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𝑝 𝑧 = 𝑧 𝑧|𝑜𝑢𝑡𝑈 0𝑛 2

Strong simulation: Given 𝑥, compute 𝑝(𝑥).
(#𝑃-hard. Quantum computers can’t do this)

Weak simulation: Sample a bit string from the distribution 𝑝.
(Quantum computers do this)

𝝐-Strong simulation: Given 𝑥, compute 𝑝 such that  1 − 𝜖 𝑝(𝑥) ≤ 𝑝 ≤ (1 + 𝜖)𝑝(𝑥).
(#𝑃-hard. Quantum computers can’t do this)



Classical Simulation

Runtime: 𝟐𝒏𝒎
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Tensor network contraction methods:
[Markov Shi 2005][Pednault et al. 2017][Boixo et al. 2017][Li et al. 2018][Chen et al. 2018]
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In fact, these are monotone simulation methods which provably have runtime at 

least  2𝑛−𝑜(𝑛) in the worst case [Huang Newman Szegedy 2018]
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This talk is about a different kind of simulation algorithm…



Stabilizer rank simulators for Clifford+T circuits



Gottesman-Knill Theorem [Gottesman 1997] 

Quantum circuits composed only of Clifford gates can be efficiently 
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The Clifford group is generated by gates

Can we extend Gottesman-Knill to circuits with a few non-Clifford gates?...



Outward from the Cliffords

Clifford 

circuits

1 T gate

2 T gates

What is the classical simulation cost of a circuit with 𝑚 T gates?

{𝐻, 𝑆, 𝐶𝑁𝑂𝑇, 𝑇} 𝑇 =
1 0
0 𝑒𝑖𝜋/4Clifford+T gate set



T gate gadget
[Zhou Leung Chuang 2000]

Gadgetized Clifford+T circuit



𝐴 =
1

√2
0 + 𝑒𝑖𝜋/4|1⟩ Magic state

T gate gadget
[Zhou Leung Chuang 2000]

Gadgetized Clifford+T circuit



𝐴 =
1

√2
0 + 𝑒𝑖𝜋/4|1⟩ Magic state

T gate gadget

We can gadgetize any Clifford+T circuit by replacing all T gates with the above gadget.

This gives an adaptive Clifford circuit with input state 

0𝑛 |𝐴⊗𝑚⟩

[Zhou Leung Chuang 2000]

Gadgetized Clifford+T circuit



Simulating the gadgetized circuit
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𝑥 ∈ {0,1}𝑤

[Bravyi Smith Smolin 2015]
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1. Approximate input magic state as superposition of 𝜒 ≪ 2𝑛 stabilizer states  

Simulation strategy (roughly):

Simulating the gadgetized circuit

Clifford 
operation
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What kind of approximation is needed? How big is 𝝌?...

[Bravyi Smith Smolin 2015]



Stabilizer rank 𝝌 𝝍 is the minimum 𝑟 such that

Stabilizer states
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Stabilizer decompositions

[Bravyi Smith Smolin 2015]



Stabilizer rank 𝝌 𝝍 is the minimum 𝑟 such that

Stabilizer states

Approximate stabilizer rank 𝝌𝜹(𝝍) is the minimum 𝑟 such that

𝜓 −

𝑗=1

𝑟

𝑐𝑗|𝜙𝑗⟩ ≤ 𝛿

𝜓 =

𝑗=1

𝑟

𝑐𝑗|𝜙𝑗⟩

Stabilizer decompositions

[Bravyi, DG 2016][Bravyi Smith Smolin 2015]
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𝑽: affine subspace of 𝔽2
𝑛

𝒒: quadratic function 𝑞 𝑥 = 𝑥𝑇𝐵𝑥 mod 2

ℓ: linear function ℓ 𝑥 = 𝑑𝑇𝑥 mod 2

Recall that a stabilizer state can be parameterized as 

So the subset of real equatorial (ℓ = 0, 𝑉 = 𝔽2
𝑛) stabilizer states corresponds to the 

set of quadratic boolean functions…

The decomposition of a given state into the overcomplete basis of stabilizer states 

generalizes the decomposition of a Boolean function into quadratic Boolean 

functions (quadratic Fourier analysis)
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For circuits with 𝒏 qubits, 𝐠 total gates, 𝒎 T gates:

[Bravyi Smith Smolin 2015] 𝜒 𝐴⊗𝑚
2
poly(𝑛, 𝑔)

[Bravyi, DG 2016]   𝜒 𝐴⊗𝑚 poly(𝑛, 𝑔)

[Bravyi, DG 2016] 𝜒𝛿 𝐴⊗𝑚 poly(𝑛, 𝑔)

Strong simulation

𝝐-Strong simulation

Weak simulation

Classical simulation cost scales with stabilizer rank of magic state input

Techniques can be extended to circuits with other non-Clifford gates

[Bravyi Browne Calpin Campbell DG Howard 18]

Remarks:



Stabilizer rank simulators

For circuits with 𝒏 qubits, 𝐠 total gates, 𝒎 T gates:

[Bravyi Smith Smolin 2015] 𝜒 𝐴⊗𝑚
2
poly(𝑛, 𝑔)

[Bravyi, DG 2016]   𝜒 𝐴⊗𝑚 poly(𝑛, 𝑔)

[Bravyi, DG 2016] 𝜒𝛿 𝐴⊗𝑚 poly(𝑛, 𝑔)

Strong simulation

𝝐-Strong simulation

Weak simulation

Classical simulation cost scales with stabilizer rank of magic state input

Up to polynomial factors, classical simulation has linear scaling with stabilizer rank.

Remarks:
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Stabilizer rank simulators

For circuits with 𝒏 qubits, 𝐠 total gates, 𝒎 T gates:

[Bravyi Smith Smolin 2015] 𝜒 𝐴⊗𝑚
2
poly(𝑛, 𝑔)

[Bravyi, DG 2016]   𝜒 𝐴⊗𝑚 poly(𝑛, 𝑔)

[Bravyi, DG 2016] 𝜒𝛿 𝐴⊗𝑚 poly(𝑛, 𝑔)

Strong simulation

𝝐-Strong simulation

Weak simulation

Classical simulation cost scales with stabilizer rank of magic state input

The exact stabilizer rank 𝜒 𝐴⊗𝑚 must increase exponentially with m, unless #P

complete problems can be solved in polynomial time (with advice)

The best unconditional lower bound is 𝜒 𝐴⊗𝑚 = Ω(𝑚)

Remarks:

[Peleg, Shpilka, Volk 2021]



Stabilizer rank simulators

For circuits with 𝒏 qubits, 𝐠 total gates, 𝒎 T gates:

[Bravyi Smith Smolin 2015] 𝜒 𝐴⊗𝑚
2
poly(𝑛, 𝑔)

[Bravyi, DG 2016]   𝜒 𝐴⊗𝑚 poly(𝑛, 𝑔)

[Bravyi, DG 2016] 𝜒𝛿 𝐴⊗𝑚 poly(𝑛, 𝑔)

Strong simulation

𝝐-Strong simulation

Weak simulation

Classical simulation cost scales with stabilizer rank of magic state input

Rest of this talk: upper bounds…

Remarks:



Upper bounds on stabilizer rank of magic states



Upper bound on approximate SR
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𝛼 = −2log2( cos 𝜋/8) ≈ 0.228…
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𝜒𝛿(𝐴
⊗𝑚)≤ 𝑂
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𝛿2
2𝛼𝑚

Proof sketch

𝛼 = −2log2( cos 𝜋/8) ≈ 0.228…

𝐻 =
1
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A low stabilizer rank approximation is given by restricting the sum to 𝑥 ∈ 𝐿 ⊆ {0,1}𝑚

where 𝐿 is a randomly chosen linear subspace of size  |𝐿| ≈ 𝛿−22𝛼𝑚

[Bravyi DG 2016]
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Upper bound on approximate SR

𝜒𝛿(𝐴
⊗𝑚)≤ 𝑂

1

𝛿2
2𝛼𝑚

Scaling with 𝛿 was improved in [Seddon Regula Pashayan Ouyang Campbell 20]

Is the scaling with 𝑚 optimal?
Can show it is optimal under certain restrictions on the stabilizer states appearing
in the decomposition. 
Can also show the corresponding stabilizer decomposition has minimal 1-norm of the 
coefficients in the decomposition
(“stabilizer extent”) [Bravyi Browne Calpin Campbell DG Howard 2018]

𝛼 = −2log2( cos 𝜋/8) ≈ 0.228…

[Bravyi DG 2016]



In contrast, the known upper bounds on the exact stabilizer rank

of magic states seem unlikely to be optimal… 
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All previously known upper bounds follow a similar strategy

1. Upper bound SR of a constant number of magic states 

Upper bound 𝜒 𝐴⊗𝑐 for some small constant number of magic states c

This step is not as easy as it sounds!

# of 6-qubit stabilizer states: 315057600

# of size-7 subsets of
6-qubit stabilizer states: > 10^48

[From Bravyi Smith Smolin 2015]
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Using the bound 𝜒 𝐴⊗6 ≤ 7 from  [Bravyi Smith Smolin 15] gives

2.    Use (trivial) submultiplicativity property 𝜒 𝜙 ⊗𝜓 ≤ 𝜒 𝜙 𝜒 𝜓

𝜒 𝐴⊗𝑚 ≤ 2𝛼𝑚 𝛼 =
log2 7

6
≈ 0.4679…

𝛼 =
log2 47

12
≈ 0.4629…

Using the bound 𝜒 𝐴⊗12 ≤ 47 from  [Kocia 20] gives

𝜒 𝐴⊗𝑚 ≤ 2𝛼𝑚

In [Qassim Pashayan DG 21] we improve on this bound using a different strategy…
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Image source: Etsy
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𝐴⊥ = 𝑍|𝐴⟩
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1

√2
𝐴 ⊗𝑚 + 𝐴⊥

⊗𝑚

Observation 1

2
⋅ 𝜒(𝐴⊗𝑚) ≤ 𝜒 Cat𝑚 ≤ 𝜒(𝐴⊗𝑚)

𝐴 ⊗𝑚 = ( 𝐴 ⟨𝐴| ⊗ 𝐼) Cat𝑚

This single-qubit operator can be written as a sum of two Cliffords, each of which does
not increase SR

Magic cat states
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𝐴 =
1

√2
0 + 𝑒𝑖𝜋/4|1⟩

Consider the magic cat state

𝐴⊥ = 𝑍|𝐴⟩

Cat𝑚 =
1

√2
𝐴 ⊗𝑚 + 𝐴⊥

⊗𝑚

Observation 1

2
⋅ 𝜒(𝐴⊗𝑚) ≤ 𝜒 Cat𝑚 ≤ 𝜒(𝐴⊗𝑚)

Stabilizer rank of magic cat has same asymptotic scaling with m

Stabilizer decompositions of magic cats with small m are easier to find…

Magic cat states
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Cat2 =
1

√2
|𝐴𝐴⟩ + 𝐴⊥𝐴⊥ =

1

√2
|00⟩ + 𝑖 11

Cat2 is also a stabilizer state

𝜒 Cat2 = 1

Cat1 =
1

√2
|𝐴⟩ + 𝐴⊥ = |0⟩ Cat1 is a stabilizer state
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The largest magic cat state for which we can exactly compute the stabilizer rank is 

Cat6 =
1

2
𝜙1 +

𝑒
3𝑖𝜋
4

2
(|𝜙2⟩ + 𝑖|𝜙3⟩)

𝜙1 =
1

√2
( 06 − 𝑖|16⟩)

𝜙2 = 2−5/2 

𝑥 𝑒𝑣𝑒𝑛

|𝑥⟩

𝜙3 =ෑ

𝑖<𝑗

𝐶𝑍𝑖𝑗|𝜙2⟩

𝜒 Cat6 = 3

A decomposition into 3 stabilizer states was found by hand

(We establish a matching lower bound by showing that no state with stabilizer rank 2 can 
have the same set of Pauli expectation values)
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Low hanging fruit

𝜒 Cat6 = 3 χ A⊗6 ≤ 6

Falsifies conjecture that

𝜒 𝐴⊗6 = 7

[Bravyi Smith Smolin 2015]

χ A⊗m ≤ 𝑂(2𝛼𝑚)

𝛼 =
log2 6

6
≈0.4308

Improves the previously 
known upper bounds from

[Bravyi Smith Smolin 2015]
[Kocia 2020]

We can construct better stabilizer decompositions of 𝑨 ⊗𝒎 by using magic cats in a 
different way…

𝜒 𝐴𝑚 ≤ 2𝜒 Cat𝑚 Submultiplicativity
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So for example, contracting two copies of Cat6 with one copy of Cat2 in this way gives

𝝌 𝐂𝐚𝐭𝟏𝟎 ≤ 𝝌 𝐂𝐚𝐭𝟔
𝟐
= 𝟗

𝝌 𝑨𝟏𝟎 ≤18

𝜶 ≤
𝐥𝐨𝐠𝟐 𝟏𝟖

𝟏𝟎
= 𝟎. 𝟒𝟏𝟔𝟗𝟗…𝝌 𝑨𝒎 ≤ 𝟐𝜶𝒎



Stabilizer rank of large magic cats

An even better strategy is to contract many copies of Cat6 arranged in a chain



Stabilizer rank of large magic cats

An even better strategy is to contract many copies of Cat6 arranged in a chain

𝝌 𝐂𝐚𝐭𝟒𝑳−𝟐 ≤ 𝝌 𝐂𝐚𝐭𝟔
𝑳
= 𝟑𝑳



Stabilizer rank of large magic cats

An even better strategy is to contract many copies of Cat6 arranged in a chain

𝝌 𝐂𝐚𝐭𝟒𝑳−𝟐 ≤ 𝝌 𝐂𝐚𝐭𝟔
𝑳
= 𝟑𝑳

Taking L to be large and setting 𝑚 = 4𝐿 − 2 we get

𝝌 𝐂𝐚𝐭𝒎 ≤ 𝑶(𝟐𝜶𝒎)
𝜶 =

𝐥𝐨𝐠𝟐 𝟑

𝟒
= 𝟎. 𝟑𝟗𝟔𝟐…



Stabilizer rank of large magic cats

An even better strategy is to contract many copies of Cat6 arranged in a chain

𝝌 𝐂𝐚𝐭𝟒𝑳−𝟐 ≤ 𝝌 𝐂𝐚𝐭𝟔
𝑳
= 𝟑𝑳

Taking L to be large and setting 𝑚 = 4𝐿 − 2 we get

𝝌 𝐂𝐚𝐭𝒎 ≤ 𝑶(𝟐𝜶𝒎)
𝜶 =

𝐥𝐨𝐠𝟐 𝟑

𝟒
= 𝟎. 𝟑𝟗𝟔𝟐…

𝝌 𝑨⊗𝒎 ≤ 𝟐𝝌 𝐂𝐚𝐭𝒎 ≤ 𝑶(𝟐𝜶𝒎)



𝜒(𝐴⊗𝑚)≤ 𝑂 2𝛼𝑚
𝛼 =

log2 3

4
≈ 0.3962…

Upper bounds (up to polynomial factors) the runtime of 𝜖-strong simulation of 
Clifford+T circuits as a function of the number of T gates 𝑚



𝜒(𝐴⊗𝑚)≤ 𝑂 2𝛼𝑚
𝛼 =

log2 3

4
≈ 0.3962…

Upper bounds (up to polynomial factors) the runtime of 𝜖-strong simulation of 
Clifford+T circuits as a function of the number of T gates 𝑚

There is still a gap between this scaling and that of approx. SR (weak 
simulation cost) where the best upper bound has 𝛼 ≈ 0.228…
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𝜒(𝜓⊗𝑚)≤ 𝑂 2𝑚/2

Stabilizer rank of symmetric states: Using a similar technique we upper bound the 
stabilizer rank of many copies of any given equatorial single-qubit state. Using the fact 
that such states span the symmetric subspace we get

Any single-qubit state

Magic code states: We can generalize the magic cat state to a family of states which are 
superpositions over the codewords of a linear code 𝐿 ⊆ {0,1}𝑚

𝐿 =

𝑥∈𝐿

| ො𝑥⟩
0 = |𝐴⟩

1 = |𝐴⊥⟩

We show how an upper bound on the stabilizer rank of magic states follows from an 
upper bound on 𝜒(|𝐿⟩) for any code with dimension 𝑘 ≤ 𝑚/2

Cat state is the special case 
where 𝐿 is the repetition code 



Open questions

Describe any nontrivial criterion for certifying that a given state has stabilizer rank at 
least 𝒌

Establish superpolynomial lower bound on 𝝌 𝑨𝒎

Improve upper bounds on 𝝌 𝑨𝒎

Applications to classical counting problems?

[Bravyi Smith Smolin 15][Bravyi et al 18][Qassim Pashayan DG 21]

𝜒(𝐴⊗𝑚)

𝜒(Catm)

𝑚 1 2 3 4 5 6 7 8

2

1

2

1

3

2

≤ 4

2

≤ 6

3

≤ 6

3

≤ 12 ≤ 12

≤ 6≤ 6



Thanks!


