
FINE-GRAINED
WORST-CASE TO
AVERAGE-CASE
REDUCTIONS
(FGWCTAC)

Andrea Lincoln UC Berkeley

NEW TECHNIQUES
FOR PROVING FINE-

GRAINED AVERAGE-
CASE HARDNESS

Mina Dalirrooyfard, Andrea Lincoln,

Virginia Vassilevska Williams

WHAT IS FINE-GRAINED
COMPLEXITY?

• A concern over constants in the exponent

• E.G.
• 𝑛2 vs 𝑛2−𝜖

• e.g. the 3-SUM hypothesis

• 2𝑛 vs 2(1−𝜖)𝑛

• e.g. the Strong Exponential Time Hypothesis (SETH)

Story

GOAL:
WORST CASE TO AVERAGE CASE

•We want to understand how hard our
favorite problems are on average.

•We want to give explicit distributions
over which we believe they are hard.

Story

WHAT ARE WORST-CASE TO
AVERAGE-CASE REDUCTIONS?

• Worst-case problem P

• Show P is equiv to (many) calls to avg case problem Q
• Q’s input is drawn from some distribution D

• Q’s success probability is over both randomness of
algorithm and randomness of distribution

Story

AVERAGE CASE ALGORITHMS VS
RANDOMIZED ALGORITHMS

• Average-Case Algorithm with success probability 1 − 𝜖:
can be wrong consistently on a 1 − 𝜖 fraction of inputs
(no naïve boosting: re-run on same input same bad answer)

• Randomized Algorithm with success probability 1 − 𝜖:
must get at least 1 − 𝜖 success on all inputs
(naïve boosting: re-run on same input take majority rule)

Story

A FUN EXAMPLE:
MATRIX

MULTIPLICATION
[BLUM, LUBY, RUBINFELD]

Worst-Case Problem:
𝑨 × 𝑩 for 𝑛 × 𝑛 matrices in 𝐹𝑞

Average-Case Problems:

• Sample random matrices 𝑿, 𝒀 ∼ 𝐹𝑞
𝑛×𝑛

• Problems:
• (𝑨 + 𝑿)(𝑩 + 𝒀)

• (𝑿)(𝑩 + 𝒀)

• (𝑨 + 𝑿)(𝒀)

• (𝑿)(𝒀)

MM

example

A FUN EXAMPLE:
MATRIX

MULTIPLICATION
[BLUM, LUBY, RUBINFELD]

• Problems:
𝑨+ 𝑿 𝑩+ 𝒀 = 𝑨𝑩 + 𝑿𝑩+ 𝑨𝒀 + 𝑿𝒀
− 𝑿 𝑩+ 𝒀 = − 𝑿𝑩 − 𝑿𝒀
− 𝑨+ 𝑿 𝒀 = −𝑨𝒀 −𝑿𝒀
𝑿 𝒀 = 𝑿𝒀

𝑨𝑩 = 𝑨𝑩

MM

example

WHAT TO GET FROM MM EXAMPLE

• Make multiple correlated calls

• Each call is indistinguishable from random MM

• (𝑨 + 𝑿)(𝑩 + 𝒀)
• (𝑿)(𝑩 + 𝒀)
• (𝑨 + 𝑿)(𝒀)
• 𝑿 𝒀

• With 𝝐 error for random MM union bound to solve
WC MM with probability 1 − 𝟒𝝐

MM

example

HIGHLIGHTED RESULTS

• A framework to give average case hardness for
problems P with a “good low degree polynomial”

• A new type of problem, a “factored problem”
• Factored-P is more expressive than P

• #Factored-P hard on average

Story

THE STORY I WANT TO TELL

• Going from Ball et al 17

• To Boix-Adserà et al 19

• To our paper

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge

#k-clique

Ball et al 17

[BRSV17]

Boix-Adserà et al 19

[BBB19]

AC Erdős–Rényi

#k-clique

Goldreich Rothblum 18

[GR18]

Story

CORE PROBLEMS AND
HYPOTHESES

The core hypotheses of Fine-Grained Complexity (FGC) are:

• SETH [k-SAT requires 2𝑛(1−𝑜 1) time]

• 3-SUM Hypothesis [3-SUM requires 𝑛2−𝑜(1) time]

• All Pairs Shortest Paths (APSP) [APSP requires 𝑛3−𝑜(1) time]

Previous

work

CORE PROBLEMS AND
HYPOTHESES

The core hypotheses of Fine-Grained Complexity (FGC) are:

• SETH [k-SAT requires 2𝑛(1−𝑜 1) time]

• 3-SUM Hypothesis [3-SUM requires 𝑛2−𝑜(1) time]

• All Pairs Shortest Paths (APSP) [APSP requires 𝑛3−𝑜(1) time]

k-SAT problem:
Given a Boolean formula in conjunctive normal form return
true if there is an assignment that satisfies the formula, false

otherwise.

Previous

work

CORE PROBLEMS AND
HYPOTHESES

The core hypotheses of Fine-Grained Complexity (FGC) are:

• SETH [k-SAT requires 2𝑛(1−𝑜 1) time]

• 3-SUM Hypothesis [3-SUM requires 𝑛2−𝑜(1) time]

• All Pairs Shortest Paths (APSP) [APSP requires 𝑛3−𝑜(1) time]

3-SUM problem:
Given a lists of numbers 𝐿 return true if there are three

numbers 𝑎, 𝑏, 𝑐 ∈ 𝐿 such that 𝑎 + 𝑏 + 𝑐 = 0.

Previous

work

CORE PROBLEMS AND
HYPOTHESES

The core hypotheses of Fine-Grained Complexity (FGC) are:

• SETH [k-SAT requires 2𝑛(1−𝑜 1) time]

• 3-SUM Hypothesis [3-SUM requires 𝑛2−𝑜(1) time]

• All Pairs Shortest Paths (APSP) [APSP requires 𝑛3−𝑜(1) time]

APSP problem:
Given a graph with 𝑛 nodes and weighted edges give the

shortest path length between all pairs of nodes in the graph.

Previous

work

PROBLEMS AND HYPOTHESES FOR
THIS TALK

First: we need to define the core hypotheses + problems of
FGC

SETH:
K-SAT

requires

2𝑛(1−𝑜 1)

time

Previous

work

PROBLEMS AND HYPOTHESES FOR
THIS TALK

First: we need to define the core hypotheses + problems of
FGC

SETH:
K-SAT

requires

2𝑛(1−𝑜 1)

time

Previous

work

OV problem:
Given a list of n
vectors tell me if
∃ 𝑢, Ԧ𝑣s.t. 𝑢 ⋅ Ԧ𝑣 = 0

PROBLEMS AND HYPOTHESES FOR
THIS TALK

First: we need to define the core hypotheses + problems of
FGC

SETH:
K-SAT

requires

2𝑛(1−𝑜 1)

time

Previous

work

OV problem:
Given a list of n
vectors tell me if
∃ 𝑢, Ԧ𝑣s.t. 𝑢 ⋅ Ԧ𝑣 = 0

OV hyp:
OV

requires

𝑛2−𝑜 1

time

PROBLEMS AND HYPOTHESES FOR
THIS TALK

First: we need to define the core hypotheses + problems of
FGC

Previous

work

OV hyp:
OV

requires

𝑛2−𝑜 1

time

Fun fact:
OV hypothesis is implied

by SETH! [W07]

PROBLEMS AND HYPOTHESES FOR
THIS TALK

First: we need to define the core hypotheses + problems of
FGC

ZKC problem:
Given a dense graph
with weighted edges
return true if there is a
k-clique whose edges

sum to zero.

Previous

work

OV hyp:
OV

requires

𝑛2−𝑜 1

time

PROBLEMS AND HYPOTHESES FOR
THIS TALK

First: we need to define the core hypotheses + problems of
FGC

ZkC Hyp.:
ZKC

requires

𝑛𝑘−𝑜(1)

time

ZKC problem:
Given a dense graph
with weighted edges
return true if there is a
k-clique whose edges

sum to zero.

Previous

work

OV hyp:
OV

requires

𝑛2−𝑜 1

time

PROBLEMS AND HYPOTHESES FOR
THIS TALK

First: we need to define the core hypotheses + problems of
fine-grained complexity

ZkC Hyp.:
ZKC

requires

𝑛𝑘−𝑜(1)

time

Fun fact:
Z3C hypothesis is implied
by both 3-SUM and APSP!

[VW09][VW10]

Previous

work

OV hyp:
OV

requires

𝑛2−𝑜 1

time

PREVIOUS WORK:[BRSV17]
(BALL ET AL 17)

BRSV17 Goal: give a WC to AC reduction from the
core FGC problems.

Previous

work

PREVIOUS WORK:[BRSV17]
(BALL ET AL 17)

BRSV17 Goal: give a WC to AC reduction from the
core FGC problems.

WC #OV AC 𝑓𝑂𝑉(⋅)

Ball et al 17

[BRSV17]

WC #ZkC AC 𝑓𝑍𝑘𝐶(⋅)

Ball et al 17

[BRSV17]

SUCCESS!

Previous

work

PREVIOUS WORK:[BRSV17]
(BALL ET AL 17)

What are these problems?

They are based on polynomials over finite-fields.

WC #OV AC 𝑓𝑂𝑉(⋅)

Ball et al 17

[BRSV17]

WC #ZkC AC 𝑓𝑍𝑘𝐶(⋅)

Ball et al 17

[BRSV17]

Previous

work

[BRSV17] POLYNOMIALS

Given a problem 𝑃 we want to generate a
polynomial 𝑓𝑃(⋅) over 𝑍𝑝 such that:

1. 𝑓𝑃(⋅) has degree 𝑑 = 𝑛𝑜(1) (subpolynomial)

2. You can compute 𝑃 𝐼 from 𝑓𝑃(𝐼)
1. Treat the input 𝐼 as an 𝑛 bit vector

Previous

work

[BRSV17] POLYNOMIALS

Given a problem 𝑃 we want to generate a
polynomial 𝑓𝑃(⋅) over 𝑍𝑞 such that:

1. 𝑓𝑃(⋅) has degree 𝑑 = 𝑛𝑜(1) (subpolynomial)

2. You can compute 𝑃 𝐼 from 𝑓𝑃(𝐼)
1. Treat the input 𝐼 as an 𝑛 bit vector

Then let መ𝐼~ 𝑍𝑞
𝑛
.

Computing 𝑓𝑃 መ𝐼 with probability > 2/3 in 𝑂 𝑇 𝑛

implies a 𝑇 𝑛 𝑛𝑜 1 algorithm for 𝑃 in WC

Previous

work

[BRSV17] POLYNOMIALS

Given a problem 𝑃 we want to generate a
polynomial 𝑓𝑃(⋅) over 𝑍𝑝 such that:

1. 𝑓𝑃(⋅) has degree 𝑑 = 𝑛𝑜(1) (subpolynomial)

2. You can compute 𝑃 𝐼 from 𝑓𝑃(𝐼)
1. Treat the input 𝐼 as an 𝑛 bit vector

Then let መ𝐼~ 𝑍𝑞
𝑛
.

Computing 𝑓𝑃 መ𝐼 with probability > 2/3 in 𝑂 𝑇 𝑛

implies a 𝑇 𝑛 𝑛𝑜 1 algorithm for 𝑃 in WC

𝑓𝑃 መ𝐼 is average-case

from
𝑃 in the worst-case

Previous

work

PREVIOUS WORK:[BRSV17]
(BALL ET AL 17)

Problem:

𝑓𝑍𝑘𝐶(⋅), for example, corresponds nicely to ZKC when
inputs are zero and one.

But the average case inputs are over large finite-fields

WC #OV AC 𝑓𝑂𝑉(⋅)

Ball et al 17

[BRSV17]

WC #ZkC AC 𝑓𝑍𝑘𝐶(⋅)

Ball et al 17

[BRSV17]

Previous

work

HOW CAN WE GET BACK TO 0,1 𝑛?

We will use k-clique as the example to work though

Previous

work

THE CASE OF CLIQUE

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge

#k-clique

Ball et al 17

[BRSV17]

Boix-Adserà et al 19

[BBB19]

AC Erdős–Rényi

#k-clique

Goldreich Rothblum 18

[GR18]

Previous

work

THE CASE OF CLIQUE

𝑓𝑐𝑙𝑖𝑞𝑢𝑒 𝐺 = ෍

𝑣1,…,𝑣𝑘

ෑ

𝑖,𝑗∈ 1,𝑘
𝑖<𝑗

𝑒(𝑣𝑖 , 𝑣𝑗)

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)

Ball et al 17

[BRSV17]

Goldreich Rothblum 18

[GR18]

Previous

work

THE CASE OF CLIQUE

𝑓𝑐𝑙𝑖𝑞𝑢𝑒 𝐺 = ෍

𝑣1,…,𝑣𝑘

ෑ

𝑖,𝑗∈ 1,𝑘
𝑖<𝑗

𝑒(𝑣𝑖 , 𝑣𝑗)

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge

#k-clique

Ball et al 17

[BRSV17]

Goldreich Rothblum 18

[GR18]

Basically now all the edges have weights

(uniformly random in [0, lg(𝑛)]).

Previous

work

THE CASE OF CLIQUE

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge

#k-clique

Ball et al 17

[BRSV17]

Boix-Adserà et al 19

[BBB19]

AC Erdős–Rényi

#k-clique

Goldreich Rothblum 18

[GR18]

11

01

10

Previous

work

THE CASE OF CLIQUE

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge

#k-clique

Ball et al 17

[BRSV17]

Boix-Adserà et al 19

[BBB19]

AC Erdős–Rényi

#k-clique

Goldreich Rothblum 18

[GR18]

11

01

10

Previous

work

To get back to zero-one they can look at
each bitwise multiplication.

THE CASE OF CLIQUE

11

01

10

()1

0

1
8

()1

1

0

()1

1

1
4 1

0

1 1

0

0

()1

0

0
2 1

1

0 1

1

1

Previous

work

THE CASE OF CLIQUE

11

01

10

()1

0

1
8

()1

1

0

()1

1

1
4 1

0

1 1

0

0

()1

0

0
2 1

1

0 1

1

1

Previous

work

THE CASE OF CLIQUE

11

01

10

()1

0

1
8

()1

1

0

()1

1

1
4 1

0

1 1

0

0

()1

0

0
2 1

1

0 1

1

1

3x2x1 = 4+2

Previous

work

WHY YOU SHOULD BE FRIENDS
WITH K-PARTITE GRAPHS

Previous

work

𝑓𝑐𝑙𝑖𝑞𝑢𝑒 𝐺

= ෍

𝑣1,𝑣2,𝑣3

𝑣1𝑣2 𝑣2𝑣3 𝑣3𝑣1

WHY YOU SHOULD BE FRIENDS
WITH K-PARTITE GRAPHS

Previous

work

𝑓𝑐𝑙𝑖𝑞𝑢𝑒 𝐺 = ෍

𝑣1,𝑣2,𝑣3

𝑣1𝑣2 𝑣2𝑣3 𝑣3𝑣1

Grab the:

𝑖𝑡ℎ bit weights in ,

𝑗𝑡ℎ bit weights in ,

𝑘𝑡ℎ bit weights in

to form an instance

weight output by 2𝑖+𝑗+𝑘

WHY YOU SHOULD BE FRIENDS
WITH K-PARTITE GRAPHS

Previous

work

𝑓𝑐𝑙𝑖𝑞𝑢𝑒 𝐺 = ෍

𝑣1,𝑣2,𝑣3

𝑣1𝑣2 𝑣2𝑣3 𝑣3𝑣1

Grab the:

𝑖𝑡ℎ bit weights in ,

𝑗𝑡ℎ bit weights in ,

𝑘𝑡ℎ bit weights in
to form an instance

weight output by 2𝑖+𝑗+𝑘

But wait! Are those

bits iid {0,1}?

With a bit of work yes.

BBB19 make bigger numbers with

same value mod p. The bits in the big

numbers are random.

THE CASE OF CLIQUE

WC #k-clique AC 𝑓𝑐𝑙𝑖𝑞𝑢𝑒(⋅)
AC Multi-Edge

#k-clique

Ball et al 17

[BRSV17]

Boix-Adserà et al 19

[BBB19]

AC Erdős–Rényi

#k-clique

Goldreich Rothblum 18

[GR18]

They got back to 0,1 𝑛,
and it wasn’t really about clique!

Previous

work

…IT WASN’T REALLY ABOUT CLIQUE!

So what was it about?

•𝑓 was a sum of monomials all of degree 𝑑

•𝑓 was “𝑑-partite”

•𝑑 was not too big (overhead exp in 𝑑)

• The output of 𝑓 and 𝑃 are the same

Framework

…IT WASN’T REALLY ABOUT CLIQUE!

The Good Low-Degree Polynomial (GDLP) 𝑓𝑃(⋅):

• Degree 𝑑 = 𝑜
lg 𝑛

𝑙𝑔𝑙𝑔 𝑛

• Strongly 𝑑 -partite

• 𝑓𝑃 𝐼 = 𝑃(𝐼)

Framework

…IT WASN’T REALLY ABOUT CLIQUE!

The Good Low-Degree Polynomial (GDLP) 𝑓𝑃(⋅):

• Degree 𝑑 = 𝑜
lg 𝑛

𝑙𝑔𝑙𝑔 𝑛

• Strongly 𝑑 -partite

• 𝑓𝑃 𝐼 = 𝑃(𝐼)

Framework

If P has a GLDP and WC P requires 𝑇(𝑛) time then

Uniform AC P requires 𝑇 𝑛 / lg 𝑛 𝑑 time

if it succeeds with probability 1 −
1

lg 𝑛 𝑑

…IT WASN’T REALLY ABOUT CLIQUE!

The Good Low-Degree Polynomial (GDLP) 𝑓𝑃(⋅):

• Degree 𝑑 = 𝑜
lg 𝑛

𝑙𝑔𝑙𝑔 𝑛

• Strongly 𝑑 -partite

• 𝑓𝑃 𝐼 = 𝑃(𝐼)

Framework

If P has a GLDP and WC P requires 𝑇(𝑛) time then

Uniform AC P requires 𝑇 𝑛 ⋅ 𝑛−𝑜(1) time

if it succeeds with probability 1 −
1

𝑛𝜖

This is the probability

throughout the rest

of the talk

…IT WASN’T REALLY ABOUT CLIQUE!

The Good Low-Degree Polynomial (GDLP) 𝑓𝑃(⋅):

• Degree 𝑑 = 𝑜
lg 𝑛

𝑙𝑔𝑙𝑔 𝑛

• Strongly 𝑑 -partite

• 𝑓𝑃 𝐼 = 𝑃(𝐼)

Framework

WC 𝑃 AC fP(⋅) Uniform AC 𝑃

RESULTS IN THIS PAPER

• A framework built on BBB19

• A new type of problem: “factored” problems

• Using the framework, factored problems, and reductions:
• Avg. Case hardness for various string or graph problems

• Avg. Case hardness for a graph problem from APSP,3-SUM & SETH

• New candidate “hard from everything” problem

• We show that #OV is easy on average

• Reduction from Counting to Detection for avg case ZKC

• Avg case hardness for counting any small subgraph

Content not

in talk

RECENT WORK + PITCH

Shuichi Hirahara, Nobutaka Shimizu:
Nearly Optimal Average-Case Complexity of Counting
Bicliques Under SETH
SODA 2020

Oded Goldreich:
On Counting 𝒕-Cliques Mod 2.

ECCC 2020

Content not

in talk

QUESTIONS?

• A framework for WC to AC reductions

• Factored problems

• Reductions from factored problems
Photo by Emily Morter on Unsplash.

