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WHAT IS FINE-GRAINED 
COMPLEXITY?

• A concern over constants in the exponent

• E.G.
• 𝑛2 vs 𝑛2−𝜖

• e.g. the 3-SUM hypothesis

• 2𝑛 vs 2(1−𝜖)𝑛

• e.g. the Strong Exponential Time Hypothesis (SETH)

Story



GOAL: 
WORST CASE TO AVERAGE CASE

•We want to understand how hard our 
favorite problems are on average. 

•We want to give explicit distributions 
over which we believe they are hard.
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WHAT ARE WORST-CASE TO 
AVERAGE-CASE REDUCTIONS?

• Worst-case problem P 

• Show P is equiv to (many) calls to avg case problem Q
• Q’s input is drawn from some distribution D

• Q’s success probability is over both randomness of 
algorithm and randomness of distribution 

Story



AVERAGE CASE ALGORITHMS  VS 
RANDOMIZED ALGORITHMS

• Average-Case Algorithm with success probability 1 − 𝜖: 
can be wrong consistently on a 1 − 𝜖 fraction of inputs
(no naïve boosting: re-run on same input same bad answer)

• Randomized Algorithm with success probability 1 − 𝜖: 
must get at least 1 − 𝜖 success on all inputs
(naïve boosting: re-run on same input take majority rule)
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A FUN EXAMPLE: 
MATRIX 

MULTIPLICATION
[BLUM, LUBY, RUBINFELD]

Worst-Case Problem:
𝑨 × 𝑩 for 𝑛 × 𝑛 matrices in 𝐹𝑞

Average-Case Problems: 

• Sample random matrices 𝑿, 𝒀 ∼ 𝐹𝑞
𝑛×𝑛

• Problems:
• (𝑨 + 𝑿)(𝑩 + 𝒀)

• (𝑿)(𝑩 + 𝒀)

• (𝑨 + 𝑿)(𝒀)

• (𝑿)(𝒀)

MM 

example



A FUN EXAMPLE: 
MATRIX 

MULTIPLICATION
[BLUM, LUBY, RUBINFELD]

• Problems:
𝑨+ 𝑿 𝑩+ 𝒀 = 𝑨𝑩 + 𝑿𝑩+ 𝑨𝒀 + 𝑿𝒀
− 𝑿 𝑩+ 𝒀 = − 𝑿𝑩 − 𝑿𝒀
− 𝑨+ 𝑿 𝒀 = −𝑨𝒀 −𝑿𝒀
𝑿 𝒀 = 𝑿𝒀

𝑨𝑩 = 𝑨𝑩

MM 

example



WHAT TO GET FROM MM EXAMPLE

• Make multiple correlated calls

• Each call is indistinguishable from random MM

• (𝑨 + 𝑿)(𝑩 + 𝒀)
• (𝑿)(𝑩 + 𝒀)
• (𝑨 + 𝑿)(𝒀)
• 𝑿 𝒀

• With 𝝐 error for random MM union bound to solve 
WC MM with probability 1 − 𝟒𝝐

MM 

example



HIGHLIGHTED RESULTS

• A framework to give average case hardness for 
problems P with a “good low degree polynomial” 

• A new type of problem, a “factored problem” 
• Factored-P is more expressive than P

• #Factored-P hard on average

Story



THE STORY I WANT TO TELL

• Going from Ball et al 17

• To Boix-Adserà et al 19 

• To our paper

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge 

#k-clique

Ball et al 17

[BRSV17]

Boix-Adserà et al 19 

[BBB19]

AC Erdős–Rényi

#k-clique

Goldreich Rothblum 18

[GR18]

Story



CORE PROBLEMS AND 
HYPOTHESES 

The core hypotheses of Fine-Grained Complexity (FGC) are:

• SETH                                             [k-SAT requires 2𝑛(1−𝑜 1 ) time]

• 3-SUM Hypothesis                      [3-SUM requires 𝑛2−𝑜(1) time]

• All Pairs Shortest Paths (APSP)  [APSP requires 𝑛3−𝑜(1) time]

Previous 

work 



CORE PROBLEMS AND 
HYPOTHESES 

The core hypotheses of Fine-Grained Complexity (FGC) are:

• SETH                                             [k-SAT requires 2𝑛(1−𝑜 1 ) time]

• 3-SUM Hypothesis                      [3-SUM requires 𝑛2−𝑜(1) time]

• All Pairs Shortest Paths (APSP)  [APSP requires 𝑛3−𝑜(1) time]

k-SAT problem:
Given a Boolean formula in conjunctive normal form return 
true if there is an assignment that satisfies the formula, false 

otherwise. 
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CORE PROBLEMS AND 
HYPOTHESES 

The core hypotheses of Fine-Grained Complexity (FGC) are:

• SETH                                             [k-SAT requires 2𝑛(1−𝑜 1 ) time]

• 3-SUM Hypothesis                      [3-SUM requires 𝑛2−𝑜(1) time]

• All Pairs Shortest Paths (APSP)  [APSP requires 𝑛3−𝑜(1) time]

3-SUM problem:
Given a lists of numbers 𝐿 return true if there are three 

numbers 𝑎, 𝑏, 𝑐 ∈ 𝐿 such that 𝑎 + 𝑏 + 𝑐 = 0. 
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CORE PROBLEMS AND 
HYPOTHESES 

The core hypotheses of Fine-Grained Complexity (FGC) are:

• SETH                                             [k-SAT requires 2𝑛(1−𝑜 1 ) time]

• 3-SUM Hypothesis                      [3-SUM requires 𝑛2−𝑜(1) time]

• All Pairs Shortest Paths (APSP)  [APSP requires 𝑛3−𝑜(1) time]

APSP problem:
Given a graph with 𝑛 nodes and weighted edges give the 

shortest path length between all pairs of nodes in the graph. 

Previous 

work 



PROBLEMS AND HYPOTHESES FOR 
THIS TALK

First: we need to define the core hypotheses + problems of 
FGC

SETH:
K-SAT 

requires 

2𝑛(1−𝑜 1 )

time
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OV problem:
Given a list of n 
vectors tell me if 
∃ 𝑢, Ԧ𝑣s.t. 𝑢 ⋅ Ԧ𝑣 = 0
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First: we need to define the core hypotheses + problems of 
FGC

SETH:
K-SAT 

requires 

2𝑛(1−𝑜 1 )

time
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OV problem:
Given a list of n 
vectors tell me if 
∃ 𝑢, Ԧ𝑣s.t. 𝑢 ⋅ Ԧ𝑣 = 0

OV hyp:
OV 
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𝑛2−𝑜 1

time



PROBLEMS AND HYPOTHESES FOR 
THIS TALK

First: we need to define the core hypotheses + problems of 
FGC

Previous 

work 
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time

Fun fact:
OV hypothesis is implied 

by SETH! [W07]



PROBLEMS AND HYPOTHESES FOR 
THIS TALK

First: we need to define the core hypotheses + problems of 
FGC

ZKC problem:
Given a dense graph 
with weighted edges 
return true if there is a 
k-clique whose edges 

sum to zero.
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ZKC 

requires 
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time
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k-clique whose edges 
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PROBLEMS AND HYPOTHESES FOR 
THIS TALK

First: we need to define the core hypotheses + problems of 
fine-grained complexity

ZkC Hyp.:
ZKC 

requires 

𝑛𝑘−𝑜(1)

time

Fun fact:
Z3C hypothesis is implied 
by both 3-SUM and APSP! 

[VW09][VW10]

Previous 

work 

OV hyp:
OV 

requires 

𝑛2−𝑜 1

time



PREVIOUS WORK:[BRSV17]
(BALL ET AL 17) 

BRSV17 Goal: give a WC to AC reduction from the 
core FGC problems.
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PREVIOUS WORK:[BRSV17]
(BALL ET AL 17) 

BRSV17 Goal: give a WC to AC reduction from the 
core FGC problems.

WC #OV AC 𝑓𝑂𝑉(⋅)

Ball et al 17

[BRSV17]

WC #ZkC AC 𝑓𝑍𝑘𝐶(⋅)

Ball et al 17

[BRSV17]

SUCCESS!

Previous 

work 



PREVIOUS WORK:[BRSV17]
(BALL ET AL 17) 

What are these problems?

They are based on polynomials over finite-fields. 

WC #OV AC 𝑓𝑂𝑉(⋅)

Ball et al 17

[BRSV17]

WC #ZkC AC 𝑓𝑍𝑘𝐶(⋅)

Ball et al 17

[BRSV17]
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[BRSV17] POLYNOMIALS

Given a problem 𝑃 we want to generate a 
polynomial 𝑓𝑃(⋅) over  𝑍𝑝 such that:

1. 𝑓𝑃(⋅) has degree 𝑑 = 𝑛𝑜(1) (subpolynomial)

2. You can compute 𝑃 𝐼 from 𝑓𝑃(𝐼)
1. Treat the input 𝐼 as an 𝑛 bit vector
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[BRSV17] POLYNOMIALS

Given a problem 𝑃 we want to generate a 
polynomial 𝑓𝑃(⋅) over  𝑍𝑞 such that:

1. 𝑓𝑃(⋅) has degree 𝑑 = 𝑛𝑜(1) (subpolynomial)

2. You can compute 𝑃 𝐼 from 𝑓𝑃(𝐼)
1. Treat the input 𝐼 as an 𝑛 bit vector

Then let መ𝐼~ 𝑍𝑞
𝑛
.

Computing 𝑓𝑃 መ𝐼 with probability > 2/3 in 𝑂 𝑇 𝑛

implies a 𝑇 𝑛 𝑛𝑜 1 algorithm for 𝑃 in WC
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[BRSV17] POLYNOMIALS

Given a problem 𝑃 we want to generate a 
polynomial 𝑓𝑃(⋅) over  𝑍𝑝 such that:

1. 𝑓𝑃(⋅) has degree 𝑑 = 𝑛𝑜(1) (subpolynomial)

2. You can compute 𝑃 𝐼 from 𝑓𝑃(𝐼)
1. Treat the input 𝐼 as an 𝑛 bit vector

Then let መ𝐼~ 𝑍𝑞
𝑛
.

Computing 𝑓𝑃 መ𝐼 with probability > 2/3 in 𝑂 𝑇 𝑛

implies a 𝑇 𝑛 𝑛𝑜 1 algorithm for 𝑃 in WC

𝑓𝑃 መ𝐼 is average-case

from
𝑃 in the worst-case
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PREVIOUS WORK:[BRSV17]
(BALL ET AL 17) 

Problem: 

𝑓𝑍𝑘𝐶(⋅), for example, corresponds nicely to ZKC when 
inputs are zero and one. 

But the average case inputs are over large finite-fields 

WC #OV AC 𝑓𝑂𝑉(⋅)

Ball et al 17

[BRSV17]

WC #ZkC AC 𝑓𝑍𝑘𝐶(⋅)

Ball et al 17

[BRSV17]
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HOW CAN WE GET BACK TO 0,1 𝑛?

We will use k-clique as the example to work though

Previous 

work 



THE CASE OF CLIQUE

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge 

#k-clique

Ball et al 17

[BRSV17]

Boix-Adserà et al 19 

[BBB19]

AC Erdős–Rényi

#k-clique

Goldreich Rothblum 18

[GR18]
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THE CASE OF CLIQUE

𝑓𝑐𝑙𝑖𝑞𝑢𝑒 𝐺 = 

𝑣1,…,𝑣𝑘

ෑ

𝑖,𝑗∈ 1,𝑘
𝑖<𝑗

𝑒(𝑣𝑖 , 𝑣𝑗)

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)

Ball et al 17

[BRSV17]

Goldreich Rothblum 18

[GR18]
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THE CASE OF CLIQUE

𝑓𝑐𝑙𝑖𝑞𝑢𝑒 𝐺 = 

𝑣1,…,𝑣𝑘

ෑ

𝑖,𝑗∈ 1,𝑘
𝑖<𝑗

𝑒(𝑣𝑖 , 𝑣𝑗)

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge 

#k-clique

Ball et al 17

[BRSV17]

Goldreich Rothblum 18

[GR18]

Basically now all the edges have weights 

(uniformly random in [0, lg(𝑛)]).
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WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge 
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THE CASE OF CLIQUE

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge 

#k-clique

Ball et al 17

[BRSV17]

Boix-Adserà et al 19 

[BBB19]

AC Erdős–Rényi

#k-clique

Goldreich Rothblum 18

[GR18]
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To get back to zero-one they can look at 
each bitwise multiplication.  



THE CASE OF CLIQUE
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THE CASE OF CLIQUE

11
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0

( )1

1

1
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0

1 1

0

0

( )1

0

0
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0 1
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1

3x2x1 = 4+2
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WHY YOU SHOULD BE FRIENDS 
WITH K-PARTITE GRAPHS
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𝑓𝑐𝑙𝑖𝑞𝑢𝑒 𝐺

= 

𝑣1,𝑣2,𝑣3

𝑣1𝑣2 𝑣2𝑣3 𝑣3𝑣1



WHY YOU SHOULD BE FRIENDS 
WITH K-PARTITE GRAPHS
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𝑣1,𝑣2,𝑣3

𝑣1𝑣2 𝑣2𝑣3 𝑣3𝑣1

Grab the:

𝑖𝑡ℎ bit weights in , 

𝑗𝑡ℎ bit weights in ,

𝑘𝑡ℎ bit weights in 

to form an instance

weight output by 2𝑖+𝑗+𝑘



WHY YOU SHOULD BE FRIENDS 
WITH K-PARTITE GRAPHS
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work 

𝑓𝑐𝑙𝑖𝑞𝑢𝑒 𝐺 = 

𝑣1,𝑣2,𝑣3

𝑣1𝑣2 𝑣2𝑣3 𝑣3𝑣1

Grab the:

𝑖𝑡ℎ bit weights in , 

𝑗𝑡ℎ bit weights in ,

𝑘𝑡ℎ bit weights in 
to form an instance

weight output by 2𝑖+𝑗+𝑘

But wait! Are those 

bits iid {0,1}?

With a bit of work yes.

BBB19 make bigger numbers with 

same value mod p. The bits in the big 

numbers are random.



THE CASE OF CLIQUE

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge 

#k-clique

Ball et al 17

[BRSV17]

Boix-Adserà et al 19 

[BBB19]

AC Erdős–Rényi

#k-clique

Goldreich Rothblum 18

[GR18]

They got back to 0,1 𝑛,
and it wasn’t really about clique! 
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…IT WASN’T REALLY ABOUT CLIQUE!

So what was it about?

•𝑓 was a sum of monomials all of degree 𝑑

•𝑓 was “𝑑-partite” 

•𝑑 was not too big (overhead exp in 𝑑)

• The output of 𝑓 and 𝑃 are the same

Framework
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• Degree 𝑑 = 𝑜
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if it succeeds with probability 1 −
1

lg 𝑛 𝑑



…IT WASN’T REALLY ABOUT CLIQUE!

The Good Low-Degree Polynomial (GDLP) 𝑓𝑃(⋅):

• Degree 𝑑 = 𝑜
lg 𝑛

𝑙𝑔𝑙𝑔 𝑛

• Strongly 𝑑 -partite

• 𝑓𝑃 𝐼 = 𝑃(𝐼)

Framework

If P has a GLDP and WC P requires 𝑇(𝑛) time then

Uniform AC P requires 𝑇 𝑛 ⋅ 𝑛−𝑜(1) time 

if it succeeds with probability 1 −
1

𝑛𝜖

This is the probability 

throughout the rest 

of the talk



…IT WASN’T REALLY ABOUT CLIQUE!

The Good Low-Degree Polynomial (GDLP) 𝑓𝑃(⋅):

• Degree 𝑑 = 𝑜
lg 𝑛

𝑙𝑔𝑙𝑔 𝑛

• Strongly 𝑑 -partite

• 𝑓𝑃 𝐼 = 𝑃(𝐼)

Framework

WC 𝑃 AC fP(⋅) Uniform AC 𝑃



RESULTS IN THIS PAPER

• A framework built on BBB19

• A new type of problem: “factored” problems

• Using the framework, factored problems, and reductions:
• Avg. Case hardness for various string or graph problems

• Avg. Case hardness for a graph problem from APSP,3-SUM & SETH

• New candidate “hard from everything” problem

• We show that #OV is easy on average

• Reduction from Counting to Detection for avg case ZKC

• Avg case hardness for counting any small subgraph

Content not 

in talk



RECENT WORK + PITCH

Shuichi Hirahara, Nobutaka Shimizu:
Nearly Optimal Average-Case Complexity of Counting 
Bicliques Under SETH
SODA 2020

Oded Goldreich:
On Counting 𝒕-Cliques Mod 2.

ECCC 2020

Content not 

in talk



QUESTIONS?

• A framework for WC to AC reductions

• Factored problems

• Reductions from factored problems
Photo by Emily Morter on Unsplash.


