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Setup



Problem formulation 
𝐺(𝑛, 𝑝): Erdős Rényi graphs over 𝑛 nodes

Pr 𝑖, 𝑗 exists = 𝑝 independently

Given 𝐺 ∼ 𝐺(𝑛, 𝑝), estimate 𝑝
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Simple estimators
𝑑!: degree of node 𝑗

Mean estimator: 

𝑝̂ =
𝑑" +⋯+ 𝑑#
𝑛 𝑛 − 1

Median estimator:

𝑝̂ =
Median 𝑑", … , 𝑑#

𝑛 − 1

Lemma. For the mean estimator

|𝑝̂ − 𝑝| = Θ
𝑝 1 − 𝑝
𝑛



Robust estimation under corruptions
An adversary 𝒜:
• Looks at 𝐺
• Picks a set 𝐵 nodes with |𝐵| = 𝛾𝑛
• Changes neighborhood of 𝐵 as it likes
• We observe resulting graph 𝒜 𝐺
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Robust estimation under corruptions
An adversary 𝒜:
• Looks at 𝐺
• Picks a set 𝐵 nodes with |𝐵| = 𝛾𝑛
• Changes neighborhood of 𝐵 as it likes
• We observe resulting graph 𝒜 𝐺

Given 𝒜 𝐺 , estimate 𝑝.
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Robust estimation
Robust statistics:

Donoho, Hampel, Huber, Rousseeuw, Tukey, …

More recently, computationally efficient multivariate estimation

LRV’16, DKKLMS’16, …

Robust estimation of discrete distributions

QV’17, CLM’19, JO’20 

Robust community detection

CL’14

Graph estimation under-differential privacy

BCSZ’18, SU’19



Our Results



Simple estimators with corruptions
For both mean and median estimators:

|𝑝̂ − 𝑝| = Θ 𝛾 +
𝑝 1 − 𝑝
𝑛



Prune-then simple estimators
Prune-then-estimation:

• Remove 𝑐 ⋅ 𝛾 fraction of nodes with largest and smallest degrees

• Output the mean/median of the remaining subgraph

Lemma. For prune-then-median:

|𝑝̂ − 𝑝| = Ω 𝛾 +
𝑝 1 − 𝑝
𝑛

Lemma. For prune-then-mean:

|𝑝̂ − 𝑝| = Ω 𝛾$ +
𝑝 1 − 𝑝
𝑛



Main result: upper bound
Theorem. There exists an algorithm such that

𝑝̂ − 𝑝 = F𝑂
𝑝 1 − 𝑝
𝑛

+
𝛾 𝑝 1 − 𝑝

𝑛
+
𝛾
𝑛

.

It runs in time F𝑂 𝛾𝑛% + 𝑛$.' . 

If 𝑝 ∈ "
#
, 1 − "

#
and 𝛾 > 1/ 𝑛, 

𝑝̂ − 𝑝 = F𝑂
𝛾 𝑝 1 − 𝑝

𝑛

= F𝑂 𝛾 𝑛 ⋅
𝑝 1 − 𝑝
𝑛



Main result: lower bound
Let 𝑝 ∈ "

# , 1 −
"
# and 𝛾 > 1/ 𝑛

𝛿 𝑝, 𝛾, 𝑛 ≔ 0.05 ⋅
𝛾 𝑝 1 − 𝑝

𝑛

There exists 𝒜 such that if 𝐺 ∼ 𝐺 𝑛, 𝑝 , and 𝐺′ ∼ 𝐺 𝑛, 𝑝 + 𝛿 𝑝, 𝛾, 𝑛

𝑑() 𝒜 𝐺 ,𝒜 𝐺* < 0.1.
Furthermore, 𝒜 corrupts a randomly chosen 𝐵.

Upper and lower bounds of up to log factors 
(tight in all terms).



Upper Bounds



Upper bound outline
A two-step algorithm:

• A spectral algorithm to output a coarse estimate 𝑝̂ such that

𝑝̂ − 𝑝 = F𝑂
𝑝 1 − 𝑝

𝑛

• A post-processing step to improve the estimate



Large subsets of uncorrupted nodes are good
𝐴: adjacency matrix of 𝒜 𝐺
For 𝑆 ⊆ 𝑛 , 

𝐴+×+: submatrix of 𝐴 restricted to 𝑆×𝑆
𝑝+: average 𝐴+×+ (density of subgraph of 𝒜 𝐺 induced by 𝑆) 
𝐴 − 𝑝+ +×+: subtracting 𝑝+ from each entry in 𝐴+×+

𝐹 = 𝑛 ∖ 𝐵: set of uncorrupted nodes

Lemma. W.h.p. simultaneously for all 𝐹* ⊂ 𝐹: 𝐹* > 𝑛 1 − 18𝛾 :

1. ∥ 𝐴 − 𝑝-! -!×-! ∥ is small

2. 𝑝-! is a good estimate of 𝑝



Small norm implies good estimate
Let 𝑆 ⊆ 𝑛 be such that 𝑆 > 𝑛(1 − 9𝛾)

Lemma. If ∥ 𝐴 − 𝑝+ +×+ ∥ is small, then 𝑝+ is a coarse estimate of 𝑝.

Proof sketch: 
• 𝑆 ∩ 𝐹 is a large uncorrupted set => 𝑝+∩- is close to 𝑝
• If 𝑝+ is far from 𝑝, then 𝑝+\+∩- is far from 𝑝
• Implies a lower bound on spectral norm

An inefficient coarse estimation: 
• Iterate over all large subsets to minimize the spectral norm above



Making it efficient

Suppose 𝑆 > 𝑛(1 − 9𝛾) and 𝑣 a normalized top eigenvector of 𝐴 − 𝑝+ +×+

Main lemma. If ∥ 𝐴 − 𝑝+ +×+ ∥ is large, then ∥ 𝑣+∩0 ∥$ is at least a constant.

Algorithm: 
• 𝑆 = 𝑛
• While 𝑆 > 𝑛 1 − 9𝛾 :

• Compute top eigenvector 𝑣 of 𝐴 − 𝑝! !×!
• Sample 𝑖 with probability 𝑣#$

• 𝑆 ← 𝑆 ∖ 𝑖



Step 2: pruning
𝑆∗: set returned by coarse algorithm such that

𝑝+∗ − 𝑝 = F𝑂
𝑝 1 − 𝑝

𝑛
Pruning: 
• Remove 3𝛾𝑛 nodes with highest and lowest degrees
• Output the mean 𝑝̂ of the remaining nodes

Theorem.

𝑝̂ − 𝑝 = F𝑂 𝛾
𝑝 1 − 𝑝

𝑛



Lower Bounds



Lower bound
Let 𝑝 ∈ "

# , 1 −
"
# and 𝛾 > 1/ 𝑛

𝛿 𝑝, 𝛾, 𝑛 ≔ 0.05 ⋅
𝛾 𝑝 1 − 𝑝

𝑛

There exists an adversary such that if 𝐺 ∼ 𝐺 𝑛, 𝑝 , and 𝐺′ ∼ 𝐺 𝑛, 𝑝 + 𝛿 𝑝, 𝛾, 𝑛

𝑑() 𝒜 𝐺 ,𝒜 𝐺* < 0.1.



A coupling for lower bound
Done if we can convert 𝐺 ∼ 𝐺 𝑛, 𝑝 to 𝐺′ ∼ 𝐺 𝑛, 𝑝 + 𝛿 𝑝, 𝛾, 𝑛 by changing 𝛾𝑛 nodes. 

• Node degrees of 𝐺 are 𝐵𝑖𝑛 𝑛 − 1, 𝑝
• Node degrees of 𝐺′ are 𝐵𝑖𝑛 𝑛 − 1, 𝑝 + 𝛿 𝑝, 𝛾, 𝑛

𝑑() 𝐵𝑖𝑛 𝑛 − 1, 𝑝 , 𝐵𝑖𝑛 𝑛 − 1, 𝑝 + 𝛿 𝑝, 𝛾, 𝑛 < 𝛾/10

If node degrees of 𝐺 𝑛, 𝑝 are independent: 
• There is a coupling between 𝐺 and 𝐺′ with 𝑛 ⋅ 𝛾/10 node changes in expectation

Unfortunately, node degrees are not independent



Directed graphs to the rescue 
𝐷𝐺 𝑛, 𝑝 : directed ER graphs
• Outgoing node degrees are 𝐵𝑖𝑛 𝑛 − 1, 𝑝
• Degrees are independent 
• 𝛿 𝑝, 𝛾, 𝑛 lower bound holds for estimating 𝑝 for 𝐷𝐺 𝑛, 𝑝 under 𝛾 corruptions 

Lemma. For any 𝛾, parameter estimation for 𝐺 𝑛, 𝑝 is harder than 𝐷𝐺 𝑛, 𝑝



Thank You
Conclusion:
• Robust estimation task for graph problems
• Almost optimal results for ER parameter estimation

Ongoing work:
• Stochastic block models

Other directions:
• Other random graph models


