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l. Introduction

Il. Low-Degree Polynomial Lower Bound & E[1] is well-behaved
Ill. Current Knowledge About Sum of Squares Lower Bounds

IV. Intuition for the Low-Degree Conjecture (time permitting)

Note: This talk is closely connected to Prasad Raghavendra’s 4th
bootcamp talk but is from a different perspective (looking at the
current gaps between low-degree polynomial lower bounds and sum of
squares lower bounds).



Part I: Introduction



Distinguishing Problems

* Distinguishing problems: Given a random distribution D, ;,,40,m and a
planted distribution D,;;pteq, Can we distinguish between these two
distributions?

 Example: Planted clique:

* Drandom' G (n» %)

* Dyiantea: G (n, %) + clique of size k
* Example: Tensor PCA (principal component analysis):

* Drandom: Ti,..i,, = N(0,1) (where k is the order of the tensor).
* Dpiantea: Ti, i, = N(0,1) + Av; v;, ...v;, where A > 0 and v is a unit vector.



Planted Cligue Example

. 1
e Random instance: G (n, E)

* Planted instance: G (n, %) + K,
* Example: Which graph has a planted 5-clique?

i




Planted Cligue Example

. 1
e Random instance: G (n, E)

* Planted instance: G (n, %) + K,
* Example: Which graph has a planted 5-clique?
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Low-Degree Polynomial Framework

* Low-Degree Polynomial Framework: Is there a low-degree polynomial
f which distinguishes between D;.;n4om and Dpignteq?

* More precisely, is there a low-degree polynomial f such that

1. Epianted [f]is large.
2. Erandom[f] = 0 and Erandom[fz] <L
?

* |f there is no such polynomial f then we have a low-degree
polynomial lower bound.



Sum of Squares (SoS) Framework

* The sum of squares hierarchy (SoS) is most naturally applied to
certification problems (i.e. certifying that a random input does not
have some hidden structure).

* That said, we can analyze distinguishing problems using the pseudo-
calibration framework [BHK+16]:

1. Use pseudo-calibration to obtain pseudo-expectation values for the random
inputs.

2. Construct the corresponding moment matrix M.
3. Analyze whether M = 0.

e If M = 0 w.h.p. then we have an SoS lower bound.

 More precisely, the pseudo-expectation valules E will satisfy all low-
degree constraints satisfied by the planted distribution.



Summary

Start with a random and planted distribution.

/

\

Show that there is no low-degree
polynomial f such that

Eplanted [f]is large
2. Erandomy]f] 0 and

Use pseudo-calibration to obtain
pseudo-expectation values E.

I

Construct the corresponding
moment matrix M.

Erandom [f <1
l

Low-degree polynomial lower bound

y

Show M = 0 w.h.p.
v

SoS lower bound




Low-Degree Conjecture

* SoS lower bound (where E[1] is well-behaved) = low-degree
polynomial lower bound

* Low-degree conjecture: For symmetric distinguishing problemes,

Low-degree polynomial lower bound = SoS lower bound for a noisy
version of the problem (where we add some additional noise to the
planted distribution).



Part Il: Low-Degree Polynomial Lower
Bound & E[1] is well-behaved



Low-Degree Polynomial Lower Bound & E[1] is well-behaved

~

* Observation on p. 71 in Sam Hopkin’s thesis: E[1] is the low-degree
likelihood ratio for the input being from the planted distribution.

* What we’ll show here: If there is a low-degree polynomial f such that

1. Eplanted [f =C
2. Erandom[f_ = 0 and Erandom[fz] <1

then Var(E[1]) = C2.




Background: Fourier Analysis and Low-Degree Projections

* Setup: We have
* A vector space of polynomials

* Aninner product (f, g) = E,qndomlf 9]
* An orthonormal basis of Fourier characters {x;} which are polynomials.

* Fourier decomposition: For any polynomial f, we can write f = Z)(i ﬁ-)(i

where fl — <f')(i> — Erandom[f)(i]-
* Low-degree projection: The low-degree projection of f is

2low degree x; fixi = Ziow degree y; Erandom S Xilxi



Goal: Assighing Pseudo-expectation Values

* Setup: We have
 Solution variables for the planted structure.
* Fourier characters y; on the random input

* Example: For the planted cliqgue problem, we have

 Solution variables x; where we want that x; = 1 if vertex i is in the planted clique
and 0 otherwise.

* Fourier characters Xg = (—1)/ENEO! =TT, x(ey where y(y = 1ife € E(G) and
— 1 otherwise.

e Each planted instance assigns values to the solution variables (and thus
any polynomial p in the solution variables).

* Q: Given a random instance I, can we assign a pseudo-expectation value
E[p](I) to each low-degree polynomial p in the solution variables?



Pseudo-Calibration

* Pseudo-calibration: Take E[p](I) to be the low-degree projection of

Pr (I)

planted
ranpcgom(l) P (I)

* Reason: For any low-degree Fourier character y;,
Pr (I)

Erandom [E (I)XL] = Erandom [pla;:ed( (I)Xl] — planted [p (I)Xl]

random

* Pseudo-calibration equation:

E[p](I) = Zlow—degree i Eplanted [p(Dxil xi



Canonical Example: Planted Clique
* Random distribution: G(n, 1/2)

* Planted distribution: Start with a G(n,1/2) graph and put each vertex
in the planted clique with probability k /7.

* Define xyy = [l;ep X;
i\ VUV (E)]
* Claim: EpjgneealxvXel = (—) where V(E) is the set of

endpoints of edges in E. "

* Reason:
* If every vertex in V U V(E) is in the planted clique then x;;, = 1 and yy = 1.
* If some vertex in VV is not in the planted clique then x,;, = 0.

* If some vertex in V(E) is not in the planted clique then E|yz] = 0 (where the
expectation is over the part of G outside of the planted clique)

k)|VUV(E)|

* Pseudo-expectation values: E[x,] = DE-[VUV(E)|<t (; XE



Analyzing E[1]

* Pseudo-calibration equation: E[p] (I) = Zlow degree x; Eplanted [p(I)Xi] Xi

* Special case: E[l] =1+ Znon—empty low degree x; Eplanted [Xi] Xi
* Assume we have a low-degree polynomial f such that

* Eplanted [f] =C
* Erandomlf] = 0andVar(f) <1

* Note: All sums below are over low-degree, non-empty y;.

* Write f = Z ale and let b; = planted [Xl] [1] —1= Z)(i b; x; SO
Var(f) = Z)( a? and Var(E[ ]) ZX

e Using Cauchy-Schwarz,

C = Eptancealf] = y by < [£,0 [£,b7 = JVar(Var (BT
* Thus, Var(E[1]) = C?



Low-Degree Polynomial Lower Bounds Versus SoS Lower Bounds

1 Xy XXl

~

E[x;] Elxyx;]

SoS lower bound

x; | Elx] Elx:xy] Elx;x %] /
Low-degree polynomial

lower bound =0

XiX; E[xixj] E[xixj X | E[xixj XX ]

Moment matrix M



Summary

* SoS lower bounds using pseudo-calibration are strictly stronger than
low-degree polynomial lower bounds as they involve analyzing the
entire moment matrix.

* There are many interesting techniques involved in proving SoS lower
bounds.

* That said, low-degree polynomials are an excellent heuristic for
determining the computational threshold where a problem is hard and
it is much easier to prove low-degree polynomial lower bounds.



Part Ill: Current Knowledge About Sum
of Squares Lower Bounds



Evidence for the Low-Degree Conjecture

* The thresholds for SoS lower bounds and low-degree polynomials
lower bounds match for
* Planted clique [BHK+16]
e Tensor PCA [HKP+17, PR20]
e Sparse PCA [HKP+17, DNS20, PR20]
e Random CSPs [KMOW17]

* However, there are still significant gaps between known SoS lower
bounds and known low-degree polynomial lower bounds.



Delicateness of Current SoS Lower Bounds

e Subtle issue: Current SoS lower bound techniques are sensitive to the
choice of planted distribution.

 Example: Planted Clique
* Random distribution: G (n, %)
* Planted distribution used in [BHK+16]: Put each vertex in the planted clique
independently with probability %

e Desired planted distribution: Plant a clique of size exactly k.

* For planted cliqgue, Shuo Pang [P21] recently fixed this issue by proving an SoS
lower bound for the desired planted distribution.



Delicateness of Current SoS Lower Bounds

e Subtle issue: Current SoS lower bound techniques are sensitive to the
choice of planted distribution.

* Example: Tensor PCA
e Random distribution: Tensor T with Gaussian entries

* Planted distribution used in [HKP+17] and [PR20]: T + A(v ® VR QD)
1

where v is a vector where each coordinate is in {— T 0, \/A_n} with
probabllltles = 1 —A, > 2 where A = n€.
: : : : 1
* |If we instead take v to be a unit vector with coordinates + N the current
techniques for analyzing the moment matrix M don’t quite work.



Example: Parallel Pancakes

* Consider the following random and planted distribtions.
* Random: m random vectors d4, ..., d,,;, € R™ with N(0,1) entries.

. . . 1 .
e Planted: First choose a unit vector v € R™ with + 7 entries. Then choose

n
m random vectors dq, ..., d,, € R™ with N(0,1) entries and a4, ..., a,,
from some distribution A and replace d; with d; — (v, d;)v + a;v.

* In other words, (d;, v) has distribution A and d; is Gaussian in the
directions orthogonal to the hidden direction v.

e Statistical query lower bound [DKS17]: If A matches the first k moments of
N(0,1) and dTV(A,N(O,l)) < oo then there is a statistical query lower
k+1

bound form < n 2 .



Special Case: A = {—1,1}

* For the special case when A = {—1,1}, we have an SoS lower bound for
m <« n3/2 which was used to prove an SoS lower bound for the
Sherrington-Kirkpatrick problem [GJJ+20].

* Note: There is a low-degree polynomial lower bound when m « n?.

« Open problem: Can we strengthen the SoS lower bound from m <« n3/2
tom <K n4?

* Open problem: Can we prove SoS lower bounds for more general
distributions A?



Example: Independent Set on Sparse Graphs

* Q: Given a sparse graph G with average degree = d, does it have an

. . n
independent set of size = k = —7-——:

e Random Distribution: Random G (n, %) graph

* Nalve Planted Distribution: Start with a random G (n, %) graph and
put each vertex in the independent set with probability %

* Problem: It is easy to distinguish these distributions! In fact, counting

the nur,nber of edges is sufficient. This can be fixed by startm with a
G (n d—) graph instead of a G ( ) graph ford’' = d ( n’ ﬁ but
then counting the number of triangles is still sufficient.

e What can we do?

n2—k?2



Example: Independent Set on Sparse Graphs

* Low-degree polynomial lower bound for recovery [SW20]: Even
though it is easy to distinguish the random and planted distributions,
there is no low-degree polynomial which approximates the indicator
function for whether a given vertex i is in the independent set.

* SoS certification lower bound [JPR+21]: We can tweak the pseudo-
expectation values given by pseudo-calibration to show an SoS lower

bound on the certification problem of proving thata G (n, %) graph
does not have an independent set of size = k.
* Note: To do this, we ignore all shapes a which have a component

which is disconnected from U, U I/, which corresponds to ignoring
all of the global distinguishers.



Open Problem: Quiet Planting

e Q: Can we find a planted distribution for independent set on sparse

graphs which is hard to distinguish from G (n, g) (or alternatively,

n
from a random d-regular graph on n vertices)?



Part IV: Intuition for the Low-Degree Conjecture



Example: Maximum Eigenvalue of a Random Matrix

* Q: Given a symmetric matrix M, is 1,,,,, (M) = 2 /n + 2?

 Random distribution: A random symmetric n X n matrix M with
Gaussian entries

e Planted distribution:

1. Start with a random matrix M.
2. Letting v be the eigenvector of M with the largest eigenvalue, take M' =

M + (2\/ﬁ +2 - Amax(M)) vl

* Note: For a random symmetric n X n matrix M with Gaussian entries,

w.h.p. 1,0 (M) is 24/n + 0 (n11/6) and is described by the Tracy-

Widom distribution [TW94].




Example: Maximum Eigenvalue of a Random Matrix

* Q: Given a symmetric matrix M, is 1,,,,, (M) = 2 /n + 2?
* By its nature, SoS easily solves this problem.

* For any symmetric matrix M, A,,,,,(M)Id — M > 0 so
X (Mg (M)Id — M)x is a sum of squares which certifies that for
any vector x, xT Mx < A, 5, (M) || x]||%.

* However, since the planted distribution is only a slight tweak of the
random distribution, this is very hard for low-degree polynomials to
detect.

* Note: This example is delicate. For example, if we instead ask whether
Mg (M) = C+/n then low-degree polynomials can solve this problem
via the trace power method.



Spectral Distinguishers

* Recall: A low-degree polynomial distinguisher is a polynomial f such that
1. Epianted [f]is large.
2. Erandom[f] = 0 and Erandom[fz] <1

* A spectral distinguisher is a matrix Q such that such that
1. Each entry of Q is a low-degree polynomial in the entries of the input.

2. Eplanted [)l?-l’;’tax(Q)] is large.
3. Erandom[/w)_wx(Q)] <1

where A}, ... (Q) is the largest positive eigenvalue of Q andis 0 if Q < O.

* [HKP+17]: If SoS succeeds at a noisy version of the distinguishing
problem (and certain technical conditions are satisfied) then there is a
spectral distinguisher.



Spectral Distinguisher Example

* For the maximum eigenvalue problem, we can take
Q=C(M—-(2yn+1)Id)
* In the planted case, A,,,, (M) = 24/n + 2 so A},,,(Q) = C.
* In the random case, w.h.p. A, (M) = 24/n+ 0 ( 1/6) so At ., (Q) = 0.
Thus, Ergndom [ Ama (Q)] is very small.




Path for Proving the Low-Degree Conjecture

* Likely strengthening of this result: If SoS solves a noisy version of the
distinguishing problem then there is a matrix M such that

1. Each entry of M is a low-degree polynomial in the entries of the input.

2. Eplanted[”M”] is large.
3. ProndomIM|| > 1) is very small.

* If so, then tr ((MMT)q) is a low-degree distinguisher for g = O(logn).



Thank You!



