Interactive Proofs	For
Synthesizing	Quantum States
	& Unitaries
Greg Rosenthal	Henry Yuen
University of Toronto	Columbia University

Motivating Task	
Suppose you're given a succinct description of an n-qubit circuit that has $e \times p(n)$ many gates.	
E_{X} : $C = e^{-iHt}$ for some local Hamiltonian H, and $t = exp(n)$.	. .
Your goal is to Synthesize $ \Psi\rangle = C o^n\rangle.$. .
· · · · · · · · · · · · · · · · · · ·	

Obvious	Solution: spen	d exp(n)	time, poly(n) space
running	C to const	ruct the	state.
Cannot	synthesize	this stat	te in $E \subseteq Bap$.
polynomic	al time unle	ss PSPAC	
What	if you cou	ald <u>intera</u>	ct with
anall	- opiner ful	Drover 2	

ill - powerful varitum rover.	Goal: By interacting with an omniscient, but untrusted prover, the verifier wants to verifiably synthesize 142 in polynomial time.
Quantum Mariation	slynomal-time

an 'i	teractive proof for	synthesizing 147?
After	all, 14% is the resu	It of a quantum
polyno	mial space, exponentia	time computation
	$\delta PSPACE = PSPACE bu$	a rocult of

QIP= PSPAC	E is about decision problems.
- verifie	r wants to decide x é L.
State synth.	esis can be thought of as a
" quantum	search problem. verifier wants to
get its ho	mds on an entire n-qubit state

In	classical world, search problems and
decid	sion problems often have same complexity.
	If you can efficiently decide 3SAT, you can efficiently find satisfying assignments.
But:	uknown if QMA = BQP implies that ground states of local Hamiltonians can be constructed in polynomial time?
In	fact, no efficient search-to-decision reduction
for	OMA relative to a quantum oracle [Y.]

	"classical interactive state synthesis" has a straightforward solution.
Go	al: given polynomial space TM M, output nal state S of M after exp(n) steps.
So	I'n: each bit of s is the answer to a SiDACE decision problem ("is the jth bit of s=1?"

Search vs Decision in the Quantum World	· ·
In contrast, quantum state synthesis seems more difficult: verifier is trying to verify the construction of a fragile object	 . .<
 whose classical description has 2° complex amplitudes, and 	· · · · · · · · · · · · · · · · · · ·
. It should not be entangled with anything else.	· · ·
i i	· · ·

Mair	result	(Rosen	thal,	<u>y.)</u>	 	· · · · ·	· · ·	· · · ·	· · ·
· · · · · · ·	statet	PSPACE		state		P		· · · ·	· · ·
· · · · · · ·	· · · · · · · ·		· · · · · ·	· · · · ·	· · ·	· · · ·	· · ·
· · · · · · ·		state				· · · · ·	· · ·	· · · ·	· ·

Theorem: for all space - uniform
families of quantum states $\Psi = \{1, 1, 2\},\$
there exists an interactive state synthesis
protocol for 2 satisfying, on input nelN,
· completeness: honest prover accepted w.p. 1,
output state is exp(-n) close to 14n3
· soundness: if a prover is accepted with prob
$2 \exp(-n)$, output state conditioned on accepting is $\frac{1}{poly(n)}$ - close to $124n3$.

1

L

. .

State complexity	<u>classes</u>
<u>Def</u> : a family states is space uniform family	$\{ \Psi_n\rangle\}_{n\in\mathbb{N}}$ of quantum - uniform if $\exists a$ of circuits $\{C_n\}$ s.t.
 Each Cn Cn lo ^{poly(n)} > 	uses $poly(n)$ space, $exp(n)$ time = $14n$
<u>Def</u> : statepspace = c	class of space - uniform Families of quantum states.

Def: state DIP	= class of state families that admit interactive state synthesis protocols
state PSPALE av	nd state QIP are state
Complexity classe	s. They are classes of
state families,	rather than languages
(I.e. sets of	strings).
What does lan	nd scape of state complexity
theory look li	ite?

.		
$H = \frac{1}{2} + $	to interactively	
· ·	Synthesize a state.	
.

.

Warmup: înte	ractive state synthesis with a ested prover, i.e., an oracle.
	Theorem (Aaronson): J poly-size quantum circuit V, V n-qubit 14> J classical oracle A, s.t.
verifier	$\ V^{A}(10-0) - 14 \ \leq \exp(-n)$

vsing classical oracle to compute				
conditional amplitudes of 147 in superposition.				
Write	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · · ·	
143 = 0.0314.7 +	d, 11> 14,>	 		
for complex do.d1 0	und 140>, 1	4,> a	re · · · · · · · · · · · · · · · · · · ·	
(n-1) - qubit states.	· · · · · · · · · · · · ·		· · · · · · · · · · · ·	

$ \Psi\rangle = d$	$bo b \rangle \psi _{bo} \rangle +$	0, 1, 5, 0, b1 1> 4b1	
for complex	dbo, db1 and	(n-z) - qubit	14,0>,14,1>.
Continue in 4	nis Fashion.
The numbers conditional a	Edy? Where mplitudes.	$y \in \{a, l\}$	
. .			

• verifier	asks pracle to compute (don d1).
• verifier	prepares d. lo> + d, 11>
 Verifier 	r uncomputes (do, d1).
· Controll (n-1) ·	red on 16%, verifier coherently synthesizes. -qubit state $ \Psi_b\rangle$ to get
	~ 10510 \times ~ 11510 ~ 100

Intermediate Result: Theorem! Let $\Psi = \{1, \}$ be state uniform. Then the conditional amplitudes of 14n3 for all n are computable to within exp(-poly(n)) error in PSPACE. I.E. 3 poly-space TM M S.t. Vn, yE So, 13^{≤n} $|M(1^{n}, y) - dy| \leq exp(-poly(n)).$

Recursive description of verifier
· verifier asks pracle to compute (don d1).
· verifier prepares d. los + d, 11>
• verifier uncomputes (do, d1)
• controlled on 16%, verifier coherently synthesizes. (n-1)-qubit state $ \Psi_b\rangle$ to get
$d_{0} 0\rangle 4_{0}\rangle + d_{1} 1\rangle 4_{1}\rangle = 4\rangle$
If oracle is untrusted, then try to
run (Q)IP = PSPACE protocol to Verifiably compute (do, d1).

Recursive	description	of	verifier	$(\omega / unt$	rusted	prover)
· · · · · · · · · · · ·	· · · · · · · · · · ·	· · ·	· · · · · · · · · ·		ewl	· · · · · · · ·
• verifier	performs	QIP	= PSPALE	proto col	to	· · · · · · · ·
Compute	$(d_{0}, d_{1}).$	If	subprotocol	rejects.	then	reject.
• verifier	prepares		· lo> + d	,)1>	· · · · · · · ·	· · · · · · · · ·
• verifier	uncomput	• • • • •	(do, d1).	α α α α α α α α α α α α α α	run Q reverse	IP=PSIACE
· Controll	ed on 11	• • • • • • • •	verifier col	nerently	runs	· · · · · · · ·
synthe	ns protocol	fc	r 1457	to get	· · · · · · ·	· · · · · · · ·
· · · · · · · · · · · · · · ·	Ko 10>(4.) +	d.	<u> </u> γ ψ > =		 	
If si	rphotocol A	reject	rs, then	reject.	· · · · · · ·	· · · · · · · · ·

· · · ·	Soundness of the QIP = PSPACE protocol implies that prover cannot cheat the
· · ·	computation of conditional amplitudes
· · ·	without getting caught.
QI	? = PSPACE protocol defends against "classical attacks
· · ·	A malicious prover can undetectably cheat
• • •	Has protocal by manually a " all adding at his of a

Probl	lem: (Quantum	n Att	acks	· · · · · · ·	· · · · · ·	· · · · · ·	· · ·	· ·
· · · · ·	Entone	Jement	Attac	ks:	during	QIP=	PSPA	CE	· ·
· · · ·	po rtion	of the	proto	eol,	prover	can e	entang		• •
· · · · ·	its	private	work sp	pace	with	the v	nessage	25.	· ·
 	Final be	state	of ve	rifier	and	prover	could	· · · ·	· · ·
· · · · ·	5	dx 1	x 5 Ø	10	× >	· · · · · ·	· · · · · ·	· · · ·	· ·
· · · · ·	× · · · × 6	Zoils Verifier's		Prov	ver's ockspace	· · · · · ·	· · · · · ·	· · · ·	· · ·
· · · · ·		work spa			· · · · · · · · ·	· · · · · ·	· · · · · ·	· · ·	· ·
· · · ·	in stead	of	₩ > E	2 &	x 1x5.		· · · · · ·	· · ·	- ·

Phase	Attack (a more subtle version of
the e	ntanglement attack): prover can
undet	ectably add spurious phases while
Keeping	1 the synthesized state pure:
	Zeiox x 2 spurious phase introduced by

Our state synth	nesis protocol
Invariant: assum	ne have 14(1)> @ 14(1)>
	register register A B
14(j) > = j- jub	it "in progress" state
• controlled on BIP = PSPACE $(\alpha_{yo}, \alpha_{yl})$	ly) of register A, run to compute conditional amplitudes
Flip win b ER	EGROW, TEST 3
• If b = GROW, Xya	then controlled on $1y_A$, prepare $102 + 0x_{y1} 112$
Reverse QIP = P	SPALE proto wi.

	- perform SwAP test between registers A, R
	(check prover didn't do anything tisky in
· · · · ·	QIP = PSPACE, and reverse, steps).
· · · · · ·	· · · · · · · · · · · · · · · · · · ·
·It	b= GROW
· · · · · · ·	- exchange 14(j) in register B with
 	14(j+1)> provided by prover.
 	- perform SWAP test between registers A.B
· · · · · ·	$\frac{1}{5}$

Open	Problems
1.	state QIP É state PSPACE
2, .	improve soundness guarantees of our protocol?
	We prove that if $\Pr[verifier acc.] > exp(-n)$, then output state (cond. on acc) is $\frac{1}{poly(n)} - close$
· · · · · ·	can we improve poly(n) to Exp(n)?
3.	What are crypto applications of interactive state synthesis?

4	Is there an Zero-mouledge	interesting and state synthes	achievable	notion of
5.	what Kinds of multiple provers E State Q	states can 7 3 3 3 3 3 3 3 3	we constru	ict with
0 0				
	More generally,	what does	guantum	state
	more generally, complexity theory	what does look like?	guantum	State
	More generally, complexity theory	what does look like?	guantin	State
	more generally, complexity theory	what does look like?	guantum	State
· · · · · · · · · · · · · · · · · · ·	more generally, complexity theory	what does look like?	guantin	State
С.	more generally, complexity theory	what does look like?	guantin	State
· · · · · · · · · · · · · · · · · · ·	More generally, complexity theory	what does look like?	guanten :	State

Defined a where ver to construct	model of interactive state synthesis, ifier can use help of untrosted prover it complex quantum states.
• Main resul	t; state PSPACE & state QIP
• Many open	problems and new questions to ask
· Didnit get	to in this talk. interactive unitary synthesis !

Motivati a succ circuit quant	ng task inct de - C, a m for	suppo scription nd an	se you of input	n-qubit, state	exp(n) -	n fime
Goal:	synthes	720 1	27 = 0	`\ \$?````````````````````````````````````	(unitany task	synthesi
Even have	harder on in state.	task plicit c	becau lassi «a	se you descri	don't e ption of	ven

· Again, should	not be solve	able in po	lynomial time.
. What IF you	can enlist	help of	prover?
· can define a	model of	interactive	unitary synthesis
and associo	ted unitary	complexity	class
unite	ary RIP	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· open question	: Unitary PS	SPACE ²	unitary QIP
• (another) main, result	space-unife with polyno unit ary QI	orn unitar mial actio P protocol	y families n admit s.

Def: A family of unitariles ZUnz where Un acts on n-qubits has polynomial action if Un only acts nontrivially on a subspace of dimension poly(n).
EX: Let $\{1,1\}$ be space-uniform. Then $\{1,1\}$ is space-uniform and has polynomial action where $V_n = I - 214n \times 4n1$.
· our result about unitary QIP uses our result about state QIP as a subprotocol.