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PHASE RETRIEVAL

Recover a d-dimensional signal X* from n data points {®,,,Y,,};;_; generated as:

Observations Y, € R
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(Probabilistic) channel
with possible noise.

Pous(y]2) = Pous(y|2

In the limit d,n — oo with a =n/d = ©(1), what is the smallest o« heeded to recover X* ..

« Better than a random guess ?

Sensing matrix (real/complex)

Generalized Linear Model (GLM)
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), €. noiseless Y, = =|(2X"),[*; Poisson-noise Y, ~ Pois(A|(®X*),[*/d).

«  Perfectly ? (up to the possible rank deficiency of ¢)

«  With which (polynomial-time) algorithm ? Cheap (e.g. spectral) methods ?

: Fundamental limits of high-dimensional phase retrieval with

Different from “worst-case” injectivity studies

Signal (real/complex), d-dimensional
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Image credits:

sensing matrix and signal in the case.
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The matrix ® is .i.e. delocalized right-eigenvectors :vU, & < U

The bulk of eigenvalues of ®'®/d converges to a distribution v(z),as n,d — oo with n/d — a > 0.

Examples: Gaussian matrices, product of Gaussians, random column-orthogonal/unitary,any & = USVT with 52 "% .
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The Minimal Mean Squared Error (MMSE) estimator is the first moment of the posterior distribution:

n d
Po(dz;) ,];[1 Pout (Yg‘% ; (I),u,z'ivz')

\‘ “Replica-symmetric” potential f(q.,q-)
(c i ‘\ 7(8) (8) ~
Jim —E(Zi(Y, @)= sup [I{” (a.) + In (0:) + Bt (4, 42)]
qx,q=z PO Pout 7
The information-theoretic MMSE is :
- J
« Thefunctionsinvolved in the optimization problem are fully explicit.
 Thelog-partition (or free entropy) is related to the mutual information 1(X*; Y|®) = Eln Z; — nEIn Poy (Y1 | (@;) 5
(

 Conjecture obtained with the heuristic replica method of statistical physics. [Mézard&al 1987, Takahashi&al 20] Eln Z = lim
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RIGOROUS FUNDAMENTAL LIMITS

~ 1 i
lim —Eln Z,(Y,®) = sup I3 (q) + I (q.) + Bl (4o, 02)]

d— oo d qxz,qz

The information-theoretic MMSE is:

N\ J

If either
a) . =" N3(0,1) (standard Gaussian distribution)
b) P is Gaussianand & :7@
AR

Gaussian matrix Any matrix

We use probabilistic adaptive interpolation methods [Barbier&al 19], based on the seminal works of [Guerra ‘03, Talagrand '06].

« The replica formula for non-linear GLMs was so far only proven for real Gaussian matrices [Barbier&al 19], we tackle for the first
time heavily correlated data!




ALGORITHMIC LIMITS

Strong conjecture : The optimal polynomial-time algorithm is an explicit iterative algorithm :

Approximate Message Passing, called here G-VAMP (Generalized Vector Approximate Message Passing).

_ 1
lim ~ElnZ4(Y,®) = sup [I§” (¢5) + I56)(¢:) + BLins(¢s» a2)]

d— oo d da

The MSE of G-VAMP in the large n limit is given by a fixed-point algorithm on the replica-
symmetric potential starting from ¢, = ¢. = 0 (random initialization).

M We can investigate “computational-to-statistical” gaps
__,...........w.-:) by studying the landscape of f(4.,q-) !
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q > q
No gap: AMP-easy Gap : AMP-hard




APPLICATION: THRESHOLDS IN PHASE RETRIEVAL

Weak-recovery

This threshold awr, aig. is the only solution to:
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For , the highest
weak recovery threshold is reached by

Derived by a stability analysis of the replica-synmmetric
potential around the uninformative point.

|

Pout(yyz) == Pout(yHZD

Stronqg recovery

Noiseless phase retrieval Po.(y|z) = d(y — |2|?) and Gaussian prior

1 /PP
If (Q.S.) ark(T) = T.C {0, 1] then QFR,IT = B?"

Analysis of the global maxima of the replica-symmetric potential.

Thereal case argr,iT =7 can be derived by a counting
argument.

The complex case arriT = 2r can (as far as we know)
only be derived our analysis of the replica-symmetric
potential !



NUMERICAL APPLICATIONS

Pout(y]2) = d(y — |2|?) and a Gaussian prior

Column-unitary matrices

Complex Gaussian matrices
1
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G-VAMP matches the analytical predictions, even with a natural image !

Matrices with controlled structure (e.g. randomly subsampled DFT) still

perform very well !
For column-unitary matrices we have apg 11 = awr algo = 2
IT transition.

For all other full-rank complex matrices awr,aigo < arr.1T.




CHEAPER ALGORITHMS?

SOP relaxations )
Non-convex optimization procedures | | >
Approximate Message-Passing (this talk) er&al }

Computationally heavy /
Need informed initialization

Spectral methods

Given a phase retrieval problem with an arbitrary sensing matrix, we want an “optimal” spectral method in terms of MSE:

L AR
MSEEd_pHX _)(spectralH2
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Method I : Linearization of message-passing algorithms.

Method Il : Bethe Hessian analysis from the Thouless-Anderson-Palmer

This talk: Two different strategies, related to the statistical physics approach to high-dimensional inference.

free energy.
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OPTIMAL SPECTRAL METHOD oy 0oty L 4 1 Jede B o Pl
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The optimal spectral method (in terms of achieved error) in the class M(7) = é Z T (y,)®, @ is M(T*) :

[’T*(y) < 1 8wgout(yua0:p</\>1//a) ]

A
From Method I Y BN + %awgout (y,uv 0, }O<)\>y/06)

* Innoiseless phase retrievalonehas 7*(y) =1—1/y.
 Fully constructive derivation of the optimal method: we did not assume the method to be in the class M(7)!
« The optimal spectral method does not depend on the spectrum of the sensing matrix (apart from a global scaling) !

mm) Consequences for practitioners: one only needs to know the observation channel to construct the method!

Our other approach (Method I) gives a slightly different result:

CpA) o BBt . . _ ®"Diag({0ugout (Y, 0, p(N) /) })ia
MLAMP\:\ a ((/\>V d _I”)Dlag({a‘”g"“t(y”’O"’(A)"/O‘)}) S Ik = H(I)TDiag({awgouz(ymU,PO\)V/Oé)})ﬁ Vip.

!

Mpawmp is @ n x n non-Hermitian matrix (complex spectrum). 11 : top eigenvector of My avp -



COMPARl NG SPECTRAL METHODS Complex Gaussian & and Poisson noise

M anp Mrap Pous(ylz) = e 2" S~ 6(y — k)
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* The optimal method corresponds to marginal stability in both M anp and Mpap.

« But message-passing algorithms and the TAP approach are fundamentally equivalent ! [ AM&al 19

why is the dominant eigenvector of M a\p 0 suboptimal estimator ?

Similar phenomenon noticed in community detection [DallAmico&al <19, 21].

Ak|z|2k
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k=0

“Marginality vs instability”
puzzle
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SPECTRAL METHODS PERFORMANCE
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«  Zramp(A = 1) = Trap, achieving the best overlap. Otherwise Zramp(Amax) is suboptimal in terms of MSE.
« Our theory stays valid for matrices with controlled structure (partial OFT = randomly subsampled DFT).

* For partial OFT matrices, we use the method as initialization of a gradient-descent procedure: perfect recovery at o € (3,4),

while the best polynomial-time algorithm achieves apr ~ 2, 3.

P(A)



CONCLUSION

Matrix ensemble and value of 3 QWR, Algo QFR,IT QFR,Algo
Real Gaussian ® (8 = 1) 0.5 1 25 I
) Complex Gaussian ® (5 = 2) 1 ;
I Real column-orthogonal @ (3 = 1) 1 Noiseless phase
Complex column-unitary ® (5 = 2) 2 > retrieval with
Fundamental ® = W; W, (=1, aspect ratio ) v/(2(1+ 7)) min(1,~) Theorem Gaussian prior
limits of phase ® = W, W, (5 = 2, aspect ratio )
retrieval ®, 3 c{1,2}, 1k[®T®]/n =1 J .
Gauss. @, 8 € {1,2}, symm. Py, Poy Analytical expression Generic phase
® = WB, 3 € {1,2}, Gauss. Py, symm. P, } retrieval with any
®, 3 € {1,2}, symm. Py, Pout prior
II» » Constructive derivation of a conjecturally optinmnal spectral method in generic phase retrieval problems.
Spectral Our results apply to randomly subsampled DF T matrices and to real image recovery.
methods

I “Marginality vs instability” puzzle: Bethe Hessian and message-passing constructions of spectral methods should be equivalent!

THANK YOU'!



