

PHASE RETRIEVAL IN HIGH DIMENSIONS: PHASE TRANSITIONS AND OPTIMAL SPECTRAL METHODS

arXiv:2006.05228, NeurIPS '20

arXiv:2012.04524, MSML '21

Antoine Maillard

Joint work with Bruno Loureiro, Florent Krzakala, Yue M. Lu & Lenka Zdeborová

Rigorous Evidence for Information-Computation Trade-offs - September 15th 2021

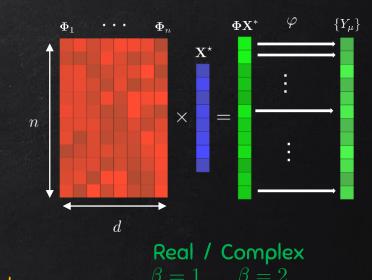
PHASE RETRIEVAL

<u>Goal</u>: Recover a d-dimensional signal X^* from n data points $\{\Phi_\mu, Y_\mu\}_{\mu=1}^n$ generated as:

Generalized Linear Model (GLM)

Observations
$$Y_{\mu} \in \mathbb{R}$$

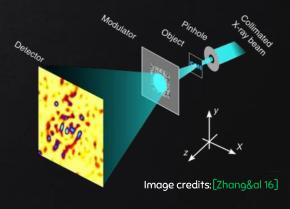
$$Y_{\mu} \sim P_{\mathrm{out}} \left(\cdot \middle| \frac{1}{\sqrt{d}} \sum_{i=1}^{d} \Phi_{\mu i} X_{i}^{\star} \right) \; \mu \in \{1, \cdots, n\}$$
 (Probabilistic) channel with possible noise. Sensing matrix (real/complex) Signal (real/complex), d-dimensional



Phase retrieval:
$$P_{\mathrm{out}}(y|z) = P_{\mathrm{out}}(y||z|)$$
, e.g. noiseless $Y_{\mu} = \frac{1}{d} |(\mathbf{\Phi} \mathbf{X}^{\star})_{\mu}|^2$; Poisson-noise $Y_{\mu} \sim \mathrm{Pois}(\Lambda |(\mathbf{\Phi} \mathbf{X}^{\star})_{\mu}|^2/d)$.

In the limit $d, n \to \infty$ with $\alpha = n/d = \Theta(1)$, what is the smallest α needed to recover \mathbf{X}^{\star} ...

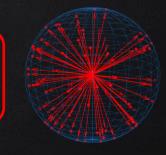
- Better than a random guess?
- Perfectly ? (up to the possible rank deficiency of Φ)
- With which (polynomial-time) algorithm? Cheap (e.g. spectral) methods?



Goal: Fundamental limits of high-dimensional phase retrieval with random sensing matrix and signal in the typical case.

Our model: The matrix $m{\Phi}$ is right-orthogonally (unitarily) invariant, i.e. delocalized right-eigenvectors : $orall {f U}, \; m{\Phi} \stackrel{d}{=} m{\Phi} {f U}$

The bulk of eigenvalues of $\Phi^{\dagger}\Phi/d$ converges to a distribution $\nu(x)$, as $n,d\to\infty$ with $n/d\to\alpha>0$.



Examples: Gaussian matrices, product of Gaussians, random column-orthogonal/unitary, any $\Phi \equiv \mathbf{USV}^\dagger$ with $S_i^2 \stackrel{\mathrm{i.i.d.}}{\sim} \nu$.

The Minimal Mean Squared Error (MMSE) estimator is the first moment of the posterior distribution:

$$P(\mathrm{d}\mathbf{x}|\mathbf{Y},\mathbf{\Phi}) \equiv \underbrace{\mathcal{Z}_d(\mathbf{Y},\mathbf{\Phi})}^{d} P_0(\mathrm{d}x_i) \prod_{\mu=1}^{n} P_{\mathrm{out}}\left(Y_{\mu} \Big| \frac{1}{\sqrt{d}} \sum_{i=1}^{d} \Phi_{\mu i} x_i\right)$$

"Replica-symmetric" potential $f(q_x, q_z)$

$$\underbrace{\text{Conjecture ("Replica formula"):}}_{d \to \infty} \lim_{d \to \infty} \frac{1}{d} \mathbb{E} \ln \underbrace{\mathcal{Z}_d(\mathbf{Y}, \mathbf{\Phi})}_{q_x, q_z} = \sup_{q_x, q_z} \underbrace{[I_0^{(\beta)}(q_x) + I_{\text{out}}^{(\beta)}(q_z) + \beta I_{\text{int}}(q_x, q_z)]}_{P_0}$$

The information–theoretic MMSE is: $\lim_{d o\infty}\mathbb{E}\|\mathbf{X}^{\star}-\hat{\mathbf{X}}_{\mathrm{opt}}\|^2/d=
ho-q_x.$

- The functions involved in the optimization problem are fully explicit.
- The log-partition (or free entropy) is related to the mutual information $I(\mathbf{X}^\star;\mathbf{Y}|\mathbf{\Phi}) = \mathbb{E}\ln\mathcal{Z}_d n\mathbb{E}\ln P_{\mathrm{out}}\big(Y_1\big|\frac{(\mathbf{\Phi}\mathbf{X}^\star)_1}{\sqrt{d}}\big)$
- Conjecture obtained with the heuristic <u>replica method</u> of statistical physics. [Mézard&al 1987, Takahashi&al '20] $\mathbb{E} \ln \mathcal{Z} = \lim_{r \to 0^+} \frac{\mathbb{E} \mathcal{Z}^r \mathbb{I}}{r}$

RIGOROUS FUNDAMENTAL LIMITS

The information–theoretic MMSE is: $\lim_{d\to\infty} \mathbb{E} \|\mathbf{X}^{\star} - \hat{\mathbf{X}}_{\mathrm{opt}}\|^2/d = \rho - q_x$.

Theorem (informal): If either

- a) $\Phi_{\mu i} \overset{\text{i.i.d.}}{\sim} \mathcal{N}_{\beta}(0,1)$ (standard Gaussian distribution)
- b) P_0 is Gaussian and $\Phi = WB$

Gaussian matrix

Any matrix

, the replica conjecture stands

- We use probabilistic adaptive interpolation methods [Barbier&al '19], based on the seminal works of [Guerra '03, Talagrand '06].
- The replica formula for non-linear GLMs was so far only proven for real Gaussian matrices [Barbier&al '19], we tackle for the first time heavily correlated data!

ALGORITHMIC LIMITS

Strong conjecture: The optimal polynomial-time algorithm is an explicit iterative algorithm:

Approximate Message Passing, called here G-VAMP (Generalized Vector Approximate Message Passing).

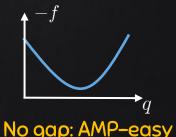
[Mézard '89, Donoho&al '09, Montanari&al '10, Krzakala&al '11, Rangan&al '16, Schniter&al '16, ...]

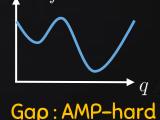
$$\lim_{d \to \infty} \frac{1}{d} \mathbb{E} \ln \mathcal{Z}_d(\mathbf{Y}, \mathbf{\Phi}) = \sup_{q_x, q_z} \left[I_0^{(\beta)}(q_x) + I_{\text{out}}^{(\beta)}(q_z) + \beta I_{\text{int}}(q_x, q_z) \right]$$

"Replica-symmetric" potential $f(q_x, q_z)$

Important result [Schniter&al 16]: The MSE of G-VAMP in the large n limit is given by a fixed-point algorithm on the replicasymmetric potential starting from $q_x = q_z = 0$ (random initialization).

We can investigate "computational-to-statistical" gaps by studying the landscape of $f(q_x,q_z)$!





APPLICATION: THRESHOLDS IN PHASE RETRIEVAL

Weak-recovery

What is the minimal number of measurements $\alpha = n/d$ necessary to beat a random guess in polynomial time?

This threshold $\alpha_{WR,Algo}$ is the only solution to :

$$\alpha = \underbrace{\frac{\langle \lambda \rangle_{\nu}^{2}}{\langle \lambda^{2} \rangle_{\nu}}} \left[1 + \left\{ \int_{\mathbb{R}} dy \frac{\left(\int_{\mathbb{K}} \mathcal{D}_{\beta} z \ (|z|^{2} - 1) \ P_{\text{out}} \left[y \middle| \sqrt{\frac{\rho \langle \lambda \rangle_{\nu}}{\alpha}} z \right] \right)^{2}}{\int_{\mathbb{K}} \mathcal{D}_{\beta} z \ P_{\text{out}} \left[y \middle| \sqrt{\frac{\rho \langle \lambda \rangle_{\nu}}{\alpha}} z \right]} \right\}^{-1} \right]$$

For any phase/sign retrieval channel, the highest weak recovery threshold is reached by random column-orthogonal/unitary matrices.

Derived by a stability analysis of the replica-symmetric potential around the uninformative point.

Strong recovery

Noiseless phase retrieval $P_{\mathrm{out}}(y|z) = \delta(y-|z|^2)$ and Gaussian prior

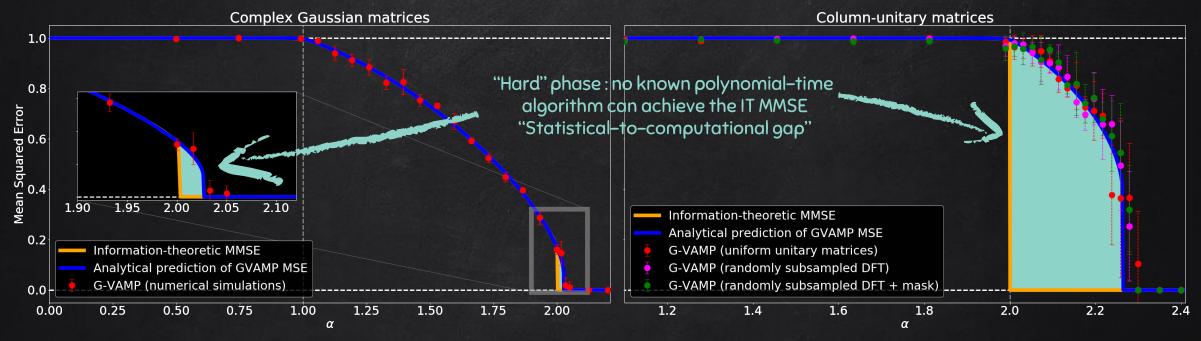
How many measurements $\alpha=n/d$ are necessary to be able to information—theoretically achieve the best possible recovery?

If (a.s.)
$$rac{1}{d} ext{rk}\Big(rac{m{\Phi}^\daggerm{\Phi}}{d}\Big) o r\in[0,1]$$
 then $lpha_{ ext{FR,IT}}=eta r$

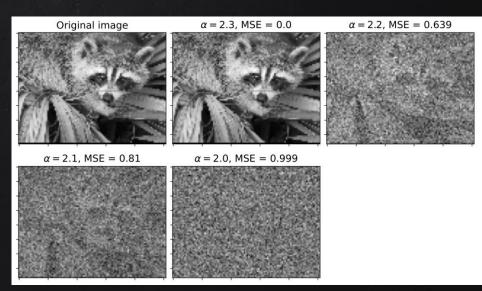
Analysis of the global maxima of the replica-symmetric potential.

- The real case $\alpha_{\rm FR,IT}=r$ can be derived by a counting argument. [Candès&Tao '05]
- The complex case $\alpha_{\rm FR,IT}=2r$ can (as far as we know) only be derived our analysis of the replica-symmetric potential!

NUMERICAL APPLICATIONS



- G-VAMP matches the analytical predictions, even with a natural image!
- Matrices with controlled structure (e.g. randomly subsampled DFT) still perform very well!
- For column–unitary matrices we have $\alpha_{\rm FR,IT}=\alpha_{\rm WR,Algo}=2$:"all–ornothing" IT transition.
- For all other full-rank complex matrices $\alpha_{\mathrm{WR,Algo}} < \alpha_{\mathrm{FR,IT}}$.



CHEAPER ALGORITHMS?

- SDP relaxations [Candès&al '15a&b, Waldspurger&al '15, Goldstein&al '18, ...]
- Non-convex optimization procedures [Netrapalli&al '15, Candès&al '15c, ...]
- Approximate Message-Passing (this talk) [Barbier&al '19, A.M.&al '20...]

Computationally heavy / Need informed initialization

Spectral methods

[Mondelli&al '18, Luo&al '18, Dudeja&al '19,...]

Given a phase retrieval problem with an arbitrary sensing matrix, we want an "optimal" spectral method in terms of MSE:

$$MSE \equiv \frac{1}{d\rho} \|\mathbf{X}^* - \hat{\mathbf{X}}_{spectral}\|^2$$

This talk: Two different strategies, related to the statistical physics approach to high-dimensional inference.

- <u>Method I:</u> Linearization of message-passing algorithms.
- Method II: Bethe Hessian analysis from the Thouless-Anderson-Palmer [TAP77] free energy.

OPTIMAL SPECTRAL METHOD

$$\partial_{\omega} g_{\text{out}}(y_{\mu}, 0, \sigma^{2}) = -\frac{1}{\sigma^{2}} + \frac{1}{\sigma^{4}} \frac{\int_{\mathbb{K}} dx \ e^{-\frac{\beta}{2\sigma^{2}}|x|^{2}} \ |x|^{2} \ P_{\text{out}}(y_{\mu}|x)}{\int_{\mathbb{K}} dx \ e^{-\frac{\beta}{2\sigma^{2}}|x|^{2}} \ P_{\text{out}}(y_{\mu}|x)}$$

Main conjecture: The optimal spectral method (in terms of achieved error) in the class $\mathbf{M}(\mathcal{T}) \equiv rac{1}{d} \sum_{\mu=1}^n \mathcal{T}(y_\mu) \Phi_\mu \Phi_\mu^\dagger$ is $\mathbf{M}(\mathcal{T}^\star)$:

From Method II: " $\mathbf{M}_{\mathrm{TAP}}$ "

$$\mathcal{T}^*(y) = \frac{\partial_{\omega} g_{\text{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu} / \alpha)}{1 + \frac{\rho \langle \lambda \rangle_{\nu}}{\alpha} \partial_{\omega} g_{\text{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu} / \alpha)}$$

- In noiseless phase retrieval one has $\mathcal{T}^{\star}(y) = 1 1/y$.
- Fully constructive derivation of the optimal method: we did not assume the method to be in the class $\mathbf{M}(\mathcal{T})$!
- The optimal spectral method does not depend on the spectrum of the sensing matrix (apart from a global scaling)!
 - Consequences for practitioners: one only needs to know the observation channel to construct the method!

Our other approach (Method I) gives a slightly different result:

Linearized Approximate Message-Passing (LAMP) spectral method.

$$\mathbf{M}_{\mathrm{LAMP}} \equiv \frac{\rho \langle \lambda \rangle_{\nu}}{\alpha} \Big(\frac{\alpha}{\langle \lambda \rangle_{\nu}} \frac{\mathbf{\Phi} \mathbf{\Phi}^{\dagger}}{d} - \mathrm{I}_{n} \Big) \mathrm{Diag}(\{\partial_{\omega} g_{\mathrm{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu}/\alpha)\}) \quad \Longrightarrow \quad \hat{\mathbf{x}} \equiv \frac{\mathbf{\Phi}^{\dagger} \mathrm{Diag}(\{\partial_{\omega} g_{\mathrm{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu}/\alpha)\}) \hat{\mathbf{u}}}{\left\| \mathbf{\Phi}^{\dagger} \mathrm{Diag}(\{\partial_{\omega} g_{\mathrm{out}}(y_{\mu}, 0, \rho \langle \lambda \rangle_{\nu}/\alpha)\}) \hat{\mathbf{u}} \right\|} \sqrt{d\rho}.$$

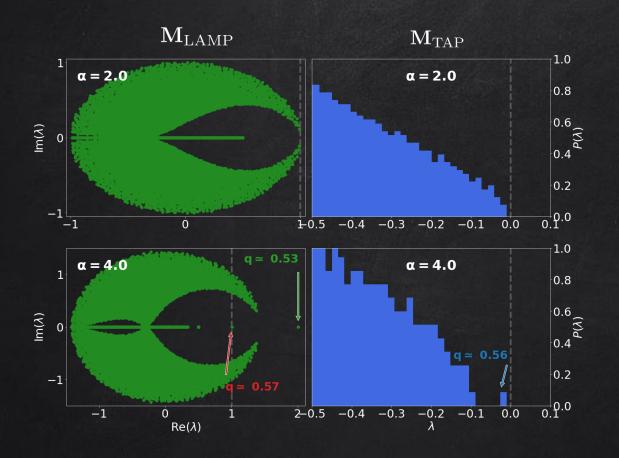
$$\mathbf{M}_{\mathrm{LAMP}} \text{ is a } n \times n \text{ non-Hermitian matrix (complex spectrum)}.$$

$$\hat{\mathbf{u}} : \text{top eigenvector of } \mathbf{M}_{\mathrm{LAMP}}.$$

COMPARING SPECTRAL METHODS

Complex Gaussian Φ and Poisson noise

$$P_{\text{out}}(y|z) = e^{-\Lambda|z|^2} \sum_{k=0}^{\infty} \delta(y-k) \frac{\Lambda^k |z|^{2k}}{k!}$$



$$\Lambda = 1$$

$$q = \frac{1}{d} \sum_{i=1}^{d} X_i^* \hat{x}_i$$

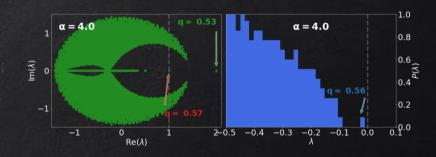
- The optimal method corresponds to marginal stability in both $\mathbf{M}_{\mathrm{LAMP}}$ and $\mathbf{M}_{\mathrm{TAP}}$.
- But message-passing algorithms and the TAP approach are fundamentally equivalent! [A.M.&al 19]

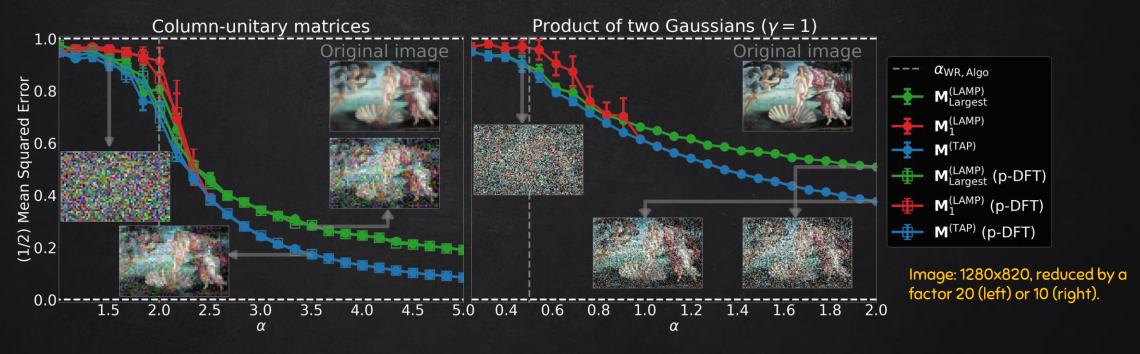
Puzzle: why is the dominant eigenvector of $\mathbf{M}_{\mathrm{LAMP}}$ a suboptimal estimator ?

"Marginality vs instability" puzzle

SPECTRAL METHODS PERFORMANCE

Noiseless complex phase retrieval $Y_{\mu}=rac{1}{d}ig|\Phi\mathbf{X}^*ig|^2$





- $\hat{x}_{\text{LAMP}}(\lambda = 1)$ \hat{x}_{TAP} , achieving the best overlap. Otherwise $\hat{x}_{\text{LAMP}}(\lambda_{\text{max}})$ is suboptimal in terms of MSE.
- Our theory stays valid for matrices with controlled structure (partial DFT \equiv randomly subsampled DFT).
- For partial DFT matrices, we use the method as initialization of a gradient-descent procedure: perfect recovery at $\alpha \in (3,4)$, while the best polynomial-time algorithm achieves $\alpha_{PR} \simeq 2,3$. \blacksquare Very competitive while computationally cheap!

CONCLUSION

(NEW RESULTS IN RED)

	ımental
imits d	of phase
reti	rieval

Matrix ensemble and value of β	$lpha_{ m WR, Algo}$	$lpha_{ m FR,IT}$	$lpha_{ m FR,Algo}$
Real Gaussian Φ $(\beta = 1)$	0.5	1	$\simeq 1.12$
Complex Gaussian Φ ($\beta = 2$)	1	2	$\simeq 2.027$
Real column-orthogonal Φ ($\beta = 1$)	1.5	1	$\simeq 1.584$
Complex column-unitary Φ $(\beta = 2)$	2	2	$\simeq 2.265$
$\mathbf{\Phi} = \mathbf{W}_1 \mathbf{W}_2 \ (\beta = 1, \text{ aspect ratio } \gamma)$	$\gamma/(2(1+\gamma))$	$\min(1,\gamma)$	Theorem
$\mathbf{\Phi} = \mathbf{W}_1 \mathbf{W}_2 \ (\beta = 2, \text{ aspect ratio } \gamma)$	$\gamma/(1+\gamma)$	$\min(2,2\gamma)$	Theorem
$oldsymbol{\Phi},eta\in\{1,2\},\mathrm{rk}[oldsymbol{\Phi}^{\dagger}oldsymbol{\Phi}]/n=r$	Analytical expression	eta r	Conjecture
Gauss. Φ , $\beta \in \{1, 2\}$, symm. P_0 , P_{out}	Analytical expression	Theorem	Theorem
$\Phi = \mathbf{WB}, \beta \in \{1, 2\}, \text{ Gauss. } P_0, \text{ symm. } P_{\text{out}}$	Analytical expression	Theorem	Theorem
$\Phi, \beta \in \{1, 2\}, \text{ symm. } P_0, P_{\text{out}}$	Analytical expression	Conjecture	Conjecture

Noiseless phase retrieval with Gaussian prior

Generic phase retrieval with any prior

- Constructive derivation of a conjecturally optimal spectral method in generic phase retrieval problems.
- Our results apply to randomly subsampled DFT matrices and to real image recovery.

"Marginality vs instability" puzzle: Bethe Hessian and message-passing constructions of spectral methods should be equivalent!

THANK YOU!