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= WHAT IS FINE-GRAINED

COMPLEXITY?

* A concern over constants in the exponent
- E.G.

*n%vVsn
* e.9. the 3-SUM hypothesis

S LLRVIS 2(1—e)n
* €.g. the Strong Exponential Time Hypothesis (SETH)

2—€



GOAL:
WORST CASE TO AVERAGE CASE

We want to understand how hard our
favorite problems are on average.

We want to give explicit distributions
over which we believe they are hard.



E WHAT ARE WORST-CASE TO

AVERAGE-CASE REDUCTIONS®

* Worst-case problem P

« Show P is equiv to (many) calls to avg case problem Q
« Q’s input is drawn from some distribution D

« Q's success probability is over both randomness of
algorithm and randomness of distribution



E AVERAGE CASE ALGORITHMS VS

RANDOMIZED ALGORITHMS

* Average-Case Algorithm with success probability 1 — e:

can be wrong consistently on a 1 — e fraction of inputs
(ho naive boosting: re-run on same input same bad answer)

 Randomized Algorithm with success probability 1 — e:

must get at least 1 — e success on all inputs
(haive boosting: re-run on same input take majority rule)



MM
example

Worst-Case Problem:
A X B for n X n matrices in F,

Average-Case Problems:

A FUN EX':XX\\TP%'E( » Sample random matrices X, Y ~ F/2*"

MULTIPLICATION  *Problems:
[BLUM, LUBY, RUBINFELD] - (A+X)(B+Y)

* (X)(B+7Y)
* (A+X)(Y)
* (X)(Y)



MM
example

* Problems:
(A+X)(B+Y)BMAB + XB + AY + XY
A FUN EXAMPLE: —(X)(B+Y) — XB _ XY
MATRIX —(A+X)(Y) —AY — XY

MULTIPLICATION (X)(¥) XY

[BLUM, LUBY, RUBINFELD]




= WHAT TO GET FROM MM EXAMPLE

* Make mulfiple correlated calls

* Each call is indistinguishable from random MM
*(A+X)(B+Y)
*(X)(B+Y)
A+ X)(Y)
* (X)(Y)
* With € error for random MM union bound 1o solve
WC MM with probability 1 — 4€



E HIGHLIGHTED RESULTS

* A framework to give average case hardness for
problems P with a “good low degree polynomial”

* A new type of problem, a “factored problem”
» Factored-P Is more expressive than P
» #Factored-P hard on average




THE STORY | WANT TO TELL

» Going from Ball et al 17
 To Boix-Adsera et al 19
* TO our paper

Balletal 17 Goldreich Rothblum 18 Boix-Adserd et al 19
[BRSV17/] [GR18] [BBB19]

AC Multi-Edge AC Erdds—Rényi

#k-clique #k-clique




CORE PROBLEMS AND
HYPOTHESES

The core hypotheses of Fine-Grained Complexity (FGC) are:
« SETH [k-SAT requires 2(1-0(1)) time]
« 3-SUM Hypothesis [3-SUM requires n?=°M fime]

« All Pairs Shortest Paths (APSP) [APSP requires n37°M time]
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CORE PROBLEMS AND
HYPOTHESES

The core hypotheses of Fine-Grained Complexity (FGC) are:
« SETH [k-SAT requires 2(1-0(1)) time]
« 3-SUM Hypothesis [3-SUM requires n?=°M fime]

« All Pairs Shortest Paths (APSP) [APSP requires n37°M time]

k-SAT problem:
Given a Boolean formula in conjunctive normal form return

true if there is an assignment that satisfies the formula, false
otherwise.




CORE PROBLEMS AND
HYPOTHESES

The core hypotheses of Fine-Grained Complexity (FGC) are:

« SETH [k-SAT requires 2(1-0(1)) time]

« 3-SUM Hypothesis [3-SUM requires n?=°M fime]

« All Pairs Shortest Paths (APSP) [APSP requires n37°M time]

a N
3-SUM problem:

Given a lists of numbers L return true if there are three
numbers a,b,c € L suchthata+ b +c = 0.
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CORE PROBLEMS AND
HYPOTHESES

The core hypotheses of Fine-Grained Complexity (FGC) are:

« SETH [k-SAT requires 2(1-0(1)) time]

« 3-SUM Hypothesis [3-SUM requires n?=°M fime]

« All Pairs Shortest Paths (APSP) [APSP requires n37°M time]

O N
APSP problem:

Given a graph with n nodes and weighted edges give the
shortest path length between all pairs of nodes in the graph.

(U )




= PROBLEMS AND HYPOTHESES FOR

THIS TALK

First: we need to define the core hypotheses + problems of
FGC

SETH:
K-SAT
requires

n(1-o(1))
time




= PROBLEMS AND HYPOTHESES FOR

THIS TALK

First: we need to define the core hypotheses + problems of
FGC

SETH:

Vv lem:
OV problem C_SAT

Given a list of n

vectors tell me if requires
Ju,vst.u-v=0 n(1-o(1))

time




= PROBLEMS AND HYPOTHESES FOR

THIS TALK

First: we need to define the core hypotheses + problems of
FGC

OV hyp:
OV

SETH:
K-SAT
requires

OV problem:
Given a list of n

requires vectors tell me if
n2-o(1) 34,9t -9 =0
time

an(1-o(1))
time
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D HYPOTHESES FOR
THIS TALK

First: we need to define the core hypotheses + problems of
FGC

"PROBLEMS AN

OV hyp:
oV

Fun fact:

requires
nz—o(l)

time

OV hypothesis is implied
by SETH! [WO7]




D HYPOTHESES FOR
THIS TALK

First: we need to define the core hypotheses + problems of
FGC

PROBLEMS AN

LKC problem:

OV hyp: Given a dense graph

OV with weighted edges

requires return true if there is @
n2-o(1) k-cligue whose edges
fime sum fo zero.




D HYPOTHESES FOR
THIS TALK

First: we need to define the core hypotheses + problems of
FGC

PROBLEMS AN

LKC problem:

OV hyp: Given a dense graph

LkC Hyp.:
[KC

OV with weighted edges .
requires

requires return true if there is @
n2-o(1) k-cligue whose edges
fime sum fo zero.

nk—o(l)

time




E PROBLEMS AND HYPOTHESES FOR

THIS TALK

First: we need to define the core hypotheses + problems of
fine-grained complexity

Fun fact:
OV hyp: 73C hypothesis is implied ZkC Hyp.:

OV by both 3-SUM and APSP! ZKC

requires [VWO9][VWI10] requires
nz—o(l) nk—o(l)

time time




PREVIOUS WORK:[BRSV1/]
(BALL ET AL 17)

BRSV17 Goal: give a WC to AC reduction from the
core FGC problems.




= PREVIOUS WORK:[BRSV1/]

(BALL ET AL 17)

BRSV17 Goal: give a WC to AC reduction from the
core FGC problems.

Ballet al 17 Balletal 17
[BRSV17] | [BRSV17]

»




= PREVIOUS WORK:[BRSV1/]

(BALL ET AL 17)

What are these problems?

They are based on polynomials over finite-fields.

Balletal 17 Balletal 17
[BRSV17] | [BRSV17/]

»




= [BRSV17] POLYNOMIALS

Given a problem P we want to generate a
polynomial fp(-) over Z, such that:
1. fp() has degree d = n°® (subpolynomial)
2. You can compute P(I) from fp(I)
1. Treat the input I as an n bit vector
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[BRSV17] POLYNOMIALS

Given a problem P we want to generate a
polynomial fp(-) over Z, such that:
1. fp() has degree d = n°® (subpolynomial)
2. You can compute P(I) from fp(I)
1. Treat the input I as an n bit vector

Then let I~(Z,)".

Computing fp(I) with probability > 2/3 in 0(T(n))
implies a T(n)n°Y algorithm for P in WC
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[BRSV17] POLYNOMIALS

Given a problem P
polynomial fp(:) ove

1. fp(-) has degree
2. You can comp
1. Treat the inpu

Then let I~(Z,)".
Computing fp(I) with probability > 2/3 in 0(T(n))
implies a T(n)n°Y algorithm for P in WC

fo(I) is average-case
from
P in the worst-case




PREVIOUS WORK:[BRSV1/]
(BALL ET AL 17)

Problem:

fzic (), for example, corresponds nicely to ZKC when
INputs are zero and one.

But the average case inputs are over large finite-fields

Balletal 17 Balletal 17
[BRSV17] | [BRSV17/]

»




= HOW CAN WE GET BACK TO {0,112

We will use k-cligue as the example to work though
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THE CASE OF CLIQUE

Balletal 17 Goldreich Rothblum 18 Boix-Adsera et al 19
[BRSV17] [GR18] [BBB19]

: AC Multi-Edge AC Erdds—Rényi
WC #k-clique » AC fetique(") » #|<-<:quueg » #k—cliqué
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Balletal 17 Goldreich Rothblum 18 THE CASE OF CLlQUE

[BRSV17] [GR18]

WC #k-clique » AC felique ()

fclique(G) — z e(vu ])

V1,.., V[ ,]E 1 k
l<]
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Balletal17 | GoldreichRothbum 18 THE C ASE OF CLIQUE

[BRSV17] [GR18]

: AC Multi-Edge
WC #k-clique » AC faique () » #k_inlqueg | :

Basically now all the edges have weights
(uniformly random in [0,1g(n)]).

fetique(G) = 2 1_[ e(v;, vj)

V1,V \ 1,JE[1,K]
1<j




THE CASE OF CLIQUE

Balletal 17 Goldreich Rothblum 18 Boix-Adserd et al 19
[BRSV17] [GR18] [BBB19]

: AC Multi-Edge AC Erdds-Renyi
i wceloue » AC fetique(") #I<—c|iqueg #k-clique e

10
11

O1
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_____ THE CASE OF CLIQUE

Balletal 17 Goldreich Rothblum 18 Boix-Adserd et al 19
[BRSV17] [GR18] [BBB19]

: AC Multi-Edge AC Erd8és-Rényi
A FECIoie » = b #I<—c|i<1ueg #Ii—c?isquee &

To get back to zero-one they can look at

each bitwise mulfiplication.




i THE CASE OF CLIQUE
| ]mf 8"(‘ h.)"“"‘( h‘” h"" &)

e DN+ (Ix)



' THE CASE OF CLIQUE
N AN ]
o 8 +4x|
01 |
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i THE CASE OF CLIQUE
10
”h.“" _—

) 3x2X1 = 4+2

K- @

= 2%



WHY YOU SHOULD BE FRIENDS
WITH K-PARTITE GRAPHS

fclique (G)




= WHY YOU SHOULD BE FRIENDS

\J

WITH K-PARTITE GRAPHS

fcllque(G) — Z 7 szvg Cv3v1)

V1,U2,VU3

/ Grab the: \

ith bit weights in A,
jt" bit weights in B,
k" bit weights in C
to form an instance

Qveigh’r output by 2"+f+"/




WHY YOU SHOULD BE FRIENDS
) | V¥|TH K-PARTITE GRAPHS
;Zl kk)aiitrvv\\//ziigmiiizf fetique(G) = Z b,,.. Cvgvl)

k" bit weightsin C
to form an instance V1,V2,V3

voe C s.s®  Wweightoutput by 2tk

With a bit of work yes.
BBB19 make bigger numbers with

But waitl Are those same value mod p. The bits in the big
bits iid {O,1}¢ numbers are random.
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THE CASE OF CLIQUE

Balletal 17 Goldreich Rothblum 18 Boix-Adserd et al 19
AC Erdds—Rényi
#k-clique

[BRSV17] [GR18] [BBB19]

: AC Multi-Ed
WC #k—C|IC{U€ » AC fdique(') » #k-glilquege »

They got back to {0,1}",

and it wasn’t really about clique!



Framework

.. I[T WASN'T REALLY ABOUT CLIQUE!

So what was it about?

* f was a sum of monomials all of degree d
* f was “d-partite”

*d was not too big (overhead exp in d)
*The output of f and P are the same



Framework

.. I[T WASN'T REALLY ABOUT CLIQUE!

The Good Low-Degree Polynomial (GDLP) f-(:):

lg(n) )
lglg(n)
« Strongly d -partite

* fp(I) = P(I)

 Degree d = 0(



e Framework

.. I[T WASN'T REALLY ABOUT CLIQUE!

The Good Low-Degree Polynomial (GDLP) f-(:):
lg(n) )

lglg(n)
« Strongly d -partite

* fp(I) = P(I)

 Degree d = 0(

If P has a GLDP and WC P requires T(n) time then
Uniform AC P requires T(n)/lg(n)¢ time

1

if it succeeds with probability 1 — 2)a




e — Framework

.. I[T WASN'T REALLY ABOUT CLIQUE!

The Good Low-Degree Polynomial (GDLP) f»(-):

lg(n) )
lglg(n)
« Strongly d -partite

* fp(I) = P(I)

 Degree d = 0(

It P has a GLDP and WC P requires T (n) time then
Uniform AC P requires T(n) - n=°M time This s the probability

r . . - 1 throughout the rest
if it succeeds with probability 1 — — el

nE




Framework

.. I[T WASN'T REALLY ABOUT CLIQUE!

The Good Low-Degree Polynomial (GDLP) f-(:):

lg(n) )
lglg(n)
« Strongly d -partite

* fp(I) = P(I)

 Degree d = 0(
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RESULTS IN THIS PAPER

* A framework built on BBB19

* A new type of problem: “factored” problems

» Using the framework, factored problems, and reductions:

* Avg. Case hardness for various string or graph problems
« Avg. Case hardness for a graph problem from APSP,3-SUM & SETH
* New candidate “hard from everything” problem

 We show that #OV is easy on average
« Reduction from Counting to Detection for avg case ZKC
* Avg case hardness for counting any small subgraph



RECENT WORK + PITCH

Shuichi Hirahara, Nobutaka Shimizu:

Nearly Optimal Average-Case Complexity of Counting
Bicliques Under SETH
SODA 2020

Oded Goldreich:
On Counting t-Cliques Mod 2.

ECCC 2020
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- A framework for WC fo AC reduchons

* Factored problém: -
 Reductions from factor ed sroblems

Photo by Emily Morter on Unsplash.



