The Overlap Gap Property in Inference: A Short Survey.

Ilias Zadik (MIT)

Simons workshop

September 13, 2021

 QQ

÷ \sim

4 D F

Computational gaps/trade-offs appear frequently in random environments.

一番

 2990

イロト イ部 トイヨ トイヨト

Computational gaps/trade-offs appear frequently in random environments. Two (rough) main categories for search problems.

イロト イ部 トイヨ トイヨト

一番

 QQ

Computational gaps/trade-offs appear frequently in random environments.

Two (rough) main categories for search problems.

(1) Optimization

OPT = min $_{\beta \in \Sigma}$ H(β).

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Computational gaps/trade-offs appear frequently in random environments.

Two (rough) main categories for search problems.

(1) Optimization

OPT = min $_{\beta \in \Sigma}$ H(β).

e.g. spin glasses, k-SAT, max independent set in random graphs.

- 30

 Ω

Computational gaps/trade-offs appear frequently in random environments.

Two (rough) main categories for search problems.

(1) Optimization

 $OPT = min_{\beta \in \Sigma} H(\beta)$.

e.g. spin glasses, k-SAT, max independent set in random graphs.

Gap: efficient methods achieve $\geq (1 + \alpha) \times \text{OPT}, \alpha > 0$.

- 3

 QQ

Computational gaps/trade-offs appear frequently in random environments.

Two (rough) main categories for search problems.

(1) Optimization

OPT = min $_{\beta \in \mathcal{F}}$ H(β).

e.g. spin glasses, k-SAT, max independent set in random graphs. **Gap:** efficient methods achieve $\geq (1 + \alpha) \times \text{OPT}, \alpha > 0$.

(2) Inference/Estimation

Observe $\mathcal{D} \sim P(\cdot|\beta^*)$, infer β^* (signal-to-noise ratio (SNR) λ).

KED KARD KED KED E VOOR

Computational gaps/trade-offs appear frequently in random environments.

Two (rough) main categories for search problems.

(1) Optimization

OPT = min $_{\beta \in \mathcal{F}}$ H(β).

e.g. spin glasses, k-SAT, max independent set in random graphs. **Gap:** efficient methods achieve $\geq (1 + \alpha) \times \text{OPT}, \alpha > 0$.

(2) Inference/Estimation

Observe $\mathcal{D} \sim P(\cdot|\beta^*)$, infer β^* (signal-to-noise ratio (SNR) λ). e.g. planted clique, sparse regression, PCA.

KED KARD KED KED E VOOR

Computational gaps/trade-offs appear frequently in random environments.

Two (rough) main categories for search problems.

(1) Optimization

OPT = min $_{\beta \in \mathcal{F}}$ H(β).

e.g. spin glasses, k-SAT, max independent set in random graphs. **Gap:** efficient methods achieve $> (1 + \alpha) \times \text{OPT}, \alpha > 0$.

(2) Inference/Estimation

Observe $\mathcal{D} \sim P(\cdot|\beta^*)$, infer β^* (signal-to-noise ratio (SNR) λ). e.g. planted clique, sparse regression, PCA. **Gap:** Info-theory SNR: λ_1 , efficient algorithms need SNR $\lambda_2 > \lambda_1$.

KED KARD KED KED E VOOR

Computational gaps/trade-offs appear frequently in random environments.

Two (rough) main categories for search problems.

(1) Optimization

OPT = min $_{\beta \in \mathcal{F}}$ H(β).

e.g. spin glasses, k-SAT, max independent set in random graphs. **Gap:** efficient methods achieve $> (1 + \alpha) \times \text{OPT}, \alpha > 0$.

(2) Inference/Estimation

Observe $\mathcal{D} \sim P(\cdot|\beta^*)$, infer β^* (signal-to-noise ratio (SNR) λ). e.g. planted clique, sparse regression, PCA. **Gap:** Info-theory SNR: λ_1 , efficient algorithms need SNR $\lambda_2 > \lambda_1$.

Can geometrical phase transitions explain these gaps?

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

OPT = min $_{\beta \in \Sigma}$ H(β), Σ \subseteq S^{p-1}. **Gap:** efficient methods achieve $\geq (1 + \alpha) \times \text{OPT}, \alpha > 0$.

 Ω

KID KA KA SA KE KI E

OPT = min $_{\beta \in \Sigma}$ H(β), Σ \subseteq S^{p-1}. **Gap:** efficient methods achieve $\geq (1 + \alpha) \times \text{OPT}, \alpha > 0$.

Between easy and hard regime "an abrupt change in the geometry of the space of (near-optimal) solutions" [Achlioptas, Coga-Oghlan '08].

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

OPT = min $_{\beta \in \Sigma}$ H(β), Σ \subseteq S^{p-1}. **Gap:** efficient methods achieve $> (1 + \alpha) \times \text{OPT}, \alpha > 0$.

Between easy and hard regime "an abrupt change in the geometry of the space of (near-optimal) solutions" [Achlioptas, Coga-Oghlan '08].

Shattering, Condensation, Frozen Variables, Replica Symmetry Breaking, Overlap Gap Property (OGP)

 QQ

 $\left\{ \begin{array}{ccc} \square & \times & \overline{c} & \overline{c} & \rightarrow & \overline{c}$

OPT = min $_{\beta \in \Sigma}$ H(β), Σ \subseteq S^{p-1}. **Gap:** efficient methods achieve $\geq (1 + \alpha) \times \text{OPT}, \alpha > 0$.

Between easy and hard regime "an abrupt change in the geometry of the space of (near-optimal) solutions" [Achlioptas, Coga-Oghlan '08].

Shattering, Condensation, Frozen Variables, Replica Symmetry Breaking, Overlap Gap Property (OGP)

OGP [Gamarnik, Sudan '14]

Set $\mathcal{T}_{\epsilon} = \{ \langle \beta, \beta' \rangle : H(\beta), H(\beta') \leq (1 + \epsilon) \min_{\beta \in \Sigma} H(\beta) \} \subseteq \mathbb{R}$. Algorithmically easy if and only if \mathcal{T}_{ϵ} is an "interval".

KOD KARD KED KED A BA YOUR

OPT = min $_{\beta \in \Sigma}$ H(β), Σ \subseteq S^{p-1}. **Gap:** efficient methods achieve $\geq (1 + \alpha) \times \text{OPT}, \alpha > 0$.

Between easy and hard regime "an abrupt change in the geometry of the space of (near-optimal) solutions" [Achlioptas, Coga-Oghlan '08].

Shattering, Condensation, Frozen Variables, Replica Symmetry Breaking, Overlap Gap Property (OGP)

OGP [Gamarnik, Sudan '14]

Set $\mathcal{T}_{\epsilon} = \{ \langle \beta, \beta' \rangle : H(\beta), H(\beta') \leq (1 + \epsilon) \min_{\beta \in \Sigma} H(\beta) \} \subseteq \mathbb{R}$.

Algorithmically easy if and only if \mathcal{T}_{ϵ} is an "interval".

- (Gamarnik, Jagannath, Wein '20) MIS, (Bresler, Huang '21) k-SAT.
- OGP implies failure of stable (low-degree) [alg](#page-13-0)[ori](#page-15-0)[th](#page-9-0)[m](#page-14-0)[s](#page-15-0)[.](#page-0-0)

Ilias Zadik (MIT) **OGP** in Inference September 13, 2021 3/15

Overlap Gap Property (OGP) for inference. [Gamarnik, Z '17]

- (1) Definition and overview
- (2) Two case-studies:
	- \blacktriangleright sparse regression
	- \rightarrow planted clique (more involved)

目

 QQ

Data: $\mathcal{D} \sim \mathbb{P}_{\beta^*}, \ \beta^* \in \Theta \subseteq \mathsf{S}^{\mathsf{p}-1}.$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

Data: $\mathcal{D} \sim \mathbb{P}_{\beta^*}, \ \beta^* \in \Theta \subseteq \mathsf{S}^{\mathsf{p}-1}.$ For some "informative loss function" $\mathcal L$, min $_{\beta\in\Theta}\mathcal L\left(\mathcal D,\beta\vert\beta^*\right)$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Data: $\mathcal{D} \sim \mathbb{P}_{\beta^*}, \ \beta^* \in \Theta \subseteq \mathsf{S}^{\mathsf{p}-1}.$ For some "informative loss function" $\mathcal L$, min $_{\beta\in\Theta}\mathcal L\left(\mathcal D,\beta\vert\beta^*\right)$.

Belief: A canonical loss function's (e.g. likelihood's) landscape captures the inference hardness.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

Data: $\mathcal{D} \sim \mathbb{P}_{\beta^*}, \ \beta^* \in \Theta \subseteq \mathsf{S}^{\mathsf{p}-1}.$ For some "informative loss function" $\mathcal L$, min $_{\beta\in\Theta}\mathcal L\left(\mathcal D,\beta\vert\beta^*\right)$.

Belief: A canonical loss function's (e.g. likelihood's) landscape captures the inference hardness.

OGP for inference [Gamarnik, Z '17]

 $\mathcal{T}_{\mathsf{r}} = \{ \langle \beta, \beta^* \rangle : \mathcal{L}(\mathcal{D}, \beta | \beta^*) \leq \min_{\beta} \mathcal{L}(\mathcal{D}, \beta | \beta^*) + \mathsf{r} \}$ interval. Easy *if and only if* \mathcal{T}_r *is an "interval" for all r.*

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 900

Data: $\mathcal{D} \sim \mathbb{P}_{\beta^*}, \ \beta^* \in \Theta \subseteq \mathsf{S}^{\mathsf{p}-1}.$ For some "informative loss function" $\mathcal L$, min $_{\beta\in\Theta}\mathcal L\left(\mathcal D,\beta\vert\beta^*\right)$.

Belief: A canonical loss function's (e.g. likelihood's) landscape captures the inference hardness.

OGP for inference [Gamarnik, Z '17]

 $\mathcal{T}_{\mathsf{r}} = \{ \langle \beta, \beta^* \rangle : \mathcal{L}(\mathcal{D}, \beta | \beta^*) \leq \min_{\beta} \mathcal{L}(\mathcal{D}, \beta | \beta^*) + \mathsf{r} \}$ interval. Easy *if and only if* \mathcal{T}_r *is an "interval" for all r.*

- Sparse Linear Regression [Gamarnik, Z '17a, '17b]
- Planted Clique [Gamarnik, **Z** '19].
- Sparse PCA [Gamarnik, Jagannath, Sen'19], [Ben Arous, Wein, Z'20]
- Tensor PCA [Ben Arous, Gheissari, Jagannath '18]
- Group Testing Illiopoulos, **Z** '21]

KOD KAP KED KED E VAA

OGP for inference [Gamarnik, **Z** '17]

 $\mathcal{T}_{\mathsf{r}} = \{ \langle \beta, \beta^* \rangle : \mathcal{L}\left(\mathcal{D}, \beta | \beta^* \right) \leq \mathsf{min}_\beta \, \mathcal{L}\left(\mathcal{D}, \beta | \beta^* \right) + \mathsf{r} \}$ interval. Easy *if and only if* \mathcal{T}_r *is an "interval" for all r.*

 QQ

KID KA KA SA KE KI E

OGP for inference [Gamarnik, **Z** '17]

 $\mathcal{T}_{\mathsf{r}} = \{ \langle \beta, \beta^* \rangle : \mathcal{L}\left(\mathcal{D}, \beta | \beta^* \right) \leq \mathsf{min}_\beta \, \mathcal{L}\left(\mathcal{D}, \beta | \beta^* \right) + \mathsf{r} \}$ interval. Easy *if and only if* \mathcal{T}_r *is an "interval" for all r.*

 $\Gamma(\zeta) = \min_{\beta \in \Theta, \langle \beta, \beta^* \rangle = \zeta} \mathcal{L}(\mathcal{D}, \beta | \beta^*)$, $\zeta \in [0, 1]$.

KOD KOD KED KED DAR

OGP for inference [Gamarnik, Z '17]

 $\mathcal{T}_{\mathsf{r}} = \{ \langle \beta, \beta^* \rangle : \mathcal{L}\left(\mathcal{D}, \beta | \beta^* \right) \leq \mathsf{min}_\beta \, \mathcal{L}\left(\mathcal{D}, \beta | \beta^* \right) + \mathsf{r} \}$ interval. Easy *if and only if* \mathcal{T}_r *is an "interval" for all r.*

 $\Gamma(\zeta) = \min_{\beta \in \Theta, \langle \beta, \beta^* \rangle = \zeta} \mathcal{L}(\mathcal{D}, \beta | \beta^*)$, $\zeta \in [0, 1]$.

Lemma: OGP if and only if Γ is non-monotonic.

OGP for inference [Gamarnik, Z '17]

 $\mathcal{T}_{\mathsf{r}} = \{ \langle \beta, \beta^* \rangle : \mathcal{L}\left(\mathcal{D}, \beta | \beta^* \right) \leq \mathsf{min}_\beta \, \mathcal{L}\left(\mathcal{D}, \beta | \beta^* \right) + \mathsf{r} \}$ interval. Easy *if and only if* \mathcal{T}_r *is an "interval" for all r.*

 $\Gamma(\zeta) = \min_{\beta \in \Theta, \langle \beta, \beta^* \rangle = \zeta} \mathcal{L}(\mathcal{D}, \beta | \beta^*)$, $\zeta \in [0, 1]$.

Lemma: OGP if and only if Γ is non-monotonic.

• 1st MM: lower bound on Γ. 2nd MM: up[pe](#page-23-0)r [b](#page-25-0)[o](#page-20-0)[u](#page-21-0)[n](#page-24-0)[d](#page-25-0) [o](#page-0-0)[n](#page-58-0) [Γ.](#page-0-0)

Overlap Gap Property (OGP) for inference. [Gamarnik, Z '17]

- (1) Definition and overview
- (2) Two case-studies:
	- \blacktriangleright sparse regression
	- \rightarrow planted clique (more involved)

 QQ

The Sparse Regression Model

Setup

Let $\beta^* \in \{0,1\}^p$ be a **binary** k-sparse vector (regime $k = o(p)$.) For

- $X \in \mathbb{R}^{n \times p}$ consisting of i.i.d $\mathcal{N}(0, 1)$ entries
- $\bullet\;\mathsf{W}\in\mathbb{R}^\mathsf{n}$ consisting of i.i.d. $\mathcal{N}(0,\sigma^2)$ entries

we get n **noisy linear samples** of β^* , $\mathsf{Y} \in \mathbb{R}^n$, given by,

 $Y := X\beta^* + W.$

- 3

 Ω

イロト イ押 トイヨ トイヨト

The Sparse Regression Model

Setup

Let $\beta^* \in \{0,1\}^p$ be a **binary** k-sparse vector (regime $k = o(p)$.) For

- $X \in \mathbb{R}^{n \times p}$ consisting of i.i.d $\mathcal{N}(0, 1)$ entries
- $\bullet\;\mathsf{W}\in\mathbb{R}^\mathsf{n}$ consisting of i.i.d. $\mathcal{N}(0,\sigma^2)$ entries

we get n **noisy linear samples** of β^* , $\mathsf{Y} \in \mathbb{R}^n$, given by,

$$
Y:=X\beta^*+W.
$$

Goal: Statistical and Computational Limit

Minimum $n = n_p$: given (Y, X) recover β^* w.h.p. as $p \to +\infty$.

KOD KAP KED KED E VAA

Computational-Statistical Gap

Under k $/\sigma^2=\omega(1)$:

$$
n^*=\frac{2k\log\frac{p}{k}}{\log(k/\sigma^2+1)}, n_{\text{alg}}=2k\log\frac{p}{k}.
$$

Ilias Zadik (MIT) [OGP in Inference](#page-0-0) September 13, 2021 9/15

 QQ

目

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Computational-Statistical Gap

Under k $/\sigma^2=\omega(1)$:

 $n^*=\frac{2k\log \frac{p}{k}}{\log (k/\sigma^2+1)}$, $n_{\sf alg}=2k\log \frac{p}{k}$. Recall: **OGP:** loss funct+ monotonicity.

- 3

 200

Computational-Statistical Gap

Under k $/\sigma^2=\omega(1)$:

 $n^*=\frac{2k\log \frac{p}{k}}{\log (k/\sigma^2+1)}$, $n_{\sf alg}=2k\log \frac{p}{k}$. Recall: **OGP:** loss funct+ monotonicity.

OGP via likelihood loss function

$$
\min_{\beta \in \{0,1\}^p, \|\beta\|_0 = k} n^{-\frac{1}{2}} \|Y - X\beta\|_2
$$

Ilias Zadik (MIT) Corresponding to the Corresponding Corresponding to the September 13, 2021 9/15

∴ ≊

 QQQ

The OGP for Regression — Phase Transition

For $\zeta \in [0,1]$,

$$
\Gamma(\zeta) = \min_{\beta \in \{0,1\}^p, ||\beta||_0 = k, \langle \beta, \beta^* \rangle = \zeta k} n^{-\frac{1}{2}} ||Y - X\beta||_2
$$

The OGP for Regression — Phase Transition

For $\zeta \in [0, 1]$,

$$
\Gamma(\zeta) = \min_{\beta \in \{0,1\}^p, \|\beta\|_0 = k, \langle \beta, \beta^* \rangle = \zeta k} n^{-\frac{1}{2}} \|\mathsf{Y} - \mathsf{X}\beta\|_2
$$

Theorem (Gamarnik, Z '17)

Suppose $k \leq exp(\sqrt{\log p})$. There exists $C > 1 > c > 0$ such that,

- If $n^* < n < c n_{\text{alg}}$ then w.h.p. Γ is not monotonic (OGP).
- If $n > Cn_{\text{abs}}$ then w.h.p. Γ is monotonic (no-OGP).

The OGP for Regression — Phase Transition

For $\zeta \in [0, 1]$,

$$
\Gamma(\zeta) = \min_{\beta \in \{0,1\}^p, \|\beta\|_0 = k, \langle \beta, \beta^* \rangle = \zeta k} n^{-\frac{1}{2}} \|\mathsf{Y} - \mathsf{X}\beta\|_2
$$

Theorem (Gamarnik, Z '17)

Suppose $k \leq exp(\sqrt{\log p})$. There exists $C > 1 > c > 0$ such that,

- If $n^* < n < c n_{\text{alg}}$ then w.h.p. Γ is not monotonic (OGP).
- If $n > Cn_{\text{abs}}$ then w.h.p. Γ is monotonic (no-OGP).

OGP coincides with the failure of convex relaxation and compressed sensing methods!

The Planted Clique Model [Jerrum '92], [Kučera '95]

Generating Assumptions for $G(n, 1/2, k)$:

 QQ

E

The Planted Clique Model [Jerrum '92], [Kučera '95]

Generating Assumptions for $G(n, 1/2, k)$:

• Stage 1: \mathcal{G}_0 is an Erdos-Renyi G(n, 1/2).

 $n = 7$, $k = 3$, \mathcal{G}_0 (left) and \mathcal{G} (right) :

(□) (/ □)

目

 QQQ

The Planted Clique Model [Jerrum '92], [Kučera '95]

Generating Assumptions for $G(n, 1/2, k)$ **:**

- Stage 1: \mathcal{G}_0 is an Erdos-Renyi G(n, 1/2).
- Stage 2: k out of the n vertices of G_0 are chosen u.a.r. to form a k-vertex clique, \mathcal{PC} . Call $\mathcal G$ the final graph.

 $n = 7$, $k = 3$, \mathcal{G}_0 (left) and \mathcal{G} (right) :

 \rightarrow \equiv \rightarrow

 QQQ

The Planted Clique Model [Jerrum '92], [Kučera '95]

Generating Assumptions for $G(n, 1/2, k)$ **:**

- Stage 1: \mathcal{G}_0 is an Erdos-Renyi G(n, 1/2).
- Stage 2: k out of the n vertices of G_0 are chosen u.a.r. to form a k-vertex clique, \mathcal{PC} . Call $\mathcal G$ the final graph.

Goal: Recover \mathcal{PC} from observing $\mathcal{G} \sim G(n, 1/2, k)$. **Question:** For how small $k = k_n$ can we recover?

 $n = 7$, $k = 3$, \mathcal{G}_0 (left) and \mathcal{G} (right) :

◆ロト → 何ト → ヨト → ヨト

 QQ

- 3

Þ \sim

4 0 8

→ 何 ▶ 41 299

э

• Likelihood "Dirac" (unique k-clique): no landscape!

4 D F

 QQ

- Likelihood "Dirac" (unique k-clique): no landscape!
- Proxy (densest subgraph problem):

$$
\min_{C \subseteq V(G), |C|=k} \mathcal{L}(G, C | \mathcal{PC}) = \binom{k}{2} - |E_G[C]|.
$$

 QQ

- Likelihood "Dirac" (unique k-clique): no landscape!
- Proxy (densest subgraph problem):

$$
\min_{C \subseteq V(G), |C|=k} \mathcal{L}(G, C | \mathcal{PC}) = {k \choose 2} - |E_G[C]|.
$$

Overparametrized densest subgraph problem $\bar{k} > k$:

$$
\max_{C\subseteq V(G),|C|=\overline{k}}|E_G[C]|.
$$

 QQQ

- Likelihood "Dirac" (unique k-clique): **no landscape!**
- Proxy (densest subgraph problem):

$$
\min_{C \subseteq V(G), |C|=k} \mathcal{L}(G, C | \mathcal{PC}) = {k \choose 2} - |E_G[C]|.
$$

Overparametrized densest subgraph problem $\bar{k} > k$:

$$
\max_{C\subseteq V(G),|C|=\overline{k}}|E_G[C]|.
$$

 $\mathsf{For}\ z\in [\bar{k}k/n,k],\ \mathsf{let}\ \mathsf{\Gamma}_{\bar{k}}(z)=\mathsf{max}_{\mathsf{C}\subseteq \mathsf{V}(\mathsf{G}),|\mathsf{C}|=\bar{k},|\mathsf{C}\cap \mathcal{PC}|=z}|\mathsf{E}[\mathsf{C}]|.$ $\mathsf{For}\ z\in [\bar{k}k/n,k],\ \mathsf{let}\ \mathsf{\Gamma}_{\bar{k}}(z)=\mathsf{max}_{\mathsf{C}\subseteq \mathsf{V}(\mathsf{G}),|\mathsf{C}|=\bar{k},|\mathsf{C}\cap \mathcal{PC}|=z}|\mathsf{E}[\mathsf{C}]|.$

 $\mathsf{Fix}\ z\in [\bar{k}k/n,k]$ and let $\Gamma_{\bar{k}}(z)=\mathsf{max}_{\mathsf{C}\subseteq \mathsf{V}(\mathsf{G}),|\mathsf{C}|=\bar{k},|\mathsf{C}\cap \mathcal{P}\mathcal{C}|=\mathsf{z}}\,|\mathsf{E}[\mathsf{C}]|.$

 $\mathsf{Fix}\ z\in [\bar{k}k/n,k]$ and let $\Gamma_{\bar{k}}(z)=\mathsf{max}_{\mathsf{C}\subseteq \mathsf{V}(\mathsf{G}),|\mathsf{C}|=\bar{k},|\mathsf{C}\cap \mathcal{P}\mathcal{C}|=\mathsf{z}}\,|\mathsf{E}[\mathsf{C}]|.$

Ilias Zadik (MIT) C[OGP in Inference](#page-0-0) September 13, 2021 13 / 15

 QQ

 $\mathsf{Fix}\ z\in [\bar{k}k/n,k]$ and let $\Gamma_{\bar{k}}(z)=\mathsf{max}_{\mathsf{C}\subseteq \mathsf{V}(\mathsf{G}),|\mathsf{C}|=\bar{k},|\mathsf{C}\cap \mathcal{P}\mathcal{C}|=\mathsf{z}}\,|\mathsf{E}[\mathsf{C}]|.$

• $k = n^{2/3}$ -OGP transition for "standard" landscape! (Maria's talk)

 QQQ

 $\mathsf{Fix}\ z\in [\bar{k}k/n,k]$ and let $\Gamma_{\bar{k}}(z)=\mathsf{max}_{\mathsf{C}\subseteq \mathsf{V}(\mathsf{G}),|\mathsf{C}|=\bar{k},|\mathsf{C}\cap \mathcal{P}\mathcal{C}|=\mathsf{z}}\,|\mathsf{E}[\mathsf{C}]|.$

- $k = n^{2/3}$ -OGP transition for "standard" landscape! (Maria's talk)
- New OGP transition at \sqrt{n} : need to lift!

Ilias Zadik (MIT) [OGP in Inference](#page-0-0) September 13, 2021 13 / 15

 QQQ

 $\mathsf{Fix}\ z\in [\bar{k}k/n,k]$ and let $\Gamma_{\bar{k}}(z)=\mathsf{max}_{\mathsf{C}\subseteq \mathsf{V}(\mathsf{G}),|\mathsf{C}|=\bar{k},|\mathsf{C}\cap \mathcal{P}\mathcal{C}|=\mathsf{z}}\,|\mathsf{E}[\mathsf{C}]|.$

• $k = n^{2/3}$ -OGP transition for "standard" landscape! (Maria's talk)

• New OGP transition at √n: need to lift! (agrees with algos)

ヨメ メヨメ Ilias Zadik (MIT) [OGP in Inference](#page-0-0) September 13, 2021 13 / 15

(□) (_□)

 QQ

Overlap Gap Property (OGP) for inference. [Gamarnik, Z '17]

- (1) Definition and overview
- (2) Two case-studies:
	- \blacktriangleright sparse regression
	- \rightarrow planted clique (more involved)

G.

 QQ

(1) OGP for inference implies "local" MCMC lower bounds. (Ben Arous, Wein, Z '20), (Gamarnik, Jagannath, Sen '19).

G. Ω

(1) OGP for inference implies "local" MCMC lower bounds. (Ben Arous, Wein, Z '20), (Gamarnik, Jagannath, Sen '19). (BAWZ'20): In sparse PCA subexponential-time predictions via OGP identical with low-degree method.

 Ω

- (1) OGP for inference implies "local" MCMC lower bounds. (Ben Arous, Wein, Z '20), (Gamarnik, Jagannath, Sen '19). (BAWZ'20): In sparse PCA subexponential-time predictions via OGP identical with low-degree method.
- (a) OGP for inference gives valid hardness predictions!

 Ω

- (1) OGP for inference implies "local" MCMC lower bounds. (Ben Arous, Wein, Z '20), (Gamarnik, Jagannath, Sen '19). (BAWZ'20): In sparse PCA subexponential-time predictions via OGP identical with low-degree method.
- (a) OGP for inference gives valid hardness predictions! Optimal loss function?: Overparametrization in PC.

 QQ

- (1) OGP for inference implies "local" MCMC lower bounds. (Ben Arous, Wein, Z '20), (Gamarnik, Jagannath, Sen '19). (BAWZ'20): In sparse PCA subexponential-time predictions via OGP identical with low-degree method.
- (a) OGP for inference gives valid hardness predictions! Optimal loss function?: Overparametrization in PC.
- (b) Does $OGP \Rightarrow$ failure of stable algorithms (beyond MCMC)? Similar to OGP in optimization (GJW '20).

 QQ

- (1) OGP for inference implies "local" MCMC lower bounds. (Ben Arous, Wein, Z '20), (Gamarnik, Jagannath, Sen '19). (BAWZ'20): In sparse PCA subexponential-time predictions via OGP identical with low-degree method.
- (a) OGP for inference gives valid hardness predictions! Optimal loss function?: Overparametrization in PC.
- (b) Does $OGP \Rightarrow$ failure of stable algorithms (beyond MCMC)? Similar to OGP in optimization (GJW '20).
- (c) Does absence of OGP \Rightarrow success of "local" methods? Similar to no-OGP (FRSB) in spin glasses. (Subag '18), (Montanari, El Alaoui, Sellke '19 -'21).

 QQ

イロト イ何 トイヨト イヨト ニヨー

- (1) OGP for inference implies "local" MCMC lower bounds. (Ben Arous, Wein, Z '20), (Gamarnik, Jagannath, Sen '19). (BAWZ'20): In sparse PCA subexponential-time predictions via OGP identical with low-degree method.
- (a) OGP for inference gives valid hardness predictions! Optimal loss function?: Overparametrization in PC.
- (b) Does $OGP \Rightarrow$ failure of stable algorithms (beyond MCMC)? Similar to OGP in optimization (GJW '20).
- (c) Does absence of OGP \Rightarrow success of "local" methods? Similar to no-OGP (FRSB) in spin glasses. (Subag '18), (Montanari, El Alaoui, Sellke '19 -'21).

Thank you!!

イロト イ何 トイヨト イヨト ニヨー

MCMC lower bounds

 $\mathsf{min}_{\beta \in \Theta} \mathcal{L}(\mathcal{D}, \beta | \beta^*)$. $\Gamma(\zeta) = \mathsf{min}_{\beta \in \Theta, \langle \beta, \beta^* \rangle = \zeta} \mathcal{L}(\mathcal{D}, \beta | \beta^*)$, $\zeta \in [0,1]$.

MCMC lower bounds

 $\mathsf{min}_{\beta \in \Theta} \mathcal{L}(\mathcal{D}, \beta | \beta^*)$. $\Gamma(\zeta) = \mathsf{min}_{\beta \in \Theta, \langle \beta, \beta^* \rangle = \zeta} \mathcal{L}(\mathcal{D}, \beta | \beta^*)$, $\zeta \in [0,1]$.

[Ben Arous, Wein, Z '20], [Gamarnik, Jagannath, Sen '19] Under OGP of height D and for "small" $T > 0$ any "local" MC with stationary $\mu(\beta) \propto \mathsf{e}^{-\mathsf{T}^{-1}\mathcal{L}(\mathcal{D},\beta|\beta^*)}, \beta \in \Theta$ (worst-case initialization) needs time exp(D).

MCMC lower bounds

 $\mathsf{min}_{\beta \in \Theta} \mathcal{L}(\mathcal{D}, \beta | \beta^*)$. $\Gamma(\zeta) = \mathsf{min}_{\beta \in \Theta, \langle \beta, \beta^* \rangle = \zeta} \mathcal{L}(\mathcal{D}, \beta | \beta^*)$, $\zeta \in [0,1]$.

[Ben Arous, Wein, Z '20], [Gamarnik, Jagannath, Sen '19] Under OGP of height D and for "small" $T > 0$ any "local" MC with stationary $\mu(\beta) \propto \mathsf{e}^{-\mathsf{T}^{-1}\mathcal{L}(\mathcal{D},\beta|\beta^*)}, \beta \in \Theta$ (worst-case initialization) needs time exp(D).

Sparse PCA: OGP height is low-degree sub-exponential time prediction.

