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GENERIC QUESTIONS:

For high-dimensional non-convex learning problems:
e How hard is it to sampling from the posterior ?

e How hard is it to compute the ML estimate?

e How does the energy/loss landscape atffect the
behaviour of gradient descent & sampling algorithms?
e Does the presence of spurious minima matter?

e How these approaches compare with message passing?




IN THIS TALK

An attempt to answer these questions in a simple yet generic problem

A synthetic problems where the optimal
performances can be determined, the wa
energy landscape characterised, and the gy <%
behaviour of many algorithms (Message
passing, Sampling, Gradient descent)
analysed ...

& The Matrix-Tensor spiked model on the sphere




SPIKED MATRIX-TENSOR PROBLEM

Create a rank-noise noisy (symmetric) matrix

X*e RY
Choose a normed vector

2
x*[|5 = N, randomly on the . : :
12 Y Create a rank-noise noisy (symmetric) tensor

sphere in N-dimension ( 1) '
<% \ e :\/p 0
? e, .. .lp N(p—l)/2 0

P

51'1,...,1'1, = ‘/V(O’Ap)

Given the matrix T and the tensor Y, can one recover x*?



SPIKED MATRIX-TENSOR PROBLEM

o For the same signal x* in R" & observe a matrix Y and a tensor T:

|
N

V(p—1)!
= N(p=112 S \ Dot Zije ~ A (0,1)

® Can one recover x* from T and Y?




SPIKED MATRIX-TENSOR PROBLEM

PLANTED VERSION OF THE ‘2+P° SPIN GLASS IN STATISTICAL PHYSICS

e Define the Hamiltonian (or cost function):

|
) = Y. x.x;
Az\/ﬁ E e Ll

N
spherical constraint: ), =N
i=1

e Bayes-optimal estimation = marginals of Gibbs measure

[ 1 —H y (X)
X = Epxy,nlXI Poius(X| ¥, T) = e

o MMSE = ||% — x*||2

[ Derrida 81, Mezard-Gross ‘84, many others]
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SPIKED MATRIX-TENSOR PROBLEM

PLANTED VERSION OF THE ‘2+P’ SPIN GLASS IN STATISTICAL PHYSICS

e Define the Hamiltonian (or cost function):

1 o )
) = E Y,ixx; E i . 0
l]" 1 D l ...lp l lp
Az\/ﬁ i<j AN o e 1 1

N
spherical constraint: ), =N
i=1

e Maximum likelihood (MLE)

xx 7 1 x®P
2 2
”2 i i \/(p = 1)!N(1’_1)/2 “2

1
Zix] == il
A n il

Minimize Z(X) subjectto ||X||% =N




Computational-Statistical Gaps:
What do we know?



OPTIMAL LEARNING

INFORMATION THEORETIC PERFORMANCES

1
Poan (XY, T) = g A rait)

! .
From the free energy, -~ log Z(Y), we can compute anything

ey (Elx D
AN A

1
Mutual Information — Ey [N log Z(Y )]

: - - oo odr
Likelihood ratio %10g ( spiked( ) ) - log Z(Y)

E null(Y ) N

Kullback-Leibler Dy (Pspikedll Prun) = Ey log Z(Y)




OPTIMAL LEARNING

INFORMATION THEORETIC PERFORMANCES

Theorem 1 (informally): “replica symmetric potential”

1
For large N, = log Z(Y, A) concentrates around the max of ®y(m)

m m? mP

|
CDRszalog(l—m)+3+—+ m € [0,1]

4A, ' 2pA,

[Mannelli, Biroli, Cammarota, FK, Urbani, & Zdeborova ’18]
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OPTIMAL LEARNING

INFORMATION THEORETIC PERFORMANCES

Theorem 1 (informally): “replica symmetric potential”

1
For large N, = log Z(Y, A) con

10 1

()] 11 (1 )+m—+
= 10 =
RS 5 £ 5

08 1

Theorem 2 (informally): MMS s ”

04 1

MMSE = 1 — argmax [Cbrs(m)] 02
1

[Mannelli, Biroli, Cammarota, FK, Urbani, & Zdeborova ’18]
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OPTIMAL LEARNING

INFORMATION THEORETIC PERFORMANCES




HAT ARE THE BEST
ALGORITHMS SO FAR?




APPROXIMATE MESSAGE PASSING

AN ITERATIVE THRESHOLDING ALGORITHM

o Approximate Message Passing

B(2,t) i 1 YR — L 5tﬁt—1

Az\/ﬁ A
B(p,t) - \/(p = 1)' T ﬁt)@p—l = I 1 At (ﬁt) ; (ﬁt_l)

( o

A, NP-DP2 4 | N
D

A,N

Si)
||Xt||2 100

1+ = pAQD 4 A B2 4 B
1
1 +AQD + AP

6.t+1 i

[Montanari, Richard "15; Mannellj, Biroli, Cammarota, FK, Urbani, & Zdeborova '18



THE HARD PHASE OF AMP

Bayes-optimal performance & AMP

2.5r

20 F

Easy

1.0 //’m“mm
w-Harj/y Impossible

0.5 1.0 1.5 2.0




TWO LIMITS

Bayes-optimal performance & AMP

No tensor information

Pure spiked-matrix model

Spectral method optimal

2, = BBP Transition




TWO LIMITS

Bayes-optimal performance & AMP

2.5r

20 F
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TWO LIMITS

Bayes-optimal performance & AMP

= . =

Dominated by Tensor information

Pure Tensor-Spike model
Best algorithms works for

- . = Ap < N—(P—z)/4 /lp > ]\](P_z)/4

[ Montanari, Richard ’14, Hopki, hi, Steurer '15
@ Wein, El Alaoui, Moore 19, ....]




THE HARD PHASE OF AMP

Bayes-optimal performance & AMP

2.5r

20 F

Easy

1.0 //’m“mm
w-Harj/y Impossible
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WHAT ABOUT PRACTICAL
OFF-THE-SHELVES ALGORITHMS?

Sampling the posterior with MCMC or Langevin ?

MLE with gradient descent?

Connection gradient descent with property of the landscapes?

Presence/Absence of spurious minima?

All these can be studied analytically & quantitively
in the spherical spiked matrix-tensor model
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Sampling the posterior
with Langevin dynamics



LANGEVIN ALGORITHM

(n(On(t)) = 26,6(t — 1)
spherical constraint T=1 noise

\ O g
X() = — p(0)x(?) + 1:(?)

ox;
A

l
gradient

At large time (exponential in N) samples the posterior measure.

Where does it go in large but constant time?




Analytical solution of the off-equilibrium dynamics of a long-range
spin-glass model

L. F. Cugliandolo and J. Kurchan
Phys. Rev. Lett. 71, 173 — Published 5 Julv 1993

Zeitschrift fiir Physik B Condensed Matter
... June 1993, Volume 92, Issue 2, pp 257-271 | Cite as

The sphericalp-spin interaction spin-glass model

The dynamics

Authors Authors and affiliations

A. Crisanti, H. Horner, H. -J. Sommers

CUGLIANDOLO-KURCHAN EQUATIONS FOR DYNAMICS OF
SPIN-GLASSES.

GERARD BEN AROUS, AMIR DEMBO, AND ALICE GUIONNET

ABSTRACT. We study the Langevin dynamics for the family of spherical p-spin disordered mean-
field models of statistical physics. We prove that in the limit of system size N approaching infinity,
the empirical state correlation and integrated response functions for these N-dimensional coupled
diffusions converge almost surely and uniformly in time, to the non-random unique strong solution
of a pair of explicit non-linear integro-differential equations, first introduced by Cugliandolo and
Kurchan.

Probability Theory and Related Fields 136, 619-660 (2006)




LANGEVIN STATE EVOLUTION

g Ti(t)zi(t')
'ﬁil L (t)w: y mLangeVin(t)
S iy 0xi(t) /Ohi(t)|n,=o0 ,

0

Ec(t’ t')y=2R(t',t) — ut)C(t,t") + Q' (C(t))C(t') + / t dt"R(t,t")Q" (C(t,t")C(',t") + / t dt"R(t',t")Q"(C(t,t"))

t

%R(t, t)=6(t—t)— ut)R(t,t)+ / dt"R(t,t")Q" (C(t,t"))R(t", 1),

t

23(t) = —u(t)O(t) + Q' (C(1)) + / dt"R(t,¢")C(1")Q(C(t,t")), Q(z) = 2%/(202) + 27/ (pAp).

Generalization of the CHSCK equations that includes the spike x*.

[Mannelli, Biroli, Cammarota, FK, Urbani, & Zdeborova ’18]
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LANGEVIN STATE EVOLUTION
(NUMERICAL SOLUTION)
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http://github.com/sphinxteam/spiked_matrix-tensor



AMP SAMPLNG
VS LANGEVIN SAMPLING

OK, Langevin is slower....

AMP in the long run
(i.e linear but large time)?




LANGEVIN STATE EVOLUTION
(NUMERICAL SOLUTION)
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Figure 4: Correlation with the signal of AMP and Langevin at the kth iteration (at time t¢) for fixed Ay = 0.7.

http://github.com/sphinxteam/spiked matrix-tensor



A LANGEVIN PHASE TRANSITION

- |[nformation theoretic threshold
== = AMP threshold
=== 1RSB complexity threshold
=@ ' Langevin threshold
% Langevin threshold check

Easy




AMP BEATS LANGEVIN

Langevin dynamics display worst performances w.r.t. Bayes-AMP

Physicists: “Residual glassiness prevents a correct sampling”

We expect the same picture to hold in all problems having
hard phase associated to the first order phase transition.
(e.g. GLM, Teacher-Student Neural networks, ... )




A PARISI-FRANZ VISION

BEWARE: THIS SLIDE IS FOR REPLICA GEEKS

Consider the free energy of a system conditioned at a
given overlap m from truth vector x*

B |
: \ @ pp(m) = lim —E, log Z(Y, m)
: N— o0 N

log Z(Y, m) = dee_% 1 (

argm;aXCI)(m)

et 10

P—{
qe!
o p={
=)
=
)
=)
o
@
N
a
qv]
$—
Fy
S
0]
o p={
$—
ae]
Ay

m%

AMP try to optimize the Langevin try to optimize the
Replica-Symetric potentiel Actual (RSB) potential

[Antenucci, Franz, Urbani, Zdeborova '19]
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MLE, Gradient & Landscapes



MLE AND MINIMIZATION

e For the same signal x* observe a matrix Y and a tensor T as:

xhxk + &, i~ N(O0,A)

VN
v —1)!
N e x S
v e

Cirseoiy ~ NV (0,4))

ll...lp

e Maximum likelihood (MLE)

xx7 1 x®P

1
L(x) = —||Y - - — 15! .
(x) 2A2” \/NHQ 2Ap” \/(p ) N(p—l)/2”2

Minimize £(x) subjectto |[x||5=N




GRADIENT FLOW

ZERO TEMPERATURE LIMIT OF LANGEVIN

. 0H
X(1) = — p()x,(1) + 1(?)

dxl'

0H

0xl-

X, (1) = — u(t)xy1)

Can be analysed again with the Langevin State evolution

Simply the T — 0 limit of the CHSCK equations




LANGEVIN STATE EVOLUTION

ZERO TEMPERATURE LIMIT: GRADIENT FLOW

Cn(t,t) =g 2 zi(t)zi(t),
Cn(t) LS zi(t)zr, = mgp(D)

Rn(t,t) =53 8zi(t)/0hi(t)|n,—o0

9 0(t,¢) = —a(t)C (1, ') + @ (m(t)ym(t') + / at" R(t, £")Q" (C(t, ")) C(¢' 1)

ot
t/
T / R Q' (C(1, 1)),
0
t
) = ARt 1) + / at" R(t, ") Q" (C(t, t")) R(¢", 1)
t/

(t)m(t) + Q"(m(t)) + /O dt"R(t, t")m(t")Q(C(t,t")) .

Q(z) = 2°/(2A2) + 27/ (pAp).

[Mannelli, Biroli, Cammarota, FK, Urbani, & Zdeborova ’18]
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NUMERICAL INTEGRATION

Gradient works




ANALYTICAL SOLUTION

(LONG TIME EXTRAPOLATION)

Gradient works

2
4,1/ +4(p - DA,

GF _
ASES

2(p—1)




ENERGY LANDSCAPE

e Maximum likelihood (MLE)

<®P

I7
N(p-Dr2 "F

By T s
X) = —|Y — — - =
A m 4

Minimize Z(x) subject to ||X||% =N

e Can we compute the property of the energy landscape ?
o Number of minimas/saddles at each energy level?

e Are the minima spurious or good ones?




LANDSCAPE & MINIMAS
THE KAC-RICE FORMULA

. .
]\171_1)1010 e log E [/V (m, €,, ep)] =2y, Ap(m, £

N(m, €2, €p; Ao, Ap) — 22,4y (m,e2,ep) _

N—1

= / Eldet H|G = 0, Fy = Ney, F,, = Nep, H = 0]¢q 7,7, (0,0, €2,€p) 6(m — 0 - 07)do |
S |

M

| Fyodorov Y. V. '03; Auffinger A., Ben Arous G., & Cerny J '13]




LANDSCAPE & MINIMAS

KAC-RICE FOR THE SPIKE MODEL

1 .
lim —logE [/V (1, 65, ep)] = 2ip, 0, (1M, €, €,)

N—oco N
I v el (5t ) 2
3 — A Az 2 P 2 2 m
i s == o = )
p p
2

: 4 2

| L 0 N #-(0+4) 011
42 42 + " | - l\/mdy——<t— O+ = )+ 0>1,2<t<
O(t) = 7 T 1> [log (VZ -1+ g) — %\/ﬁ —4] L(b.t) = S ;/9+ot<2 2 ( 9) 8 6

0 otherwise.

ﬁ-—“m———-—

(Note: we also checked that annealed is equal to
quenched, thanks to the replica method)

[Ben Arous, Mei, Montanari, & Nica ’7, Sarao, FK, Urbani & Zdeborova '19]



LANDSCAPE ANALYSIS

(exponentially many saddles points )

Low SNR / large noise situation

Similar as in Levent, Guney, Ben Arous & LeCun ‘14



LANDSCAPE ANALYSIS

(exponentially many saddles points )

V

Trivialisation

Increasing the SNR I

- —



WHAT IS ACTUALLY GOING ON

e Trivialization line

Exponentially many spurious minima...
... yet gradient flow works just fine!

5




LANDSCAPE AN/ g‘gg
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' Trivialisation

Increasing the SNR I
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LANDSCAPE ANALYSIS

Former minima develop a negative slope

/ in the direction of the spike!
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ANALYTICAL SOLUTION

(LANDCSAPE ANALYSIS)

i Y Trivialization line




IN ANUTSHELL

min_is = -1.911, min_sc = -1.895 t = 0.06, m=0.0000




CONCLUSIONS...

e Spherical spike matrix-tensor problem has interesting properties;
Many quantities can be computed (Optimal performances, energy
landscape, performance of AMP, Langevin, Gradient descent...)

e Observed Gap between Langevin sampling and message passing
performances: MCMC not as good as Langevin?

e Minimisation algorithms are observed to work just fine even in
presence of (exponentially many) spurious minima




... PERSPECTIVES?

e More on monte-carlo sampling in M. C. Angelini’s talk tomorrow

e Other non convex learning and signal processing problems
(e.g. Phase retrieval, see Antoine Maillard’s talk tomorrow)

e Effect of prior information (see Bruno Loureiro’s talk next)

e Neural networks: Single layer perceptron, teacher-student multi-
layer deep networks, over-parametrization, etc...

e Non convex setting with other gradient-based algorithms - SGD,
Nesterov, momentum, etc ....,
(Recent papers by Zdeborova, Mignacco, Urbani...)




REFERENCES FOR THIS TALK

e Marvels and pitfalls of the Langevin algorithm in noisy high-
dimensional inference; Sarao, Biroli, Cammarota, FK, Urbani,
Zdeborova, PRX ‘19.

e Passed & Spurious: Descent Algorithms and Local Minima in
Spiked Matrix-Tensor Models; Sarao, FK, Urbani, Zdeborova,
ICML’19, arXiv:1902.00139.

e Who is Afraid of Big Bad Minima? Analysis of Gradient-Flow
in a Spiked Matrix-Tensor Model; Sarao, Biroli, Cammarota,
FK, Urbani, Zdeborova. NeurlIPS ‘19.
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