Charting the Landscape of
Memory/Data Tradeoffs in
Continuous Optimization: A Survey
of Open Problems

Annie Marsden Vatsal Sharan Aaron Sidford

How do memory constraints influence the speed of
learning/optimization?

Today: Linear Regression min x’Ax — bx

(or solving Ax = b)

Access to i.i.d. data samples

Distribution over (a,b) pairs
(e.g. a <-- Gaussian, b =<a, x>]

Algorithm

“Give me a
datapoint”

“Give me a
datapoint”

“Cell-Probe” Model

Read-only memory

Algorithm

“What is A32,75 7
“What is A17,25 7

Discrete setting
Solve Ax=b
over a finite field

Continuous setting
Solve Ax=b over R¢

(or regression)

i.i.d. data samples

Unknown x € {0,1}% chosen
uniformly at random.

Each datapoint:
(a;, <a;,x>mod 2),
a; € {0,1}4 chosen unif. rand

Goal: find x

Unknown x € R% with |x|=1
chosen uniformly at random.

Each datapoint:
(ai; <a;Xx >);
a; € R% chosen e.g. from N(0,l4)
[or some other distribution]

Goal: approximate x

“Cell-Probe” Model

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Many other interesting models...

No direct access to datapoints, but instead interact
via specific types of oracles

— Statistical Query access

— Function evaluation queries
— Gradient queries

— Etc.

Discrete setting
Solve Ax=b
over a finite field

Continuous setting
Solve Ax=b over R¢

(or regression)

i.i.d. data samples

Unknown x € {0,1}% chosen
uniformly at random.

Each datapoint:
(a;, <a;,x>mod 2),
a; € {0,1}4 chosen unif. rand

Goal: find x

Unknown x € R% with |x|=1
chosen uniformly at random.

Each datapoint:
(a;, <a;x> +noise)
a; € R% chosen e.g. from N(0,l4)
[or some other distribution]

Goal: approximate x

“Cell-Probe” Model

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

i.i.d. data samples “Cell-Probe” Model

Discrete setting
Solve Ax=b
over a finite field

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Unknown x € R% with |x|=1
chosen uniformly at random.

Continuous setting

Solve Ax=b over R¢ | Same as i.i.d. data setting,
(ion) Each datapoint: but datapoints stored in
Or regression (a;, <a;x> +noise) read-only memory.

a; € R% chosen e.g. from N(0O,,)
[or some other distribution]

Goal: approximate x

Unknown x € {0,1}% chosen uniformly at random.
Given access to stream of examples (a;, < a;,x > mod 2),
a; € {0,1}¢ chosen uniformly at random.

Gaussian elimination: memory , O(d) examples

Brute force guess/check: O(d) memory, examples.

Conjecture [Steinhardt, Valiant, Wager’15]:

Any algorithm with <d“/4 memory needs
number of samples to learn x.

Unknown x € {0,1}% chosen uniformly at random.
Given access to stream of examples (a;, < a;,x > mod 2),
a; € {0,1}¢ chosen uniformly at random.

Gaussian elimination: memory , O(d) examples

Brute force guess/check: O(d) memory, examples.

Thm [Raz’16]:

; [C-~ + \/~l: ’ .
ConiecturatStainhardy Maliant, AWagar 1Ed:

Any algorithm with <d* Jqmemory needs
number of samples to learn x.

Subsequent work extended this to a broad class of learning
problems over finite fields

Kol-Raz-Tal’17: sparse parities
Raz’17, Moshkovitz-Moshkovitz’17,18, Beame-Ovies Gharan-

Yang’18, Garg-Raz-Tal’18: Large class of learning problems over
finite fields satisfying combinatorial/mixing properties.

...and more recent papers

See Sumegha Garg’s talk Thursday!!

Unknown x € {0,1}% chosen uniformly at random.
Given access to stream of examples (a;, < a;,x > mod 2),
a; € {0,1}¢ chosen uniformly at random.

Gaussian elimination: memory , O(d) examples

Brute force guess/check: O(d) memory, examples.

Thm [Raz’16]:

; [C-~ + \/~l: ’ .
ConiecturatStainhardy Maliant, AWagar 1Ed:

Any algorithm with <d* Jqmemory needs
number of samples to learn x.

Branching program for learning

® ® ® ® o
® ® ® e (a ,)o
n
@, @ v @ e ® @ > widthw
) :O _ poImemory
@f\»
® ® ® ® ®
® ® ® ® o
(& J
Y

m (length, #examples)

Each layer corresponds to a time step
Each vertex corresponds to a memory state

Every memory state has a transition function (an ‘edge’) which is
a mapping from an example (a, b) to a vertex in the next layer.

Discrete setting
Solve Ax=b
over a finite field

Continuous setting
Solve Ax=b over R¢

(or regression)

i.i.d. data samples

Unknown x € {0,1}% chosen
uniformly at random.
Each datapoint:

(a;, <a;,x>mod 2),
a; € {0,1}4 chosen unif. rand
Goal: find x

Either memory d? or exp(d)
datapoints.

Unknown x € R% with |x|=1
chosen uniformly at random.

Each datapoint:
(a;, <a;x> +noise)

a; € R% chosen e.g. from N(0,l4)
[or some other distribution]

Goal: approximate x

“Cell-Probe” Model

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

i.i.d. data samples “Cell-Probe” Model

_ . Unknown x € {0,1}¢ chosen
Discrete setting uniformly at random.

_ Each datapoint:
Solve Ax=b (a;, < a;x>mod?2),

over a finite field a; € {0,1}¢ chosen unif. rand
Goal: find x

Either memory d? or exp(d)
datapoints.

Unknown x € R% with |x|=1

Continuous setting chosen uniformly at random.

Solve Ax=b over R¢ | Same as i.i.d. data setting,
(ion) Each datapoint: but datapoints stored in
Or regression (a;, <a;x> +noise) read-only memory.

a; € R% chosen e.g. from N(0O,,)
[or some other distribution]

Goal: approximate x

i.i.d. data samples “Cell-Probe” Model

_ . Unknown x € {0,1}¢ chosen
Discrete setting uniformly at random.

_ Each datapoint:
Solve Ax=b (a;, < a;x>mod?2),

over a finite field a; € {0,1}¢ chosen unif. rand
Goal: find x

Either memory d? or exp(d)
datapoints.

Unknown x € R% with |x|=1

Continuous setting chosen uniformly at random.

Solve Ax=b over R¢ | Same as i.i.d. data setting,
(ion) Each datapoint: but datapoints stored in
Or regression (a;, <a;x> +noise) read-only memory.

a; € R% chosen e.g. from N(0O,,)
[or some other distribution]

Goal: approximate x

Discrete setting
Solve Ax=b
over a finite field

Continuous setting
Solve Ax=b over Rd
(or regression)

i.i.d. data samples

“Cell-Probe” Model

Unknown x € {0,1}¢ chosen
uniformly at random.
Each datapoint:

(a;, <a;x>mod?2),
a; € {0,1}¢ chosen unif. rand
Goal: find x

Either memory d? or exp(d)
datapoints.

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Easy: linear space and
poly(d) queries.

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Linear regression: core ML and convex optimization problem

Broader Context:
15t order methods (linear memory, samples)
vs 24 order methods (memory, less samples)

Huge effort to find optimization algorithms with linear memory, that behave
like quadratic-memory algorithms (e.g. conjugate gradient...)

Largely unexplored frontier of continuous optimization research:
* Vast literature on lower bounds on #gueries required from oracle

e Relatively recent work with linear memory: [Dagan-Kur-Shamir’19] on
memory lower bounds in streaming model, sparse linear regression
[Steinhardt-Duchi’15]

Little on memory/sample tradeoffs for optimization with super-linear
memory.

Memory/Data Tradeoffs for Linear Regression
Unknown x € R? with || x ll= 1, chosen uniformly at random.

Given access to stream of examples (a;, b;),
a; ~N(0,Iy)
b =<a;,x> +n; noise: n; ~ Unif[—Z_d, Z_d]

¢ Gradient Descent
o

Q.
)
0)0]
M| -

Gaussian Elimination
d (]

#datapoints
~

1 memory 1
~ d log; ~ d>2 108;

Memory/Data Tradeoffs for Linear Regression
Unknown x € R? with || x ll= 1, chosen uniformly at random.

Given access to stream of examples (a;, b;),
a; ~N(0,1y)
b =<a;,x> +mn; noise: n; ~Unif[-27%,274]

% Gradient Descent

Q
)
0)0]
M| -
@

#datapoints

1 memor
~d log Y s d2log-

Theorem [Sharan, Sidford, Valiant “19]:

Any algorithm with o(d?) memory needs at least () (d log log é)

samples to approximate x with L, error &.

Discrete setting
Solve Ax=b
over a finite field

Continuous setting
Solve Ax=b over R¢

(or regression)

i.i.d. data samples

“Cell-Probe” Model

Unknown x € {0,1}% chosen
uniformly at random.
Each datapoint:

(a;, <a;,x>mod 2),
a; € {0,1}4 chosen unif. rand
Goal: find x

Either memory d? or exp(d)
datapoints.

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Easy: linear space and
poly(d) queries.

Each datapoint:

(a;, <a;,x> +noise)
a; € R% chosen e.g. from N(0,1)
Goal: approximate x to within ¢

Thm: o(d?) space implies need d
log log 1/¢ datapoints (with noise)

Conjecture |: o(d?) space implies
need d log 1/¢ datapoints

Conj. II: o(d?) space implies need
poly(condition number) datapoints

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Discrete setting
Solve Ax=b
over a finite field

Continuous setting
Solve Ax=b over Rd
(or regression)

i.i.d. data samples

“Cell-Probe” Model

Unknown x € {0,1}¢ chosen
uniformly at random.
Each datapoint:

(a;, <a;x>mod?2),
a; € {0,1}¢ chosen unif. rand
Goal: find x

Either memory d? or exp(d)
datapoints.

Each datapoint:

(a;, <a;,x> +noise)
a; € R% chosen e.g. from N(0,1)
Goal: approximate x to within ¢

Thm: o(d?) space implies need d
log log 1/¢ datapoints (with noise)
Conjecture I: o(d?) space implies
need d log 1/¢ datapoints

Conj. ll: o(d?) space implies need
poly(condition number) datapoint

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Easy: linear space and
poly(d) queries.

Discrete setting
Solve Ax=b
over a finite field

Continuous setting
Solve Ax=b over R¢

(or regression)

i.i.d. data samples

“Cell-Probe” Model

Unknown x € {0,1}% chosen
uniformly at random.
Each datapoint:

(a;, <a;,x>mod 2),
a; € {0,1}4 chosen unif. rand
Goal: find x

Either memory d? or exp(d)
datapoints.

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Easy: linear space and
poly(d) queries.

Each datapoint:

(a;, <a;,x> +noise)
a; € R% chosen e.g. from N(0,1)
Goal: approximate x to within ¢

Thm: o(d?) space implies need d
log log 1/¢ datapoints (with noise)
Conjecture |: o(d?) space implies
need d log 1/¢ datapoints

Conj. II: o(d?) space implies need

poly(condition number) datapoints

Same as i.i.d. data setting,
but datapoints stored in
read-only memory.

Conjecture: Need super-linear
space.

[Might be very hard to
prove!lll]

Approach of the discrete
setting fails because numerical
errors grow without poly(d)
precision arithmetic

