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entanglement as resource

hp)@n

[W)ag = 2ii Cij lija ® j)g

local
unitaries

(HV) IqJ)AB = 2i \/Tz |i>A 029 |i>B

LOCC
1 (W) = 2i VHi li)a @ li)g

if A is majorized by p
|q)>®nE

LOCC

ﬁ where E=-2; Ai log Ai



a different metaphor:
conserved quanftities

The state space is Measurements and unitary
partitioned according to evolutions are constrained
some observable, such as to respect this partition.

total particle number.
X

XAy
A s




conserved entanglement

=) /k | AN 00) ", T,

LU approximately preserves p

because different |®,)®k are only = orthogonal

Caveat
To approximate any state we need

> Vpelk) alk)B|® |2k ) ap

k>0




implications

1. Any transformation using local unitaries and Q
qubits of communication has off-diagonal blocks < 20— 153
decaying as

— £

X X
X X X
X X X
X X X
X X X
X >

2. States like [01)®" + |D2)®" / /2
are unusual and perhaps valuable.




state transformation cost

What is the communication cost to transform
[\J) —lp) up to error €?
1. rephrase as

Z\/]?k|k>A‘k>B|(I)L2€kJ>AB Z@\@M@B |(I)L2€kJ>AB

>0 k>0

2. plot p and g

- < : loo-ear’rh mover dlsfance

K length of longest arrow

https://www.flickr.com/photos/ryanwick/3517668994




Lower bound from Renvyi

If Ai2Az2...2r, [D)8many > 5; /2, i) i)
requires A(W) := log(rAi)/2 qubits of communication

A() = the “entanglement spread” of ).

Proof: r and A1 each change by at most 2 per qubit sent.
For EPR pairs rii=l.
[Hayden-Winter. quant-ph/0204092]

for Z VDPk|k)Alk)B|® 2ek ) a8 spread = width of support of p

k>0

Example: For [01)®" + |D2)®" / V2, ru=2".

- creating it requires =n/2 qubits of communication.



state testing

Thm: communication cost of

» measuring (Y)W, I - [P)(Wl}
- performing I - 2 [Y)(yl

is O(A(Y)) + O(log 1/¢).

Free EPR pairs don't help but
other entangled states can.

Lower bound idea:
- Distinguishing [01)®" + [©2)®" / /2 is equivalent to [01)®" « |dD;)®n
* This is hard to do unitarily even with EPR assistance.

Helper states:
 Embezzling states + LU can approximately create any state
* |P)®k can be distinguished from [P)®k-1 |{sL) using O(log k) communication



EPR fesfing
B) = %NZM@M

By |Ai=| ©i?
Ui =ik Ui*
/ IAI L
1 .
% zzzl o log(t) qubits Vit ;m

Idea: |©i is unique state invariant under UU*
Result: Error , with O(log 1/,) qubits sent.
Previous work used O(loglog(N) + log(1/1)) qubits
[BDSW '96, BCGST ‘02]



l.

2.

3

EPR festing protocol

STeR state
Initial state: |L|J)AB
Alice adds ancilla in i A A
t A\ A’
1 Al 7 Z ‘7/> ‘¢>
i Z 1)” state i
Alice applies controlled U, i Z |i>A,(Ui ® I) W>AB
i.e. 2, liNil ® U, i=1
t
1 /
. Alice sends A to Bob e Y 1E (U U )4
and Bob applies controlled U, i=1

1
. Bob projects B’ onto t+1/23. |i). i Z(Uz’ ® U7) [p)*°



Analyzing protocol

Subnormalized output state (given acceptance) is
t
1 x
M) = S (UeU) )

1=1
Prlaccept] = (UIMTM|)
Key claim: || M - |®XD] || < A

Interpretation as super-operators:
X = 2a,b Xa,b |Cl><b| - IX) = 2a,b ><a,b |G>®|b)

T(X) = AXB >  TIX) = (A ® BT)IX)
T(X) = UXUY >  TIX) = (U ® UI)IX)
identity matrix > |D)

IIMOX)IL, < AlIXIL, if tr[X]=0 €2 |l M - |[dND| || < A



Quantum expanders

A collection of unitaries U,, ..., U; is a
quantum (N,tA) expander if

t
1
N Y UiXU|| < A|X]|l2  whenever tr[x]<0
1—=1 9

(cf. classical t-regular expander graphs can be viewed
as permutations .., m; such that ! [|3. mxll, < AllxIl,
whenever 2. x. = 0.)

Random unitaries satisfy A= 1 / 12 [Hastings ‘07]
Efficient constructions (i.e. polylog(N) gates) achieve
A< 1/ t¢ for ¢>0. [various]

Recall communication is log(t) = O(log 1/1)



state testing

Thm: communication cost of

* measuring {{Y)(Wl, T - [W)(Wl}
- performing I - 2 [Y)(yl

is O(A(Y)) + O(log 1/¢).

Free EPR pairs don't help but
other entangled states can.

Upper bound:
* We have O(log 1/€) for any maximally entangled state.
« |P) < |®Py) using A(P)/2 communication



Application to information
theory

®Traditionally spread has been thought of as a

"sublinear” phenomenon, and as a result, has been
neglected.

®cxample: If |Ys) is an entangled state, then |[|)®" is
very close to a state with spread O(-/n).
Therefore, O(+/n) bits of communication are
necessary and sufficent to prepare [|)®" from EPR

pairs. (a.k.a. entanglement dilution.)
[Hayden-Winter '02, Harrow-Lo '02]

®However, even in i.i.d. setfings, entanglement spread
can be size O(n).



Example: Channel simulation

A N B

Shannon’s (noisy coding) theorem:

Any noisy channel N using input distribution p® can code
at rate Cnp = H(A), + H(B)p - H(AB)p.

N (asymptotically)
N =
N (assuming free shared randomness)

(Classical) Reverse Shannon Theorem: N can be simulated on p®"
using communication Cnp and shared randomness Rnp = H(AB)p -

H(A). . | [BSSTOL,Cuff08]
general inputs:
The capacity and simulation cost are replaced by C(N) = maxp

Cn,p. Randomness cost for simulation is maxp H(B)p - C(N).




Simulating quantum channels

® Coding with quantum channels: Using shared EPR pairs, a quantum
channel N can send noiseless qubits at rate
maxp, QN,p = maxe (H(A), + H(B), - H(AB),) / 2.

® Quantum Reverse Shannon Theorem: For a quantum channel N and an input
distribution p, N®" can be simulated on p®" using QNn,, qubits of
communication and En, = H(B), - QN,, shared EPR pairs.

® However, it does not follow that N®" can be simulated on arbitrary inputs
using maxp(QN,p) qubits of communication and maxy(ENn,p) shared EPR pairs!

® Problem: suppose that the input to N®"is (|p)®" + |0)®")/J/2 with QN =
QN,c but Enp > ENo. Then the naive method of combining the two
simulations will require creating n(En, - En,c) entanglement spread.

® This requires either extra communication (forward or back) or embezzling
states.



Local Hamiltonians

H = Z H; .

(¢,7)€E
I H; 1l <1

Define: eigenvalues A, < A; < ...
eigenstates [Yp) ), ...

Assume: degree < const, gap := A; — A, 2 const.

Known: |[(AB) - (AXB) = lIAll IIBll exp(-dist(A,B) / &)
“correlation decay” [Hastings ‘04, Hastings-Kumo ‘05, ...]

Intuition: ((1+A,)I - H)legl/e)l/gap = {5 ) (s, (X) := tr[XY,]
[Arad-Kitaev-Landau-Vazirani, 1301.1162]



Area “law”?

Conjecture: For any set of systems ACV

S(g') < O(|0A))

Or even, with variable dimensions d;, ..., d..

Swi) <O+ Y log(d:) +log(d;)

‘S
<

M
&y

Known: & e e e e [ - -
in 1-D

Hastinas ‘04 ~ Branddo-Horodecki 12
i correlation

decay

Hastings ‘07, Arad-Kitaev-Landau-Vazirani '13

gap area law

further implications: efficient description (MPS), algorithms

|0A



1410.0951

Aharonov
COUn'l'er—QXGmpleS Harrow
Landau
: Naga]
: Szegedy
E e Vazirani
dimension N 3 ' 3 N
Entanglement OC log(N) oAl < O(1)
Qubit version: n qubits
A [l entanglement
@ . a & X n¢



possible graph area law

Il |

conjecture: entanglement < 3, log(dim(v)) exp(-dist(v, cut) / &)



Anshu, Harrow, Soleimanifar

exact area law for spread
o—0— 0 9 BgmigL o
00 N
o—0—¢ gillgl Byl o
o—0— ¢ gllignign o
o—0— 0 9mgningL o

claim: spread < O(|oAl / gap)

previously known: I(A:B)r < O(|9Al / T) for temperature T
Wolf, Verstraete Hastings,Cirac 0704.3906



exact area law for spread
claim: spread < O(|oAl / gap)

Lemma: Alice and Bob can estimate the energy of a
state to precision § using O(|0Al/8) q. communication.

Proof of lemma: Use phase estimation.
Requires applying e for 0 < t < 1/6.
Use Low-Wiebe interaction-picture simulation
® H=Ha+ Hs + Hoa
® Ha and Hs are free
® Hon needs O(|0A| t) qubits of communication

Proof of main result:
Implement I-2|gs)(gs| with & = gap.
Cost is O(|0Al/gap) > Q(spread(gs)).




Communication complexity

®Alice gets x€{0,1;", Bob gets y€10,1;" and they would
like to compute f(x,y) using as little communication
as possible, allowing a small chance of error.

®Communication can be one-way or two-way.

®Shared randomness is known to help, but by
Newman’s theorem, O(log n) bits of shared
randomness always suffice.

®Free EPR pairs are known to help, although all known
examples simply use them to furn classical
communication info quantum communication.

®Can non-standard entanglement (e.g. embezzling
states) save even more communication?



Communication complexity

Claim: General entanglement is not much better than
EPR pairs in reducing communication complexity.

Proof: Let 3k ~/pk Ik)K)®D2)®* be our starting state for a
protocol that uses Q qubits of communication. Then
Prlaccept] is of the form

) \/p_l\
(\/pl /P2 A/ P3N ) ool TN /D2
SRR \/]TS
= s S S )
>k X
i

Thus we can replace |/) with a mixture of states with
spread O(Q/¢) and incur error <e.



Open questions

Does entanglement help in communication complexity?
* Problem reduces to EPR pairs

Do ground states satisfy an area law?
* Can assume WLOG that they are “EPR-like”

Do these reductions help?
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