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Starting point:

Diffusion equations and Ricci curvature

via optimal transport



Optimal transport

γ(dx, dy)

x y
μ ν

• Let µ, ν be probability measures on a metric space (X , d).

• A transport plan (or coupling) between µ and ν is a
probability measure γ ∈ P(X × X ) s.t.

γ(A×X ) = µ(A) and γ(X × A) = ν(A) ∀A ⊆ X .

The Monge-Kantorovich problem (1781, 1942)

Minimize γ 7→
∫

X×X
c(x , y) dγ(x , y) among all γ ∈ Cpl(µ, ν) .
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Diffusion equations via optimal transport

Jordan–Kinderlehrer–Otto ’98: Beautiful connection between
• the 2-Kantorovich metric on the space of probability measures

W2(µ, ν) = inf
γ∈Cpl(µ,ν)

√∫

Rn×Rn

|x − y |2 dγ(x , y)

• the (negative of the) Boltzmann-Shannon entropy

Ent(µ) =

∫

Rn

ρ(x) log ρ(x)dx , if dµ(x) = ρ(x)dx

• the heat equation

∂tµ = ∆µ

Theorem (J-K-O ’98)

The heat flow is the gradient flow
of the entropy w.r.t W2.

Ent(�) =

�
�(x) log �(x) dx

(Prob(Rn), W2)
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Diffusion equations via optimal transport

Theorem (Jordan–Kinderlehrer–Otto ’98)

The heat flow is the gradient flow of the entropy w.r.t W2

, i.e.,

∂tµ = ∆µ ⇐⇒ 1

2

d

dt
W2(µt , ν)2 ≤ Ent(ν)− Ent(µt) ∀ν .

How to make sense of gradient flows in metric spaces?
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Gradient flows in Rn

Let ϕ : Rn → R smooth and convex. For u : R+ → Rn TFAE:

1. u solves the gradient flow equation u′(t) = −∇ϕ(u(t)) .

2. u satisfies

the evolution variational inequality
1
2

d
dt |u(t)− y |2 =

(
u(t)− y

)
· u′(t) ≤ ϕ(y)− ϕ(u(t)) ∀y .

(De Giorgi ’93, Ambrosio–Gigli–Savaré ’05)
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Diffusion equations via optimal transport

Many extensions have been proved:

• Rn Jordan–Kinderlehrer–Otto

• Riemannian manifolds Villani, Erbar

• Hilbert spaces Ambrosio–Savaré–Zambotti

• Finsler spaces Ohta–Sturm

• Wiener space Fang–Shao–Sturm

• Heisenberg group Juillet

• Alexandrov spaces Gigli–Kuwada–Ohta

• Metric measures spaces Ambrosio–Gigli–Savaré
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Diffusion equations via optimal transport

Advantages: The optimal transport approach to diffusion equations

• applies to a large class of dissipative equations (Fokker-Planck,
porous medium, McKean–Vlasov equations, . . . )

• is physically appealing

• comes with time-discrete approximation schemes

• applies to non-smooth problems

• yields functional inequalities and equilibration rates

• is closely connected to geometry (Ricci curvature)
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Optimal transport and curvature

The “lazy gas experiment” (see Villani ’09)

Entropy



Ricci curvature via optimal transport

Theorem (McCann ’94)

The entropy is convex along geodesics in (P(Rn),W2).

Theorem (Otto–Villani ’00, Cordero–McCann–

Schmuckenschläger ’01, von Renesse–Sturm ’05)

For a Riemannian manifold M, TFAE:

1. Ric ≥ κ everywhere on M;

2. Displacement κ-convexity of the entropy:

Ent(µt) ≤ (1− t)Ent(µ0) + tEnt(µ1)

− κ

2
t(1− t)W 2

2 (µ0, µ1)

for all W2-geodesics (µt)t∈[0,1] in P(M).

Entropy

 Ricci curvature in metric measure spaces (Lott–Sturm–Villani)
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Schmuckenschläger ’01, von Renesse–Sturm ’05)

For a Riemannian manifold M, TFAE:

1. Ric ≥ κ everywhere on M;

2. Displacement κ-convexity of the entropy:

Ent(µt) ≤ (1− t)Ent(µ0) + tEnt(µ1)

− κ

2
t(1− t)W 2

2 (µ0, µ1)

for all W2-geodesics (µt)t∈[0,1] in P(M).

Entropy

 Ricci curvature in metric measure spaces (Lott–Sturm–Villani)



Ricci curvature via optimal transport

Definition (Sturm ’06, Lott–Villani ’09)

A metric measure space (X , d ,m) satisfies Ric(X ) ≥ κ if

Ent(µt) ≤ (1− t)Ent(µ0) + tEnt(µ1)− κ

2
t(1− t)W 2

2 (µ0, µ1) .

along all W2-geodesics (µt)t∈[0,1] in P(X ).

Crucial features

• Applicable to a wide class of metric measure spaces
• Many geometric, analytic and probabilistic consequences

−→ logarithmic Sobolev, Talagrand, Poincaré inequalities;
concentration of measure.

• Stability under measured Gromov–Hausdorff convergence

 rich theory, very active research area
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What about discrete spaces?

Example: 2-point space X = {0, 1}.

• Set µα := (1− α)δ0 + αδ1 for α ∈ [0, 1]. Then:

W2(µα, µβ) =
√
|α− β| .

• Suppose that
(
µα(t)

)
is a constant speed geodesic. Then:

√
|α(t)− α(s)| = W2(µα(t), µα(s)) = c|t − s| .

Thus: t 7→ α(t) is 2-Hölder, hence constant.

• Conclusion: there are no non-trivial W2-geodesics. In fact:

(P(X ),W2) is a geodesic space ⇔ (X , d) is a geodesic space.

Moreover: no curves of finite length  no gradient flows.
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Thus: t 7→ α(t) is 2-Hölder, hence constant.

• Conclusion: there are no non-trivial W2-geodesics. In fact:

(P(X ),W2) is a geodesic space ⇔ (X , d) is a geodesic space.

Moreover: no curves of finite length  no gradient flows.



What about discrete spaces?

Example: 2-point space X = {0, 1}.
• Set µα := (1− α)δ0 + αδ1 for α ∈ [0, 1]. Then:

W2(µα, µβ) =
√
|α− β| .

• Suppose that
(
µα(t)

)
is a constant speed geodesic. Then:

√
|α(t)− α(s)| = W2(µα(t), µα(s)) = c|t − s| .

Thus: t 7→ α(t) is 2-Hölder, hence constant.
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Thus: t 7→ α(t) is 2-Hölder, hence constant.

• Conclusion: there are no non-trivial W2-geodesics. In fact:

(P(X ),W2) is a geodesic space ⇔ (X , d) is a geodesic space.

Moreover: no curves of finite length  no gradient flows.



What about discrete spaces?

Example: 2-point space X = {0, 1}.
• Set µα := (1− α)δ0 + αδ1 for α ∈ [0, 1]. Then:

W2(µα, µβ) =
√
|α− β| .

• Suppose that
(
µα(t)

)
is a constant speed geodesic. Then:

√
|α(t)− α(s)| = W2(µα(t), µα(s)) = c|t − s| .

Thus: t 7→ α(t) is 2-Hölder, hence constant.
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Moreover: no curves of finite length  no gradient flows.



Discrete setting

Let L be generator of a reversible Markov chain on a finite set X :

Lψ(x) =
∑

y

Q(x , y)(ψ(y)− ψ(x))

Let π be its invariant measure, and consider the relative entropy

Entπ(µ) :=
∑

x∈X
µ(x) log

µ(x)

π(x)
, µ ∈ P(X ) .

Question: Is the Kolmogorov forward equation ∂tµ = L†µ the
gradient flow of Entπ w.r.t. a suitable metric on P(X )?

Teaser: On the two point space: Yes!

W(µα, µβ) =

∫ β

α

√
arctanh(2r − 1)

2r − 1
dr , 0 ≤ α ≤ β ≤ 1.
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Back to Rn: dynamical characterisation of W2

Benamou-Brenier formula in Rn

W2(ρ0, ρ1)2 = inf
(ρt ,Ψt )t

{∫ 1

0

∫

Rn

|Ψt(x)|2 ρt(x)dx dt :

∂tρ+∇ · (ρΨ) = 0 ,

ρ|t=0 = ρ0 , ρ|t=1 = ρ1

}
.

ρt ρ1ρ0

Ψt
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W2(ρ0, ρ1)2 = inf
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{∫ 1

0

∫

Rn
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Definition of the metric W
Benamou–Brenier formula in Rn

W 2
2 (ρ0, ρ1) = inf

ρ,ψ

{∫ 1

0

∫

Rn

|∇ψt(x)|2 ρt(x)dx dt

}

s.t. ∂tρ+div(ρ∇ψ) = 0 and ρt=0 = ρ0, ρt=1 = ρ1 .

Definition in the discrete case (write ω(x , y) = Q(x , y)π(x))

W(µ0, µ1)2

:=

inf
µ,ψ

{∫ 1

0

∑

x ,y

(
ψt(x)− ψt(y)

)2
Λ

(
µt(x)

π(x)
,
µt(y)

π(y)

)
ω(x , y)dt

}

s.t. ∂tµ(x) +
∑

y

Λ

(
µ(x)

π(x)
,
µ(y)

π(y)

)(
ψ(x)− ψ(y)

)
ω(x , y) = 0 ∀x

Use the logarithmic mean of the densities to define the mobility!

Λ(a, b) :=

∫ 1

0
a1−pbp dp .



Definition of the metric W
Benamou–Brenier formula in Rn

W 2
2 (ρ0, ρ1) = inf

ρ,ψ

{∫ 1

0

∫

Rn

|∇ψt(x)|2 ρt(x)dx dt

}

s.t. ∂tρ+div(ρ∇ψ) = 0 and ρt=0 = ρ0, ρt=1 = ρ1 .

Definition in the discrete case (write ω(x , y) = Q(x , y)π(x))

W(µ0, µ1)2

:= inf
µ,ψ

{∫ 1

0

∑

x ,y

(
ψt(x)− ψt(y)

)2

Λ

(
µt(x)

π(x)
,
µt(y)

π(y)

)

ω(x , y) dt

}

s.t.

∂tµ(x) +
∑

y

Λ

(
µ(x)

π(x)
,
µ(y)

π(y)

)(
ψ(x)− ψ(y)

)
ω(x , y) = 0 ∀x

Use the logarithmic mean of the densities to define the mobility!

Λ(a, b) :=

∫ 1

0
a1−pbp dp .



Definition of the metric W
Benamou–Brenier formula in Rn

W 2
2 (ρ0, ρ1) = inf

ρ,ψ

{∫ 1

0

∫

Rn

|∇ψt(x)|2 ρt(x)dx dt

}

s.t. ∂tρ+div(ρ∇ψ) = 0 and ρt=0 = ρ0, ρt=1 = ρ1 .

Definition in the discrete case (write ω(x , y) = Q(x , y)π(x))

W(µ0, µ1)2

:= inf
µ,ψ

{∫ 1

0

∑

x ,y

(
ψt(x)− ψt(y)

)2

Λ

(
µt(x)

π(x)
,
µt(y)

π(y)

)

ω(x , y) dt

}

s.t.

∂tµ(x) +
∑

y

Λ

(
µ(x)

π(x)
,
µ(y)

π(y)

)(
ψ(x)− ψ(y)

)
ω(x , y) = 0 ∀x

Problem: µ is defined on vertices, ∇ψ is defined on edges.

Use the logarithmic mean of the densities to define the mobility!

Λ(a, b) :=

∫ 1

0
a1−pbp dp .



Definition of the metric W
Benamou–Brenier formula in Rn

W 2
2 (ρ0, ρ1) = inf

ρ,ψ

{∫ 1

0

∫

Rn

|∇ψt(x)|2 ρt(x)dx dt

}

s.t. ∂tρ+div(ρ∇ψ) = 0 and ρt=0 = ρ0, ρt=1 = ρ1 .

Definition in the discrete case (write ω(x , y) = Q(x , y)π(x))

W(µ0, µ1)2

:= inf
µ,ψ

{∫ 1

0

∑

x ,y

(
ψt(x)− ψt(y)

)2
Λ

(
µt(x)

π(x)
,
µt(y)

π(y)

)
ω(x , y) dt

}

s.t.

∂tµ(x) +
∑

y

Λ

(
µ(x)

π(x)
,
µ(y)

π(y)

)(
ψ(x)− ψ(y)

)
ω(x , y) = 0 ∀x

Use the logarithmic mean of the densities to define the mobility!

Λ(a, b) :=

∫ 1

0
a1−pbp dp .



Definition of the metric W
Benamou–Brenier formula in Rn

W 2
2 (ρ0, ρ1) = inf

ρ,ψ

{∫ 1

0

∫

Rn

|∇ψt(x)|2 ρt(x)dx dt

}

s.t. ∂tρ+div(ρ∇ψ) = 0 and ρt=0 = ρ0, ρt=1 = ρ1 .

Definition in the discrete case (write ω(x , y) = Q(x , y)π(x))

W(µ0, µ1)2

:= inf
µ,ψ

{∫ 1

0

∑

x ,y

(
ψt(x)− ψt(y)

)2
Λ

(
µt(x)

π(x)
,
µt(y)

π(y)

)
ω(x , y) dt

}

s.t. ∂tµ(x) +
∑

y

Λ

(
µ(x)

π(x)
,
µ(y)

π(y)

)(
ψ(x)− ψ(y)

)
ω(x , y) = 0 ∀x

Use the logarithmic mean of the densities to define the mobility!

Λ(a, b) :=

∫ 1

0
a1−pbp dp .



Discrete heat flow as gradient flow

• W is induced by a Riemannian metric on P(X ).

Discrete JKO-Theorem (M. , Mielke, Chow-Huang-Li-Zhou ’11)

The heat flow is the gradient flow of the entropy w.r.t. W.

Why the logarithmic mean?

• Represent heat equation as continuity equation:

∂tρ = ∆ρ ⇐⇒
{
∂tρ+ div(ρΨ) = 0
Ψ = −∇ log ρ

• Log-mean compensates for the lack of discrete chain rule:

Λ(ρ(x), ρ(y)) =

∫ 1

0
ρ(x)1−pρ(y)p dp =

ρ(x)− ρ(y)

log ρ(x)− log ρ(y)
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Ricci curvature of Markov chains

Definition (à la Lott–Sturm–Villani) (Erbar, M.)

A Markov chain (X ,Q, π) is said to have Ricci curvature bounded
from below by κ ∈ R if the relative entropy Entπ is κ-convex along
W-geodesics.

Simple examples with positive curvature

• discrete hypercube {−1, 1}n: 2
n

• Bernoulli-Laplace model (with k particles on n sites): n+2
k(n−k)

• random transposition model on Sn: 4
n(n−1)

• zero-range processes on complete graph

Remark Many other notions of discrete Ricci curvature exist, e.g.:

• Ollivier’s course Ricci curvature

• Bakry-Émery curvature (in various versions).
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Consequences: Sharp functional inequalities

Bakry–Émery Theorem (Erbar, M.)

Let (X ,Q, π) be a reversible Markov chain. Let κ > 0.

If Ric(K ) ≥ κ, then the logarithmic Sobolev inequality holds:

Entπ(ρπ) ≤ 1

2κ
E(ρ, log ρ) ,

where E(ϕ,ψ) = −〈Lϕ,ψ〉L2(π) is the Dirichlet form.

This implies exponential decay of the relative entropy:

Entπ(etL†
µ) ≤ e−2κt Entπ(µ) ∀µ ∈ P(X ) .



Related gradient flow structures

Closely related gradient flow structures have been discovered for

• Jump processes on general state spaces (Erbar)
e.g., geodesic convexity of the entropy for Lévy processes

• Nonlocal-interaction equations on graphs
(Esposito-Patacchini-Schlichting-Slepčev)

• Discrete porous medium equations (Erbar-M.)
allows for structure-preserving discretisations of PDEs

• Chemical reaction networks (Mielke)
gradient flow structure for chemical master equation and
Liouville equation

• Dissipative quantum mechanics (Carlen-M., Mielke-
Mittnenzweig, Chen-Gangbo-Georgiou-Tannenbaum)
non-commutative analogue of W for density matrices
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• Discrete porous medium equations (Erbar-M.)
allows for structure-preserving discretisations of PDEs

• Chemical reaction networks (Mielke)
gradient flow structure for chemical master equation and
Liouville equation

• Dissipative quantum mechanics (Carlen-M., Mielke-
Mittnenzweig, Chen-Gangbo-Georgiou-Tannenbaum)
non-commutative analogue of W for density matrices



Related gradient flow structures

Closely related gradient flow structures have been discovered for

• Jump processes on general state spaces (Erbar)
e.g., geodesic convexity of the entropy for Lévy processes
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Is there a JKO theorem for

dissipative quantum systems?



Dissipative quantum mechanics

Dynamics of open quantum systems

• Let H be a (finite-dimensional) Hilbert space

• Let P(H) = {ρ ∈ B(H) : ρ = ρ∗ ≥ 0 ,Tr[ρ] = 1} be the set
of density matrices

• Let Pt = etL be a trace preserving and completely positive
semigroup acting on P(H).

• Then, L can be written in Lindblad form

Lρ = −i [H, ρ] +
∑

j [Vj , ρV
∗
j ] + [Vjρ,V

∗
j ] ,

where the Hamiltonian H is self-adjoint, and Vj ∈ B(H).
[Gorini/Kossakowski/Sudarshan, Lindblad ’76]

• Let σ ∈ P(H) be a stationary state, i.e., Lσ = 0. Consider
the quantum relative entropy Ent(ρ|σ) = Tr[ρ(log ρ− log σ)].

• H -Theorem [Spohn ’78]: t 7→ Ent(Ptρ|σ) is decreasing.
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Gradient flow structures

• Can we formulate the Lindblad equation ∂tρ = Lρ as gradient
flow of the relative entropy?
• Assume first: L is self-adjoint w.r.t. the scalar product

〈A,B〉 = Tr[A∗B] on B(H) .

• Then: L has the divergence form representation

LA = −
∑

j

∂†j ∂jA where ∂jA = [Vj ,A] .

• Ansatz: define a distance W on P(H) by

W(ρ0, ρ1)2 = inf
ρ,A

{∫ 1

0

∑

j

Tr[(∂jA)∗ρ • ∂jA]dt

}

s.t. ∂tρ+
∑

j ∂
†
j (ρ•∂jA) = 0, ρ : ρ0  ρ1 .

• How to define the product • ?
Need: non-commutative version of the classical chain rule

∇ρ = ρ∇ log ρ ?
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A non-commutative chain rule

Is there a non-commutative chain rule “∂jρ = ρ • ∂j log ρ”?

• Recall that ∂jA = [Vj ,A]

• Observe: ∂j (AB) = (∂jA)B + A ∂jB

• Consequently:

∂j (A
n) =

n−1∑

k=0

Ak (∂jA)An−k−1

• Set A = ρ1/n. Then:

∂jρ =
n−1∑

k=0

ρk/n (∂jρ
1/n)ρ1−(k+1)/n

n→∞ : ∂jρ =

∫ 1

0
ρs (∂j log ρ)ρ1−s ds
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Quantum JKO

Let L be a Lindblad operator given by
Lρ =

∑
j [Vj , ρV

∗
j ] + [Vjρ,V

∗
j ] with (Vj )j ⊂ B(H).

Definition (Quantum transport metric)

For density matrices ρ0, ρ1 ∈ P(H) we set

W2(ρ0, ρ1) = inf
ρ,A

{∫ 1

0

∑

j

Tr[(∂jA)∗ρ • ∂jA]dt :

∂tρ+
∑

j

∂†j (ρ • ∂jA) = 0, ρ : ρ0  ρ1

}

where ∂jA = [Vj ,A] and ρ • A :=

∫ 1

0
ρs Aρ1−s ds .

Quantum JKO-Theorem I (Carlen-M. ’17)

If L is self-adjoint w.r.t. trace duality, then the Lindblad equation
∂tρ = Lρ is the gradient flow of the von Neumann entropy Ent(ρ) =
Tr[ρ log ρ] w.r.t W.



Quantum JKO

Let L be a Lindblad operator given by
Lρ =

∑
j [Vj , ρV

∗
j ] + [Vjρ,V

∗
j ] with (Vj )j ⊂ B(H).

Definition (Quantum transport metric)

For density matrices ρ0, ρ1 ∈ P(H) we set

W2(ρ0, ρ1) = inf
ρ,A

{∫ 1

0

∑

j

Tr[(∂jA)∗ρ • ∂jA] dt :

∂tρ+
∑

j

∂†j (ρ • ∂jA) = 0, ρ : ρ0  ρ1

}

where ∂jA = [Vj ,A] and ρ • A :=

∫ 1

0
ρs Aρ1−s ds .

Quantum JKO-Theorem I (Carlen-M. ’17)

If L is self-adjoint w.r.t. trace duality, then the Lindblad equation
∂tρ = Lρ is the gradient flow of the von Neumann entropy Ent(ρ) =
Tr[ρ log ρ] w.r.t W.



Quantum JKO

Let L be a Lindblad operator given by
Lρ =

∑
j [Vj , ρV

∗
j ] + [Vjρ,V

∗
j ] with (Vj )j ⊂ B(H).

Definition (Quantum transport metric)

For density matrices ρ0, ρ1 ∈ P(H) we set

W2(ρ0, ρ1) = inf
ρ,A

{∫ 1

0

∑

j

Tr[(∂jA)∗ρ • ∂jA] dt :

∂tρ+
∑

j

∂†j (ρ • ∂jA) = 0, ρ : ρ0  ρ1

}

where ∂jA = [Vj ,A] and ρ • A :=

∫ 1

0
ρs Aρ1−s ds .

Quantum JKO-Theorem I (Carlen-M. ’17)

If L is self-adjoint w.r.t. trace duality, then the Lindblad equation
∂tρ = Lρ is the gradient flow of the von Neumann entropy Ent(ρ) =
Tr[ρ log ρ] w.r.t W.



Quantum JKO

Let L be a Lindblad operator given by
Lρ =

∑
j [Vj , ρV

∗
j ] + [Vjρ,V

∗
j ] with (Vj )j ⊂ B(H).

Definition (Quantum transport metric)

For density matrices ρ0, ρ1 ∈ P(H) we set

W2(ρ0, ρ1) = inf
ρ,A

{∫ 1

0

∑

j

Tr[(∂jA)∗ρ • ∂jA] dt :

∂tρ+
∑

j

∂†j (ρ • ∂jA) = 0, ρ : ρ0  ρ1

}

where ∂jA = [Vj ,A] and ρ • A :=

∫ 1

0
ρs Aρ1−s ds .

Quantum JKO-Theorem I (Carlen-M. ’17)

If L is self-adjoint w.r.t. trace duality, then the Lindblad equation
∂tρ = Lρ is the gradient flow of the von Neumann entropy Ent(ρ) =
Tr[ρ log ρ] w.r.t W.



Quantum JKO: the general case

• Assume: L satisfies detailed balance with respect to
σ ∈ P(H), i.e., L is selfadjoint w.r.t. 〈A,B〉σ = Tr[σA∗B].

• Then: L =
∑

j e
ωj/2Lj , Ljρ = [Vj , ρV

∗
j ] + [Vjρ,V

∗
j ] ,

where {Vj} = {V ∗j } and [Vj , log σ] = −ωjVj for some ωj ∈ R.

• Need: a non-commutative chain rule of the form

σ∇(ρ/σ) = ρ∇(log ρ− log σ)

• Key identity:

σ1/2∂j

(
σ−1/2ρσ−1/2

)
σ1/2 = ρ •j

(
∂j (log ρ− log σ)

)
,

where ρ •j A =

∫ 1

0

(
e−ωj/2ρ

)1−s
A
(
eωj/2ρ

)s
ds

Quantum JKO-Theorem II (Carlen-M., Mielke-Mittnenzweig 2017)

If L satisfies detailed balance w.r.t. a state σ, then the Lindblad
equation ∂tρ = Lρ is the gradient flow of the quantum relative
entropy Ent(ρ|σ) = Tr[ρ(log ρ− log σ)] w.r.t W.
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Example: the quantum Ornstein-Uhlenbeck semigroup

• Let a be an operator satisfying the canonical commutation
relation [a, a∗] = I

• Concrete realisation: H = L2(R, γ), γ Gaussian measure,
a = ∂x , a∗ = x − ∂x

• For β > 0, consider the quantum OU-operator

Lβρ =
1

2
eβ/2

(
[a, ρa∗] + [aρ, a∗]

)

︸ ︷︷ ︸
attenuator

+
1

2
e−β/2

(
[a∗, ρa] + [a∗ρ, a]

)

︸ ︷︷ ︸
amplifier

• ∃! (Gaussian) stationary state: σβ = Z−1e−βH , H = a∗a

Theorem: [Carlen/M. ’17]

Ent(etLβρ|σβ) ≤ e−2λβt Ent(ρ|σβ) where λβ = sinh(β/2) .
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relation [a, a∗] = I

• Concrete realisation: H = L2(R, γ), γ Gaussian measure,
a = ∂x , a∗ = x − ∂x

• For β > 0, consider the quantum OU-operator

Lβρ =
1

2
eβ/2

(
[a, ρa∗] + [aρ, a∗]

)

︸ ︷︷ ︸
attenuator

+
1

2
e−β/2

(
[a∗, ρa] + [a∗ρ, a]

)

︸ ︷︷ ︸
amplifier

• ∃! (Gaussian) stationary state: σβ = Z−1e−βH , H = a∗a

Theorem: [Carlen/M. ’17]

Ent(etLβρ|σβ) ≤ e−2λβt Ent(ρ|σβ) where λβ = sinh(β/2) .



Geodesic convexity of the quantum entropy

Key ingredients of the proof:

• Intertwining relations:

∂j ◦ Pt = e−λβtPt ◦ ∂j

where λβ = sinh(β/2)

• Matrix convexity inequalities:

(R,A) 7→ Tr

[ ∫ ∞

0
(tI + e−ω/2R)−1A∗(tI + eω/2R)−1Adt

]

is jointly convex on M+
n ×Mn for all ω ∈ R.
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Key ingredients of the proof:

• Intertwining relations:

∂j ◦ Pt = e−λβtPt ◦ ∂j

where λβ = sinh(β/2)

• Matrix convexity inequalities:

(R,A) 7→ Tr

[ ∫ ∞

0
(tI + e−ω/2R)−1A∗(tI + eω/2R)−1Adt

]

is jointly convex on M+
n ×Mn for all ω ∈ R.



Thank you!


