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Motivation

® Machine learning (ML) has received great attention in the quantum community these days.

® Yet, many fundamental questions remain to be answered.

Classical ML
for quantum physics/chemistry

The goal :

Solve challenging

quantum many-body problems
better than
traditional classical algorithms

€5

“Solving the quantum many-body problem with artificial neural networks.” Science 355.6325 (2017): 602-606.
"Learning phase transitions by confusion.” Nature Physics 13.5 (2017): 435-439.



Motivation

® Machine learning (ML) has received great attention in the quantum community these days.

® Yet, many fundamental questions remain to be answered.

Classical ML
for quantum physics/chemistry

The question ®:
How can ML algorithms be more useful

than non-ML algorithms?

€5

“Solving the quantum many-body problem with artificial neural networks.” Science 355.6325 (2017): 602-606.
"Learning phase transitions by confusion.” Nature Physics 13.5 (2017): 435-439.
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® Review on classical shadow formalism

® Training machines to predict ground states
(theory+experiments)

® Training machines to classity quantum phases of matter
(theory+experiments)
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ical shadow formalism

Class

e How can classical machines “see” quantum many-body systems?




Classical shadow formalism

e \What do we mean by “seeing” a quantum system?

e Converting the quantum system to a classical form that
accurately captures many properties of the quantum system.
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Classical shadow with
randomized Pauli measurements

e After T randomized Pauli measurements, an n-qubit system p yields a classical shadow

1z
or(p) = = Z Gl(t) ® ... ® ¢\, where al.(t) € C*** is the measurement outcome for qubit i.
t=1

* o.(p)is a2’ xX?2"random matrix with Eo;(p) = p and takes O(nT) bits to represent.

Preserve Properties
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@ Classical representation m Local Observables
Few rounds of randomized measurements of the quantum system .ee etc.

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.
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® Review on classical shadow formalism

® Training machines to predict ground states
(theory+experiments)
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Predicting ground states: Task

e Given parameters x that describes a Hamiltonian H(x), the machine needs to predict a
classical representation of the ground state p(x) of H(x).

e x € R™ describes laser intensities, few-body interactions, magnetic fields, etc.

e We assume that x = H(x) is not known exactly. And we represent p(x) on a classical

computer using its classical shadow o(p(x)).

Classical ML

Predicting ...
il il
H Parameters describing @ Classical representation

a physical Hamiltonian of the ground state




Predicting ground states: Task

e x € R" describes laser intensities, few-body interactions, magnetic fields, etc. We will normalize such that x € [—1,1]".

e Training data: examples of params and associated ground state {x, = o;(p(x,)) }];;1'

Training data

Parameters describing Classical representation
a physical Hamiltonian of the ground state

Quantum many-body

round state
g Perform

Measurements

Synthesize
in the Lab

%7 .ee and other examples

Classical ML

New params Predicting ...

not in

training data

}'{ Parameters describing @ Classical representation
a physical Hamiltonian of the ground state



Predicting ground states: ML

e Training data: {x, — GT(p(xf))}f;]:l, where x, € R"™, 6,(p(x,)) € C>%%,

e We consider training an ML model that takes in an m-dim vector x and outputs a

2" x 2"-size matrix 6(x); more precisely, an efficient representation of 6(x).

e The ML model needs to be trained within time polynomial in n, m.

xe[-1,1]1"

}'{ Parameters describing @ Classical representation
a phySicaI Hamiltonian neurons o0 2” X 2" of the ground state
neurons neurons neurons




Predicting ground states: ML

e Suppose we train a neural network 6y,(x) (illustrated below) with infinitely many
neurons in the hidden layers and exponentially many neurons in the output layer.

e We can train the bizarrely large model in time polynomial in n, m.

Training data: {x, = o7(p(x,)) }]LX=1' where x, € R", 6,(p(x,)) € C2>7.

xe[-1,1]1"

}'{ Parameters describing @ Classical representation
a phySicaI Hamiltonian neurons o0 2” X 2" of the ground state
neurons neurons neurons




Predicting ground states: ML

 \We show that the neural network after training actually have an analytical form given by

N N
N(x) = argmin ) [|6y(x,) — or(p(x I3 = D &N, x )0 (p(x,)

Ow  f=1 =1
where the learned function x™N(x, x,) € R can be obtained efficiently; based on [JGH18].

[JGH18] “Neural tangent kernel: Convergence and generalization in neural networks.”
arXiv preprint arXiv:1806.07572 (2018).

Training data: {x, = o7(p(x,)) }]LX=1' where x, € R", 6,(p(x,)) € C2>7.

xe[-1,1]1"

}'{ Parameters describing @ Classical representation
a phySicaI Hamiltonian neurons o0 2” X 2" of the ground state
neurons neurons neurons




Predicting ground states: ML

 Furthermore, various machine learning models (kernel methods, infinite-width neural networks, etc.)

can be shown to yield an analytical form as the global minimum of the optimization (training):
N

6(x) = ) k(x, x.)or(p(x,)
£=1
where k(x,x,) € R is a learned function for how to extrapolate the known examples to the full space.

Training data: {x, — GT(p(xf))}f;lzl, where x, € R", 6,(p(x,)) € C2>7.

x € [-1,1]" ;4
2] A3
}'{ Parameters describing m @ Classical representation O
a physical Hamiltonian neurons o 2" x 2" of the ground state Xy

neurons neurons neurons
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Predicting ground states: ML

e Aslong as k(x,x,) € R is efficiently computable, the ML model’s prediction
N

6(x) = ) k(x, x)o(p(x,))
/=1
can be represented efficiently with O(nTN) bits; recall 6;(p(x,)) only require O(nT) bits.

Training data: {x, — GT(p(xf))}f;lzl, where x, € R", 6,(p(x,)) € C2>7.

x € [-1,1]" ;4
2] A3
}'{ Parameters describing m @ Classical representation O
a physical Hamiltonian neurons o 2" x 2" of the ground state Xy

neurons neurons neurons

= @



Predicting ground states: Theorem

N

We consider an ML model 6(x) = 2 k(x,x,)or(p(x,)) with [,-Dirichlet kernel.
£=1

e The learned model 6(x) captures the ground state properties accurately (on average).

Theorem 1
For any smooth class of local Hamiltonians H(x) in a finite spatial dimension with a const. spectral gap,

given the number of training data N = poly(m) and T'= 1 (one randomized Pauli measurements each),

E, 1 1] Tr(06(x)) — Tr(Op(x) |* < e,

L L
for any sum of local observables O = Z O; with Z”OJH = (0(1) and €: const. Training and prediction
j=1 j=1

time are polynomial in m and linear in system size n.




Predicting ground states: Theorem

N

We consider an ML model 6(x) = 2 k(x,x,)or(p(x,)) with [,-Dirichlet kernel.
£=1

e The learned model 6(x) captures the ground state properties accurately (on average).

Theorem 1 Intuitively, in a quantum phase

For any smooth class of local Hamiltonians H(x) in a finite spatial dimension with a const. spectral gap,
given the number of training data N = poly(m) and T'= 1 (one randomized Pauli measurements each),

E, 1 1] Tr(06(x)) — Tr(Op(x) |* < e,

L L
for any sum of local observables O = Z O; with Z”OJH = (0(1) and €: const. Training and prediction
j=1 j=1

time are polynomial in m and linear in system size n.




Predicting ground states: Theorem

e Key steps in the proof:
1. Constant spectral gap implies some “smoothness” condition in ground state space

(spectral flow + Lieb-Robinson bounds).
2. Generalization error bounds for the proposed ML with £,-Dirichlet kernel trained on randomized

measurement data under the “smoothness” guarantee (statistical analysis + #lattices in a m-dim. sphere).

Theorem 1

For any smooth class of local Hamiltonians H(x) in a finite spatial dimension with a const. spectral gap,
given the number of training data N = poly(m) and T'= 1 (one randomized Pauli measurements each),

E, 1 1] Tr(06(x)) — Tr(Op(x) |* < e,

L L

for any sum of local observables O = Z O; with Z”OJH = (0(1) and €: const. Training and prediction
j=1 j=1
time are polynomial in m and linear in system size n.




Predicting ground states: Theorem

e A limitation: € can only be a constant. In particular N = m?/¢),

e One may wonder if quantum ML algorithm could overcome this limitation.

e We prove in the appendix that any quantum (classical) ML algorithm require N = m**1/®),
so the advantage of quantum ML can only be polynomial.

Theorem 1

For any smooth class of local Hamiltonians H(x) in a finite spatial dimension with a const. spectral gap,
given the number of training data N = poly(m) and T'= 1 (one randomized Pauli measurements each),

E, 1 1] Tr(06(x)) — Tr(Op(x) |* < e,

L L

for any sum of local observables O = Z O; with Z”OJH = (0(1) and €: const. Training and prediction
j=1 j=1
time are polynomial in m and linear in system size n.




Provable advantage of
learning algorithm with data

Proposition 1

If a classical polynomial-time randomized algorithm & can achieve

E,o_i 1| L(x, 0) = Tr(Op(x)) |* < 1/4,

for any one-local observables O and any smooth class of local Hamiltonians in a two spatial dimension
with a constant spectral gap, then RP = NP.

RP = NP: NP-complete problems can be solved in
randomized polynomial time.




Provable advantage of
learning algorithm with data

Proposition 1 Non-ML algorithm cannot achieve the
same guarantee as the ML algorithm.

If a classical polynomial-time randomized algorithm & can achieve
E,o_i 1| L(x, 0) = Tr(Op(x)) |* < 1/4,

for any one-local observables O and any smooth class of local Hamiltonians in a two spatial dimension
with a constant spectral gap, then RP = NP.



Provable advantage of
learning algorithm with data

Proposition 1 Non-ML algorithm cannot achieve the
same guarantee as the ML algorithm.

If a classical polynomial-time randomized algorithm & can achieve
E,o_i 1| L(x, 0) = Tr(Op(x)) |* < 1/4,

for any one-local observables O and any smooth class of local Hamiltonians in a two spatial dimension
with a constant spectral gap, then RP = NP.

The question ®:
Can ML be more useful than
non-ML algorithms? And why?
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Provable advantage of
learning algorithm with data

Proposition 1 Non-ML algorithm cannot achieve the
same guarantee as the ML algorithm.

If a classical polynomial-time randomized algorithm & can achieve
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Provable advantage of
learning algorithm with data

Proposition 1

If a classical polynomial-time randomized algorithm & can achieve

E,o_i 1| L(x, 0) = Tr(Op(x)) |* < 1/4,

for any one-local observables O and any smooth class of local Hamiltonians in a two spatial dimension
with a constant spectral gap, then RP = NP.

Data contain computational power
. (e.g., nature operates quantumly)
The question ®: The answer ¢9: J i : d

Can ML be more useful than Yes, generalizing from data can be
non-ML algorithms? And why? easier than computing everything

& . s




Predicting ground states: Numerics

® How well does classical ML algorithm perform in actual physical systems?

Classical ML

Predicting ...
il il
}'{ Parameters describing @ Classical representation

a physical Hamiltonian of the ground state




1D Rydberg atom array

We consider training data size N = 20, T = 500 randomized measurements for constructing classical shadows.

The best ML model is chosen from Gaussian kernel method, infinite-width neural networks, and /,-Dirichlet kernel.
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2D random Heisenberg model

We consider training data size N = 100, T = 500 randomized measurements for constructing classical shadows.

The best ML model is chosen from Gaussian kernel method, infinite-width neural networks, and /,-Dirichlet kernel.
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Classifying quantum phases: Task

e Given a quantum state p, predict which quantum phases of matter the state p is in.

e We represent the quantum state p using classical shadow, which is a 2D array of

A
measurement outcomes Sp(p) = {6\"},_, _,, =17 With o7(p) = = 2 " Q® ...® 0, ~p.
=1

Classical ML

Predicting ...
il il
@ Classical representation :>I<: Quantum

of the ground state phases of matter
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Classifying quantum phases: Task

e Given a quantum state p, classity which quantum phases of matter the state p is in.

* Training data: examples of states and associated phase.

Training data

ee Irivial e¢d® Sym.-broken 2\)? Topological
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Classifying quantum phases: ML

e The ML model tries to find a classitying function that separates the phases of matter well.

e For symmetry-broken phases, there is typically a local observable O with
Tr(Opy) > 0,Vp, € phase A,  Tr(Opp) < 0,Vp, € phase B.

e Then the classical ML model only need to learn a linear function (easy with linear
classifiers).

 But Proposition 2 shows that it is not possible to classity topological phases.

S X2
%\é\

© Proposition 2
<° | ® . |
®) @ Consider two distinct topological phases A and B.
—> X1 No (local/global) observable O exists such that
< ' G N Tr(Opy) > 0,Vp, € phase A,  Tr(Opg) < 0,Vp, € phase B.




Classifying quantum phases: ML

* We need a more powerful ML model that can learn nonlinear functions, such as
Tr(Op ® p), Tr(Op®?), or a general analytic function f(p).

* To do so, we consider learning a linear function in an co-dim space, where each state p is mapped to

Xd
d R 1 Fn n 1 T
Pt (f’)”‘D%TOO@ — D 7(%) DD e 72®"@]

=1  i=1 =1 ¢£=1

* [t consists of arbitrarily-large r-body reduced density matrices and arbitrarily-high-degree expansion.

S X2
%\é\

© Proposition 2
<° | ® . |
®) @ Consider two distinct topological phases A and B.
—> X1 No (local/global) observable O exists such that
< ' G N Tr(Opy) > 0,Vp, € phase A,  Tr(Opg) < 0,Vp, € phase B.
E e N
F| [N\ g




Classifying quantum phases: ML

Classical ML model: Learn a linear function in ¢(Shadow)(ST(p)) equiv. a nonlinear function in p.

All we need is to efficiently compute the inner product (referred to as shadow kernel)
T

(S ), S 0) = exp [ 5 Y exp (%Z Tr (ffl‘”é‘?"))) = KO (5,(p), $,(5))
=1

t,t'=1
) é@ X2
Computing shadow kernels only take time O(nT~). N

Training the classical ML model only take time polynomial in n, T, N . ®
(and extremely efficient in practice).




Classifying quantum phases: Theorem

Theorem 2

If there is a nonlinear function of few-body reduced density matrices that classifies phases,

then the classical algorithm can learn to classify these phases accurately. The amount of
training data and computation time scales polynomially in system size.

e The ML model constructs the classifying function explicitly.

e Examples of classitying functions on few-body reduced density matrices (assuming const. spectral gap) include:

1. Twist operators for 1D Haldane phase with O(2)-symmetry (linear function)
2. Hall conductivity for systems adiabatically connected to free fermion (low-degree polynomial)

3. Topological entanglement entropy in a constant region (nonlinear function)

* As long as the classifying function exists, the ML model with shadow kernel is guaranteed to find it.



Classifying quantum phases: Numerics

® How well does the classical ML algorithm perform in actual physical systems?

Classical ML
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1D Symmetry protected topological phases

We consider T = 500 randomized measurements to construct classical shadows for each state.

The classical unsupervised ML model is a kernel PCA using the shadow kernel.
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1D Symmetry protected topological phases

, No labeled training data .
We consider T = 500 randruct classical shadows for each state.

The classical unsupervised ML model is a kernel PCA using the shadow kernel.

(a) (XiXH—l 4+ Y:iY;+1 4+ 5ZiZi—|—1) (C) Unsupervised ML at 6 = 0.5
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2D topologically-ordered phases

We consider T = 500 randomized measurements to construct classical shadows for each state.
The classical unsupervised ML model is a kernel PCA using the shadow kernel.

Topological phase
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Conclusion

® We prove that classical ML algorithms, informed by data from physical experiments,
can effectively address some quantum many-body problems.

® As a consequence, we rigorously establish the advantage of classical ML models over
classical non-ML algorithms.

® Open questions:
Advantage of ML over non-ML algorithms in other tasks?
Rigorous guarantee for other quantum problems with classical ML?
Useful class of quantum learning problems with exponential quantum advantage?

Classical shadows enhanced with ML
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Classical shadow formalism

Theorem 1 [HKP20]

~

There exists procedure that guarantees the following.
1. Given B, e > 0, the procedure learns a classical representation of

an unknown guantum state p from

N = O(Blog(M)/e?) measurements.

2
shadow’

the procedure can use the classical representation to predict 04, ..., 0,

2. Subsequently, given any Oy, ..., O,, with B > max||O,|

k where |0, —tr(O.p)| < €, for all i. j

For example:

e M =10° B =1, then naively we need 10°/¢? measurements.

 This theorem shows that we only need 6 1og(10)/e? measurements.

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.



Classical shadow formalism
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Algorithm for predicting tr(Op): (median-of-means)

Compute X, = (O~ (|s;Xs;])),Vi=1,...,N.

1 N/K 1 N
Predict & = median| — Y X, ... —— X ).
medie N/K,2 P NIK 2

i=1 iI=N—-N/K+1

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.



Classifying quantum phases: ML

* We need a more powerful ML model that can learn nonlinear functions, such as
Tr(Op ® p), Tr(Op®?), or a general analytic function f(p).

Classical shadow formalism

e To do so, we consider learning a linear function

d R
L[y
(shadow) q — lim T_ o
PGP = DR%OEB d! EE r!<

* [t consists of arbitrarily-large r-body reduced density matrices and arbitrarily-high-degree expansion.

S X2
%\é\

. ® Consider two distinct topological phases A and B.
—> X1 No (local/global) observable O exists such that
< ' G N Tr(Opy) > 0,Vp, € phase A,  Tr(Opg) < 0,Vp, € phase B.




Classifying quantum phases: ML

* We need a more powerful ML model that can learn nonlinear functions, such as
Tr(Op ® p), Tr(Op®?), or a general analytic function f(p).

 To do so, we consider learning a linear function in an co-dim e eI CIRC  Ba e Le VAT L e e d to
4| K 1
(shadow)( q ( )) — lim _ I
¢ P koo EB d! EE rl

* [t consists of arbitrarily-large r-body reduced density matrices and arbitrarily-high-degree expansion.
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Classifying quantum phases: ML

* We need a more powerful ML model that can learn nonlinear functions, such as
Tr(Op ® p), Tr(Op®?), or a general analytic function f(p).

 To do so, we consider learning a linear function in anNe e G B F R BT D a1 ls mapped to

PN (S(p)) = lim EB

D,R— 0

* [t consists of arbitrarily-large r-body reduced density matrices and arbitrarily-high-degree expansion.
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Classifying quantum phases: ML
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Classifying quantum phases: ML

* We need a more powerful ML model that can learn nonlinear functions, such as
Tr(Op ® p), Tr(Op®?), or a general analytic function f(p).
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< ' G N Tr(Opy) > 0,Vp, € phase A,  Tr(Opg) < 0,Vp, € phase B.




Classifying quantum phases: ML

* We need a more powerful ML model that can learn nonlinear functions, such as
Tr(Op ® p), Tr(Op®?), or a general analytic function f(p).

* To do so, we consider learning a linear function in an co-dim space, where each state p is mapped to
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* [t consists of arbitrarily-large r-body reduced density matrices and arbitrarily-high-degree expansion.
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© Proposition 2
<° | ® . |
®) @ Consider two distinct topological phases A and B.
—> X1 No (local/global) observable O exists such that
< ' G N Tr(Opy) > 0,Vp, € phase A,  Tr(Opg) < 0,Vp, € phase B.
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