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Strong simulation: Given x, compute p(x).
(#P-hard. Quantum computers can’t do this)

e-Strong simulation: Given x, compute p suchthat (1 —€e)p(x) <p < (1+ €)p(x).
(#P-hard. Quantum computers can’t do this)

Weak simulation: Sample a bit string from the distribution p.
(Quantum computers do this)



Classical Simulation

Most algorithms have exponential scaling in the number of qubits or number of
gates
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Classical Simulation

Most algorithms have exponential scaling in the number of qubits or number of
gates

(X|Upy .. U2U1‘0®"> — 2 (x|Um|Zm—1) - (22|U3|2, )2, |U;|0)

21,22 ...Zm—-1

Recursive variant . n+1 _
[Aaronson Chen 2016] [ Runtime: n(2d) Memory: nlog(d) }

Tensor network contraction methods:
[Markov Shi 2005][Pednault et al. 2017][Boixo et al. 2017][Li et al. 2018][Chen et al. 2018]



Tensor network contraction methods

Simulation algorithm idea: view circuit as a tensor network and choose contraction
ordering to minimize memory/runtime.
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The runtime of tensor network contraction algorithms depend on the connectivity of
the circuit and is insensitive to the entries of the gates that appear.

In fact, these are monotone simulation methods which provably have runtime at
least 2™~°(M) in the worst case [Huang Newman Szegedy 2018]

This talk is about a different kind of simulation algorithm...



Stabilizer rank simulators for Clifford+T circuits
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Clifford circuits

The Clifford group is generated by gates

1 0 0 O
11 1 1 0 010 0
— — CNOT =
Hﬁ(1—1) S(Oi) 0 0 0 1
0 0 1 0
e . N
Gottesman-Knill Theorem [Gottesman 1997]
Quantum circuits composed only of Clifford gates can be efficiently
\(Weakly/strongly) simulated on a classical computer. )

Can we extend Gottesman-Knill to circuits with a few non-Clifford gates?...




Outward from the Cliffords

Clifford+T gate set {H,S,CNOT, T} T

1 0
0 ein/4

Clifford
circuits

What Is the classical simulation cost of a circuit with m T gates?
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Gadgetized Clifford+T circuit

TH = — ’ S T gate gadget
i | [Zhou Leung Chuang 2000]
I 0,1 :
|A)—0— —
1 : .
|A) =E(|O)+e‘”/4|1)) Magic state

We can gadgetize any Clifford+T circuit by replacing all T gates with the above gadget.

This gives an adaptive Clifford circuit with input state

[0™)|A®™)
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Simulating the gadgetized circult [Bravyi Smith Smolin 2015]
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Runtime:

1. Approximate input magic state as superposition of y « 2" stabilizer states X - PoLy (1, 1)

2. Apply Clifford operation

3. Simulate final measurement

Involves computation of marginals
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Simulating the gadgetized circult [Bravyi Smith Smolin 2015]
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Simulation strategy (roughly):

1. Approximate input magic state as superposition of y « 2" stabilizer states X - PoLy (1, 1)

- - X - poly(m,n)
2. Apply Clifford operation “norm estimation algorithm’

. . (weak or e-strong sim.) X - poly(m,n)
3. Simulate final measurement (Bravyi DG 2016]



Simulating the gadgetized circult [Bravyi Smith Smolin 2015]
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Simulation strategy (roughly):

1. Approximate input magic state as superposition of y «< 2" stabilizer states

What kind of approximation is needed? How big is x?...
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Stabilizer decompositions

Stabilizer rank y(¥) is the minimum r such that

r

[Y) = z Cilpj)

j=1 Stabilizer states

Approximate stabilizer rank ys(¥) is the minimum r such that

r

¥ - lep| <o

J=1

[Bravyi Smith Smolin 2015] [Bravyi, DG 2016]
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Remark on stabilizer decompositions

Recall that a stabilizer state can be parameterized as

4 N\ V:affine subspace of [F}
|¢> X 2 (_1)q(x)l-£(x) |x> q: quadratic function g(x) = x" Bx mod 2
\ XEV ) #:linear function #(x) = d"x mod 2

So the subset of real equatorial (£ = 0,V = [F}) stabilizer states corresponds to the
set of quadratic boolean functions...

The decomposition of a given state into the overcomplete basis of stabilizer states
generalizes the decomposition of a Boolean function into quadratic Boolean
functions (quadratic Fourier analysis)
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For circuits with n qubits, g total gates, m T gates:

2 : :
[Bravyi Smith Smolin 2015] (x(4®™)) poly(n,g) ~ Strong simulation
[Bravyi, DG 2016] x(A®™) poly(n,g) €-Strong simulation
[Bravyi, DG 2016] xs(A®™)poly(n,g)  Weak simulation

The exact stabilizer rank )((A®m) must increase exponentially with m, unless #P
complete problems can be solved in polynomial time (with advice)

The best unconditional lower bound is y(4A®™) = Q(m) [Peleg, Shpilka, Volk 2021]



Stabilizer rank simulators

Classical simulation cost scales with stabilizer rank of magic state input
For circuits with n qubits, g total gates, m T gates:

2 : :
[Bravyi Smith Smolin 2015] (x(4®™)) poly(n,g) ~ Strong simulation
[Bravyi, DG 2016] x(A®™) poly(n,g) €-Strong simulation
[Bravyi, DG 2016] xs(A®™)poly(n,g)  Weak simulation

Remarks:
Rest of this talk: upper bounds...
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Upper bound on approximate SR [Bravyi DG 2016]

g ~
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A low stabilizer rank approximation is given by restricting the sumto x € L < {0,1}'"
where L is a randomly chosen linear subspace of size |L| = §~42%™
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Is the scaling with m optimal?

Can show it is optimal under certain restrictions on the stabilizer states appearing
in the decomposition.



Upper bound on approximate SR [Bravyi DG 2016]
4 R

X6 (A®m)S 0, (5—12 Z“m) a = —2log,(cos/8) ~ 0.228 ...

N /

Is the scaling with m optimal?
Can show it is optimal under certain restrictions on the stabilizer states appearing

in the decomposition.
Can also show the corresponding stabilizer decomposition has minimal 1-norm of the

coefficients in the decomposition
(“stabilizer extent”) [Bravvi Browne Calpin Campbell DG Howard 2018]



In contrast, the known upper bounds on the exact stabilizer rank
of magic states seem unlikely to be optimal...
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All previously known upper bounds follow a similar strategy

1. Upper bound SR of a constant number of magic states
Upper bound )((A®C) for some small constant number of magic states c

2. Use (trivial) submultiplicativity property x(¢ ® ¥) < x(¢)x(W)

m

X(A®m) < X(A®c)?
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by computing x,, for larger values of n. In Appendix B
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All previously known upper bounds follow a similar strategy

1. Upper bound SR of a constant number of magic states
Upper bound )((A®C) for some small constant number of magic states c

This step is not as easy as it sounds!
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by computing x,, for larger values of n. In Appendix B
we describe a heuristic algorithm for computing low-
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which yields the following upper bounds:
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# of 6-qubit stabilizer states: 315057600
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bound y,, > Q(n!/?) is proved in Appendix C.
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Upper bounds on exact stabilizer rank

All previously known upper bounds follow a similar strategy

1. Upper bound SR of a constant number of magic states
Upper bound )((A®C) for some small constant number of magic states c

This step is not as easy as it sounds!

CAPCTUL LLLAL UIIC SUALLLE 111 1 1ICULCLLL 4 Lall S LpLU YU
by computing x,, for larger values of n. In Appendix B
we describe a heuristic algorithm for computing low-
rank decompositions of |[H®™) into stabilizer states

which yields the following upper bounds:

n

2

3

4

5

6

Xn

<

2

3

4

6

7

# of 6-qubit stabilizer states: 315057600

# of size-7 subsets of
6-qubit stabilizer states: > 10748

We believe that these upper bounds are tight. A lower
bound y,, > Q(n!/?) is proved in Appendix C.

[From Bravyi Smith Smolin 2015]
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Upper bounds on exact stabilizer rank

All previously known upper bounds follow a similar strategy

1. Upper bound SR of a constant number of magic states
Upper bound )((A®C) for some small constant number of magic states c

The best bound from [Bravyi Smith Smolin 15] is x(A%%) < 7

[Kocia 20] shows (by inspection?) x(A®12) < 47



Upper bounds on exact stabilizer rank

2. Use (trivial) submultiplicativity property y(¢ @ ¥) < x(¢p)x(Y)
Using the bound y(A%®%) < 7 from [Bravyi Smith Smolin 15] gives

log, 7

x(A®m) <20m g = ~ 0.4679 ..




Upper bounds on exact stabilizer rank

2. Use (trivial) submultiplicativity property y(¢ @ ¥) < x(¢p)x(Y)
Using the bound y(A%®¢) < 7 from [Bravyi Smith Smolin 15] gives

log, 7

x(A®m) <20m g = ~ 0.4679 ..

Using the bound y(A®12) < 47 from [Kocia 20] gives

log, 47
L x(A®™) < 20m a= glzz ~ 0.4629 ... J

In [Qassim Pashayan DG 21] we improve on this bound using a different strategy...
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Stabilizer projector—does not increase SR



Magic cat states

Consider the magic cat state

1 -
|Cat,,,) = \/2 (lA)®m + |AJ_) ) |4) =E(|0)+e /411))
|At) = Z]4)
e _ R
Observation 1
>+ X(A®™) < x(Caty) < x(A®™)

N | ’ J
[4)O™ = (JANA| ® D|Caty,)

This single-qubit operator can be written as a sum of two Cliffords, each of which does
not increase SR
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Magic cat states

Consider the magic cat state

1 -
|Cat,,,) = \/2 (|A)®m + |AJ_) ) |4) =E(|0)+e /411))
|At) = Z]4)
‘ N
Observation 1
>+ X(A®™) < x(Caty) < x(A®™)
~ J

Stabilizer rank of magic cat has same asymptotic scaling with m

Stabilizer decompositions of magic cats with small m are easier to find...
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Stabilizer rank of small magic cats

1 | .
|Cat,) = ) (14) + |4L)) = |0) Catl is a stabilizer state

|Cat,) = %QAA) + |AtAt) (|00) +i|11))

)=



Stabilizer rank of small magic cats

1 | .
|Cat,) = ) (14) + |4L)) = |0) Catl is a stabilizer state

Cat2 is also a stabilizer state

(]00) +i|11)) v(Cat,) = 1

_i 1 a4l
ICatz)—\/2(|AA)+|A At)) = \/
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The largest magic cat state for which we can exactly compute the stabilizer rank is

{ x(Catg) =3 }

A decomposition into 3 stabilizer states was found by hand
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The largest magic cat state for which we can exactly compute the stabilizer rank is

{ x(Catg) =3 }

A decomposition into 3 stabilizer states was found by hand

1 3im ] |$1) = = (|0°) — i|1))
e 4
Cate) = 5 1) + f(k]bz) +1|¢3)) T |y = 275/2 2 |x)
|x| even

— =] [ezien

i<j

(We establish a matching lower bound by showing that no state with stabilizer rank 2 can
have the same set of Pauli expectation values)
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Low hanging fruit

x(A™) < 2y(Cat,,) Submultiplicativity

: A®™) < o(29m h
<
x(Cate) =3  EEEEE)  x(A®6) <6 ) x(A%™) < 0(2°™)
Falsifies conjecture that a = log2(6) ~0.4308
x(A%°%) =7 - 7
Improves the previously
[Bravyi Smith Smolin 2015] known upper bounds from

[Bravyi Smith Smolin 2015]
[Kocia 2020]

We can construct better stabilizer decompositions of |4)®™ by using magic cats in a
different way...
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Stabilizer rank of large magic cats

Can we build big magic cat states out of small ones?

Caty) [Caty) = 3 (14)" + [44)") (1477 + |4)")

1 -
(AA|m,m+1|Catm) |Cat,,,) = E |A>2m 2

1 2m-—2
+ (AlAllm,m+1lcatm> |Caty,) = 5 |Al)

V2(Cat, |y ms1|Caty) Caty) = 7 |Catyy, ;) ) {X(Cath—z)S(X(Catm))Z}

\ y J Y

y=1 < ()((Catm))2
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Stabilizer rank of large magic cats

So for example, contracting two copies of Catb with one copy of Cat2 in this way gives
|cat6 |cat6

8?8

log, (18
(caty)| x(A™) < 2em @< Ogig ) _ 0.41699 ..

x(Catyg) < (x(Catg))” =9

x(A10) <18




Stabilizer rank of large magic cats

An even better strategy is to contract many copies of Cat6 arranged in a chain

|catg) |cat6 |cat6 |cat6> \cat6 |cat6

£ £% £t ft 1 e

<cat2 | catQ | (caty| (cata|  (cats
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Stabilizer rank of large magic cats

|Cat6 |cat6 |cat6 |cat6 |Cat6 |cat6

R

(cats] (cats| (cate|  (cats] (cats]

x(Caty_5) < (X(Cate)) = 3L

Taking L to be large and settingm = 4L — 2 we get
x(Caty,) < 0(2%™) oy 1082(3)
x(A®™) < 2y(Caty,,) < 0(2°™) )

= 0.3962 ...
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Xm am
x(A°M)< 0(29™) o = loiz > ~03962..

\_

Upper bounds (up to polynomial factors) the runtime of e-strong simulation of
Clifford+T circuits as a function of the number of T gates m

There is still a gap between this scaling and that of approx. SR (weak
simulation cost) where the best upper bound has a = 0.228 ...



Extensions

Stabilizer rank of symmetric states: Using a similar technique we upper bound the
stabilizer rank of many copies of any given equatorial single-qubit state. Using the fact
that such states span the symmetric subspace we get
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Extensions

Stabilizer rank of symmetric states: Using a similar technique we upper bound the
stabilizer rank of many copies of any given equatorial single-qubit state. Using the fact
that such states span the symmetric subspace we get

X(l/)@)m)g O(Zm/z)

N

Magic code states: We can generalize the magic cat state to a family of states which are
superpositions over the codewords of a linear code L < {0,1}"™"

0) =14
|L>=2m |0) = |4)

=) 1) = 14%)

We show how an upper bound on the stabilizer rank of magic states follows from an
upper bound on y(|L)) for any code with dimension k < m/2



Open questions

Describe any nontrivial criterion for certifying that a given state has stabilizer rank at
least k

Establish superpolynomial lower bound on y(A4™)
Improve upper bounds on y(4A™)

Applications to classical counting problems?

1 1 2 2 3 3 <6 <6

[Bravyi Smith Smolin 15][Bravyi et al 18][Qassim Pashavan DG 21]



Thanks!



