of a generative model and its latent space

Dinh et al., 2017

Generation

 $z \sim p_Z$

Inference

 $x \sim \hat{p}_X$

 $z = f\left(x\right)$

How are generative models used in inverse problems?

1. Train generative model to output signal class:

2. Directly optimize over range of generative model via empirical risk:

$$\min_{z\in\mathbb{R}^k}\left\|\Phi(G(z))-\Phi(x_0)\right\|^2$$

Compressed Sensing with Generative Models

$$\min_{z\in\mathbb{R}^k} \left\| AG(z) - Ax_0 \right\|^2$$

Our formulation: Phase Retrieval with Generative Models

$$\min_{z \in \mathbb{R}^k} \left\| |AG(z)| - |Ax_0| \right\|^2$$

Geometric picture of signal recovery with a low-dimensional generative prior

Random generative priors allow rigorous recovery guarantees

```
Let: \mathcal{G}: \mathbb{R}^k \to \mathbb{R}^n

\mathcal{G}(z) = \text{relu}(W_d \dots \text{relu}(W_2 \text{relu}(W_1 z)) \dots)

Given: W_i \in \mathbb{R}^{n_i \times n_{i-1}}, A \in \mathbb{R}^{m \times n}, y := A\mathcal{G}(z_0) \in \mathbb{R}^m

Find: x_0
```

- **Expansivity**: Let $n_i > cn_{i-1} \log n_{i-1}$
- ► Gaussianicity: Let *W_i* and *A* have iid Gaussian entries.
- \triangleright Biasless: No bias terms in \mathcal{G} .

Compressive phase retrieval from generic measurements is possible at optimal sample complexity

- 1. # measurements $= \Omega(k)$, up to log factors
- 2. network layers are sufficiently expansive
- 3. A and weights of G have i.i.d. Gaussian entries

Theorem (Hand, Leong, Voroninski)

The objective function has a strict descent direction in latent space outside of two small neighborhoods of the minimizer and a negative multiple thereof, with high probability.

Proof requires concentration of discontinuous matrixvalued random functions

Lemma: Fix ϵ . Let $W \in \mathbb{R}^{n \times k}$ have i.i.d. $\mathcal{N}(0, 1/n)$ entries. If $n > ck \log k$, then with probability at least $1 - 8ne^{-\gamma k}$, we have for all $x, y \neq 0 \in \mathbb{R}^k$,

$$\left\| \frac{1}{n} \sum_{i=1}^{n} 1_{w_i \cdot x > 0} 1_{w_i \cdot y > 0} \cdot w_i w_i^T - \mathbb{E}[\cdots] \right\| \le \epsilon$$

The constants depend polynomially on ϵ .

Compressive Phrase Retrieval on MNIST

Deep phase retrieval can outperform sparse phase retrieval in the low measurement regime

Is there a catch?

GANs can have significant representation error

GANs can have very poor performance far off distribution

Truth

Signal Recovery Under Generative Priors

- Generative priors can be optimally exploited for some nonlinear problems
- Generative priors could provide tighter representations of natural images
- Low dim. nonconvex optimization replaces high dim. convex optimization
- Generative priors may outperform sparsity priors for a variety of problems

References

Deep Compressive Sensing

- Bora et al. 2017 *ICML*
- Hand and Voroninski 2019 IEEE Trans IT
- Huang et al. 2021 J. Fourier Anal. App.

Other Inverse Problems

- Denoising:
 Heckel et al. 2020 Information and Inference
- Phase Retrieval: Hand, Leong, and Voroninski 2018 - NeurlPS
- Spiked Matrix Recovery:
 Aubin et al. 2020 IEEE Trans IT
 Cocola et al. 2020 NeurIPS, Entropy
- Blind Demodulation:
 Hand and Joshi 2018 NeurlPS

Generalization of Assumptions

- Convolutional Generators
 Ma, Ayaz, and Karaman 2018 NeurlPS
- Better Expansivity Condition
 Daskalakis et al. 2020 NeurlPS

Normalizing Flow Priors

Asim et al. 2020 - ICML

Review Articles

- Lucas et al. 2018 IEEE Sig. Proc. Mag.
- Ongie et al. 2020 IEEE JSAIT

Workshops

2019, 2020, 2021 NeurIPS Workshops