
The Overlap Gap Property in Inference:
A Short Survey.

Ilias Zadik (MIT)

Simons workshop

September 13, 2021

Ilias Zadik (MIT) OGP in Inference September 13, 2021 1 / 15



Introduction

Computational gaps/trade-offs appear frequently in random environments.

Two (rough) main categories for search problems.

(1) Optimization
OPT = minβ∈Σ H(β).
e.g. spin glasses, k-SAT, max independent set in random graphs.
Gap: efficient methods achieve ≥ (1 + α)× OPT,α > 0.

(2) Inference/Estimation
Observe D ∼ P(·|β∗), infer β∗ (signal-to-noise ratio (SNR) λ).
e.g. planted clique, sparse regression, PCA.
Gap: Info-theory SNR: λ1, efficient algorithms need SNR λ2 > λ1.

Can geometrical phase transitions explain these gaps?
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OGP for random optimization

OPT = minβ∈Σ H(β), Σ ⊆ Sp–1.
Gap: efficient methods achieve ≥ (1 + α)× OPT,α > 0.

Between easy and hard regime “an abrupt change in the geometry of
the space of (near-optimal) solutions” [Achlioptas, Coga-Oghlan ’08].

Shattering, Condensation, Frozen Variables,
Replica Symmetry Breaking, Overlap Gap Property (OGP)

OGP [Gamarnik, Sudan ’14]

Set Tε = {〈β,β ′〉 : H(β), H(β ′) ≤ (1 + ε) minβ∈Σ H(β)} ⊆ R.

Algorithmically easy if and only if Tε is an “interval”.

• (Gamarnik, Jagannath, Wein ’20) MIS, (Bresler, Huang ’21) k-SAT.

• OGP implies failure of stable (low-degree) algorithms.
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This talk: a short survey

Overlap Gap Property (OGP) for inference. [Gamarnik, Z ’17]

(1) Definition and overview

(2) Two case-studies:
I sparse regression
I planted clique (more involved)
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The OGP for Inference

Data: D ∼ Pβ∗ , β∗ ∈ Θ ⊆ Sp–1.

For some “informative loss function” L, minβ∈Θ L (D,β|β∗) .

Belief: A canonical loss function’s (e.g. likelihood’s) landscape captures
the inference hardness.

OGP for inference [Gamarnik, Z ’17]

Tr = {〈β,β∗〉 : L (D,β|β∗) ≤ minβ L (D,β|β∗) + r} interval.
Easy if and only if Tr is an “interval” for all r.

• Sparse Linear Regression [Gamarnik, Z ’17a, ’17b]

• Planted Clique [Gamarnik, Z ’19].

• Sparse PCA [Gamarnik, Jagannath, Sen’19], [Ben Arous, Wein,Z’20]

• Tensor PCA [Ben Arous, Gheissari, Jagannath ’18]

• Group Testing [Iliopoulos, Z ’21]
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The OGP for Inference — part 2

OGP for inference [Gamarnik, Z ’17]

Tr = {〈β,β∗〉 : L (D,β|β∗) ≤ minβ L (D,β|β∗) + r} interval.
Easy if and only if Tr is an “interval” for all r.

Γ(ζ) = minβ∈Θ,〈β,β∗〉=ζ L (D,β|β∗) , ζ ∈ [0, 1].

Lemma: OGP if and only if Γ is non-monotonic.

• 1st MM: lower bound on Γ. 2nd MM: upper bound on Γ.
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The Sparse Regression Model

Setup

Let β∗ ∈ {0, 1}p be a binary k-sparse vector (regime k = o(p).)
For

• X ∈ Rn×p consisting of i.i.d N (0, 1) entries

• W ∈ Rn consisting of i.i.d. N (0,σ2) entries

we get n noisy linear samples of β∗, Y ∈ Rn, given by,

Y := Xβ∗ + W.

Goal: Statistical and Computational Limit

Minimum n = np: given (Y, X) recover β∗ w.h.p. as p→ +∞.
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Computational-Statistical Gap

Under k/σ2 = ω(1):

n∗ =
2k log p

k
log(k/σ2+1)

, nalg = 2k log p
k .

Recall: OGP: loss funct+ monotonicity.

OGP via likelihood loss function

min
β∈{0,1}p,‖β‖0=k

n– 1
2 ‖Y – Xβ‖2
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The OGP for Regression — Phase Transition

For ζ ∈ [0, 1],

Γ(ζ) = min
β∈{0,1}p,‖β‖0=k,〈β,β∗〉=ζk

n– 1
2 ‖Y – Xβ‖2

Theorem (Gamarnik, Z ’17)

Suppose k ≤ exp(
√

log p). There exists C > 1 > c > 0 such that,

• If n∗ < n < cnalg then w.h.p. Γ is not monotonic (OGP).

• If n > Cnalg then w.h.p. Γ is monotonic (no-OGP).

Figure: n < cnalg Figure: n > Cnalg
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• If n∗ < n < cnalg then w.h.p. Γ is not monotonic (OGP).

• If n > Cnalg then w.h.p. Γ is monotonic (no-OGP).

OGP coincides with the failure of
convex relaxation and compressed sensing methods!

Figure: n∗ < n < cnalg Figure: n > Cnalg
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The Planted Clique Model

The Planted Clique Model [Jerrum ’92], [Kuc̆era ’95]

Generating Assumptions for G (n, 1/2, k):

• Stage 1: G0 is an Erdos-Renyi G(n, 1/2).

• Stage 2: k out of the n vertices of G0 are chosen u.a.r. to form a
k-vertex clique, PC. Call G the final graph.

Goal: Recover PC from observing G ∼ G (n, 1/2, k).
Question: For how small k = kn can we recover?

n = 7, k = 3, G0 (left) and G (right) :
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The Planted Clique Model - Brief Literature Review

• Likelihood “Dirac” (unique k-clique): no landscape!
• Proxy (densest subgraph problem):

min
C⊆V(G),|C|=k

L(G, C|PC) =

(
k

2

)
– |EG[C]|.

• Overparametrized densest subgraph problem k̄ ≥ k:

max
C⊆V(G),|C|=k̄

|EG[C]|.

For z ∈ [k̄k/n, k], let Γk̄(z) = maxC⊆V(G),|C|=k̄,|C∩PC|=z |E[C]|.
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The Planted Clique Model - First moment OGP diagram

Fix z ∈ [k̄k/n, k] and let Γk̄(z) = maxC⊆V(G),|C|=k̄,|C∩PC|=z |E[C]|.

• k = n2/3-OGP transition for ”standard” landscape! (Maria’s talk)

• New OGP transition at
√

n: need to lift!

(agrees with algos)

Ilias Zadik (MIT) OGP in Inference September 13, 2021 13 / 15



The Planted Clique Model - First moment OGP diagram

Fix z ∈ [k̄k/n, k] and let Γk̄(z) = maxC⊆V(G),|C|=k̄,|C∩PC|=z |E[C]|.

• k = n2/3-OGP transition for ”standard” landscape! (Maria’s talk)

• New OGP transition at
√

n: need to lift!

(agrees with algos)

Ilias Zadik (MIT) OGP in Inference September 13, 2021 13 / 15



The Planted Clique Model - First moment OGP diagram

Fix z ∈ [k̄k/n, k] and let Γk̄(z) = maxC⊆V(G),|C|=k̄,|C∩PC|=z |E[C]|.

• k = n2/3-OGP transition for ”standard” landscape! (Maria’s talk)

• New OGP transition at
√

n: need to lift!

(agrees with algos)

Ilias Zadik (MIT) OGP in Inference September 13, 2021 13 / 15



The Planted Clique Model - First moment OGP diagram

Fix z ∈ [k̄k/n, k] and let Γk̄(z) = maxC⊆V(G),|C|=k̄,|C∩PC|=z |E[C]|.

• k = n2/3-OGP transition for ”standard” landscape! (Maria’s talk)

• New OGP transition at
√

n: need to lift!

(agrees with algos)

Ilias Zadik (MIT) OGP in Inference September 13, 2021 13 / 15



The Planted Clique Model - First moment OGP diagram

Fix z ∈ [k̄k/n, k] and let Γk̄(z) = maxC⊆V(G),|C|=k̄,|C∩PC|=z |E[C]|.

• k = n2/3-OGP transition for ”standard” landscape! (Maria’s talk)

• New OGP transition at
√

n: need to lift! (agrees with algos)

Ilias Zadik (MIT) OGP in Inference September 13, 2021 13 / 15



This talk: a short survey

Overlap Gap Property (OGP) for inference. [Gamarnik, Z ’17]

(1) Definition and overview

(2) Two case-studies:
I sparse regression
I planted clique (more involved)
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Other/Future Work

(1) OGP for inference implies “local” MCMC lower bounds.
(Ben Arous, Wein, Z ’20), (Gamarnik, Jagannath, Sen ’19).

(BAWZ’20): In sparse PCA subexponential-time predictions via OGP
identical with low-degree method.

(a) OGP for inference gives valid hardness predictions!

Optimal loss function?: Overparametrization in PC.

(b) Does OGP ⇒ failure of stable algorithms (beyond MCMC)?
Similar to OGP in optimization (GJW ’20).

(c) Does absence of OGP ⇒ success of “local” methods?
Similar to no-OGP (FRSB) in spin glasses.
(Subag ’18), (Montanari, El Alaoui, Sellke ’19 -’21).

Thank you!!
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MCMC lower bounds

minβ∈Θ L (D,β|β∗) . Γ(ζ) = minβ∈Θ,〈β,β∗〉=ζ L (D,β|β∗) , ζ ∈ [0, 1].

[Ben Arous, Wein, Z ’20], [Gamarnik, Jagannath, Sen ’19]

Under OGP of height D and for “small” T > 0

any “local” MC with stationary µ(β) ∝ e–T–1L(D,β|β∗),β ∈ Θ
(worst-case initialization) needs time exp(D).

Sparse PCA: OGP height is low-degree sub-exponential time prediction.
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