Charting the Landscape of Memory/Data Tradeoffs in Continuous Optimization: A Survey of Open Problems

Annie Marsden

Vatsal Sharan

Aaron Sidford

How do *memory constraints* influence the speed of learning/optimization?

Today: Linear Regression min x'Ax - bx(or solving Ax = b)

Access to i.i.d. data samples

Distribution over (a,b) pairs

(e.g. a \leftarrow -- Gaussian, b = <a, x>

Algorithm

"Give me a datapoint"

"Give me a datapoint"

"...

	i.i.d. data samples	"Cell-Probe" Model
Discrete setting Solve Ax=b over a finite field	Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Each datapoint: $(a_i, < a_i, x > \text{mod } 2),$ $a_i \in \{0,1\}^d$ chosen unif. rand Goal: find x	Same as i.i.d. data setting, but datapoints stored in read-only memory.
Continuous setting Solve Ax=b over R ^d (or regression)	Unknown $x \in \mathbb{R}^d$ with $ x =1$ chosen uniformly at random. Each datapoint: $(a_i, < a_i, x >),$ $a_i \in \mathbb{R}^d$ chosen e.g. from N(0,I _d) [or some other distribution] Goal: approximate x	Same as i.i.d. data setting, but datapoints stored in read-only memory.

Many other interesting models...

No direct access to datapoints, but instead interact via specific types of oracles

- Statistical Query access
- Function evaluation queries
- Gradient queries
- Etc.

	i.i.d. data samples	"Cell-Probe" Model
Discrete setting Solve Ax=b over a finite field	Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Each datapoint: $(a_i, < a_i, x > \text{mod } 2),$ $a_i \in \{0,1\}^d$ chosen unif. rand Goal: find x	Same as i.i.d. data setting, but datapoints stored in read-only memory.
Continuous setting Solve Ax=b over R ^d (or regression)	Unknown $x \in \mathbb{R}^d$ with $ x =1$ chosen uniformly at random. Each datapoint: $(a_i, < a_i, x > +noise)$ $a_i \in \mathbb{R}^d$ chosen e.g. from N(0,Id) [or some other distribution] Goal: approximate x	Same as i.i.d. data setting, but datapoints stored in read-only memory.

Discrete setting
Solve Ax=b
over a finite field

"Cell-Probe" Model

Unknown $x \in \{0,1\}^d$ chosen uniformly at random.

Each datapoint:

 $(a_i, < a_i, x > \text{mod 2}),$ $a_i \in \{0,1\}^d$ chosen unif. rand

Goal: find x

Same as i.i.d. data setting, but datapoints stored in read-only memory.

Continuous setting Solve Ax=b over R^d (or regression)

Unknown $x \in \mathbb{R}^d$ with |x|=1 chosen uniformly at random.

Each datapoint:

 $(a_i, < a_i, x > +noise)$ $a_i \in \mathbb{R}^d$ chosen e.g. from N(0,I_d) [or some other distribution]

Goal: approximate x

Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Given access to stream of examples $(a_i, < a_i, x > \text{mod } 2)$, $a_i \in \{0,1\}^d$ chosen uniformly at random.

Gaussian elimination: $O(d^2)$ memory , O(d) examples Brute force guess/check: O(d) memory , O(d) examples.

Conjecture [Steinhardt, Valiant, Wager'15]: Any algorithm with $< d^2/4$ memory needs exponential number of samples to learn x. Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Given access to stream of examples $(a_i, < a_i, x > \text{mod } 2)$, $a_i \in \{0,1\}^d$ chosen uniformly at random.

Gaussian elimination: $O(d^2)$ memory , O(d) examples Brute force guess/check: O(d) memory , O(d) examples.

Thm [Raz'16]: Conjecture [Steinhardt, Valiant, Wager'15]: Any algorithm with $< d^2/4$ memory needs exponential number of samples to learn x.

Subsequent work extended this to a broad class of learning problems over finite fields

Kol-Raz-Tal'17: sparse parities

Raz'17, Moshkovitz-Moshkovitz'17,18, Beame-Ovies Gharan-Yang'18, Garg-Raz-Tal'18: Large class of learning problems over finite fields satisfying combinatorial/mixing properties.

...and more recent papers

See Sumegha Garg's talk Thursday!!

Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Given access to stream of examples $(a_i, < a_i, x > \text{mod } 2)$, $a_i \in \{0,1\}^d$ chosen uniformly at random.

Gaussian elimination: $O(d^2)$ memory , O(d) examples Brute force guess/check: O(d) memory , O(d) examples.

Thm [Raz'16]: Conjecture [Steinhardt, Valiant, Wager'15]: Any algorithm with $< d^2/4$ memory needs exponential number of samples to learn x.

Branching program for learning

Each layer corresponds to a time step

Each vertex corresponds to a memory state

Every memory state has a transition function (an 'edge') which is a mapping from an example (a, b) to a vertex in the next layer.

	i.i.d. data samples	"Cell-Probe" Model
Discrete setting Solve Ax=b over a finite field	Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Each datapoint: $(a_i, < a_i, x > \text{mod } 2),$ $a_i \in \{0,1\}^d$ chosen unif. rand Goal: find x Either memory d^2 or exp(d) datapoints.	Same as i.i.d. data setting, but datapoints stored in read-only memory.
Continuous setting Solve Ax=b over R ^d (or regression)	Unknown $x \in \mathbb{R}^d$ with $ x =1$ chosen uniformly at random. Each datapoint: $(a_i, < a_i, x > +noise)$ $a_i \in \mathbb{R}^d$ chosen e.g. from $N(0,I_d)$ [or some other distribution] Goal: approximate x	Same as i.i.d. data setting, but datapoints stored in read-only memory.

Discrete setting Solve Ax=b over a finite field
Continuous setting
Solve Ax=b over R ^d (or regression)

Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Each datapoint:

 $(a_i, < a_i, x > \text{mod } 2),$ $a_i \in \{0,1\}^d$ chosen unif. rand **Goal: find** x

Either memory d^2 or exp(d) datapoints.

Same as i.i.d. data setting, but datapoints stored in read-only memory.

"Cell-Probe" Model

Unknown $x \in \mathbb{R}^d$ with |x|=1 chosen uniformly at random.

Each datapoint:

 $(a_i, < a_i, x > +noise)$ $a_i \in \mathbb{R}^d$ chosen e.g. from N(0,I_d) [or some other distribution]

Goal: approximate x

Discrete setting
Discrete setting Solve Ax=b
over a finite field

Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Each datapoint:

Each datapoint: $(a_i, < a_i, x > \text{mod } 2),$

 $a_i \in \{0,1\}^d$ chosen unif. rand

Goal: find x

Either memory d^2 or exp(d) datapoints.

"Cell-Probe" Model

Same as i.i.d. data setting, but datapoints stored in read-only memory.

Easy: linear space and poly(d) queries.

Continuous setting Solve Ax=b over R^d (or regression)

Unknown $x \in \mathbb{R}^d$ with |x|=1 chosen uniformly at random.

Each datapoint:

 $(a_i, < a_i, x > +noise)$ $a_i \in \mathbb{R}^d$ chosen e.g. from N(0,I_d)

[or some other distribution]

Goal: approximate x

Discrete setting	
Solve Ax=b	
over a finite field	

Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Each datapoint:

 $(a_i, < a_i, x > \text{mod } 2),$ $a_i \in \{0,1\}^d$ chosen unif. rand **Goal: find** x

Either memory d^2 or exp(d) datapoints.

"Cell-Probe" Model

Same as i.i.d. data setting, but datapoints stored in read-only memory.

Easy: linear space and poly(d) queries.

Continuous setting Solve Ax=b over R^d (or regression)

Unknown $x \in \mathbb{R}^d$ with |x|=1 chosen uniformly at random.

Each datapoint:

 $(a_i, < a_i, x > +noise)$ $a_i \in \mathbb{R}^d$ chosen e.g. from N(0,I_d) [or some other distribution]

Goal: approximate x

Linear regression: core ML and convex optimization problem

Broader Context:

1st order methods (linear memory, more samples) vs 2nd order methods (quadratic memory, less samples)

Huge effort to find optimization algorithms with linear memory, that behave like quadratic-memory algorithms (e.g. conjugate gradient...)

Largely unexplored frontier of continuous optimization research:

- Vast literature on lower bounds on #queries required from oracle
- Relatively recent work with *linear* memory: [Dagan-Kur-Shamir'19] on memory lower bounds in streaming model, sparse linear regression [Steinhardt-Duchi'15]

Little on memory/sample tradeoffs for optimization with super-linear memory.

Memory/Data Tradeoffs for Linear Regression

Unknown $x \in \mathbb{R}^d$ with ||x|| = 1, chosen uniformly at random. Given access to stream of examples (a_i, b_i) ,

$$a_i \sim N(0, I_d)$$

 $b_i = \langle a_i, x \rangle + \eta_i$ noise: $\eta_i \sim Unif[-2^{-d}, 2^{-d}]$

Memory/Data Tradeoffs for Linear Regression

Unknown $x \in \mathbb{R}^d$ with ||x|| = 1, chosen uniformly at random. Given access to stream of examples (a_i, b_i) ,

$$a_i \sim N(0, I_d)$$

 $b_i = \langle a_i, x \rangle + \eta_i$ noise: $\eta_i \sim Unif[-2^{-d}, 2^{-d}]$

Theorem [Sharan, Sidford, Valiant '19]:

Any algorithm with $o(d^2)$ memory needs at least $\Omega\left(d\log\log\frac{1}{\varepsilon}\right)$ samples to approximate x with L_2 error ε .

Discrete setting Solve Ax=b over a finite field	
	I E
Continuous setting Solve Ax=b over R ^d (or regression)	

Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Each datapoint:

 $(a_i, < a_i, x > \text{mod 2}),$ $a_i \in \{0,1\}^d$ chosen unif. rand **Goal: find** x

Either memory d^2 or exp(d) datapoints.

Each datapoint:

 $(a_i, < a_i, x > +noise)$ $a_i \in \mathbb{R}^d$ chosen e.g. from N(0,I_d) Goal: approximate x to within ε

Thm: $o(d^2)$ space implies need d log log $1/\epsilon$ datapoints (with noise)

Conjecture I: $o(d^2)$ space implies need d log $1/\epsilon$ datapoints

Conj. II: o(d²) space implies need poly(condition number) datapoints

Same as i.i.d. data setting, but datapoints stored in read-only memory.

"Cell-Probe" Model

Easy: linear space and poly(d) queries.

Discrete setting Solve Ax=b over a finite field	
	E
Continuous setting Solve Ax=b over R ^d (or regression)	

Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Each datapoint:

 $(a_i, < a_i, x > \text{mod } 2),$ $a_i \in \{0,1\}^d$ chosen unif. rand **Goal: find** x

Either memory d^2 or exp(d) datapoints.

Same as i.i.d. data setting,

but datapoints stored in

read-only memory.

"Cell-Probe" Model

Easy: linear space and poly(d) queries.

Each datapoint:

 $(a_i, < a_i, x > +noise)$ $a_i \in \mathbb{R}^d$ chosen e.g. from N(0,I_d) Goal: approximate x to within ε

Thm: $o(d^2)$ space implies need d log log $1/\epsilon$ datapoints (with noise)

Conjecture I: $o(d^2)$ space implies need d log $1/\epsilon$ datapoints

Conj. II: o(d²) space implies need poly(condition number) datapoints

Solve Ax=b
Julive Ax-D
over a finite field

Unknown $x \in \{0,1\}^d$ chosen uniformly at random. Each datapoint:

 $(a_i, < a_i, x > \text{mod } 2),$ $a_i \in \{0,1\}^d$ chosen unif. rand **Goal: find** x

Either memory d^2 or exp(d) datapoints.

"Cell-Probe" Model

Same as i.i.d. data setting, but datapoints stored in read-only memory.

Easy: linear space and poly(d) queries.

Continuous setting Solve Ax=b over R^d (or regression)

Each datapoint:

 $(a_i, < a_i, x > +noise)$ $a_i \in \mathbb{R}^d$ chosen e.g. from N(0,I_d) Goal: approximate x to within ε

Thm: $o(d^2)$ space implies need d log log $1/\epsilon$ datapoints (with noise)

Conjecture I: $o(d^2)$ space implies need d log $1/\epsilon$ datapoints

Conj. II: o(d²) space implies need poly(condition number) datapoints

Same as i.i.d. data setting, but datapoints stored in read-only memory.

Conjecture: Need super-linear space.

[Might be *very* hard to prove!!!!]

Approach of the discrete setting fails because numerical errors grow without poly(d) precision arithmetic