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Lecture 1. Every weighted undirected 𝐺 has a 

weighted subgraph 𝐻 with 𝑂
𝑛 log 𝑛

𝜖2 edges 

which satisfies
𝐿𝐺 ≼ 𝐿𝐻 ≼ 1 + 𝜖 𝐿𝐺

Lecture 2. Improved this to 4  𝑛 𝜖2.

Suboptimal for 𝐾𝑛 in two ways: weights, 
and 2𝑛/𝜖2.  
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G=Kn H = random d-regular

|EH| = dn/2
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Rescale 
weights back 

to 1
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G=Kn H = random d-regular

|EH| = dn/2

𝑑 − 2 𝑑 − 1 ≼ 𝐿𝐻 ≼ 𝑑 + 2 𝑑 − 1

|EG| = O(n2)

Regular Unweighted Sparsifiers of  𝐾𝑛

[Friedman’08]

+𝒐(𝟏)

will try to 
match this



Why do we care so much about 𝐾𝑛?

Unweighted d-regular approximations of 𝐾𝑛 are 
called expanders.

They behave like random graphs:

the right # edges across cuts

fast mixing of random walks

Prototypical ‘pseudorandom object’. Many uses 
in CS and math (Routing, Coding, Complexity…)



Switch to Adjacency Matrix

Let G be a graph and A be its adjacency matrix

eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯𝜆𝑛

a

c

d

e
b

0     1     0     0     1
1     0     1     0     1
0     1     0     1     0
0     0     1     0     1
1     1     0     1     0

𝐿 = 𝑑𝐼 − 𝐴



Switch to Adjacency Matrix

Let G be a graph and A be its adjacency matrix

eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯𝜆𝑛
If d-regular, then 𝐴𝟏 = 𝑑𝟏 so 𝜆1 = 𝑑
If bipartite then eigs are symmetric

about zero so 𝜆𝑛 = −𝑑

a

c

d

e
b

0     1     0     0     1
1     0     1     0     1
0     1     0     1     0
0     0     1     0     1
1     1     0     1     0

“trivial”
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Spectral Expanders

Definition: G is a good expander 
if all non-trivial eigenvalues are small

0
[ ]
-d d

e.g. 𝐾𝑑 and 𝐾𝑑,𝑑 have all nontrivial eigs 0.
Challenge: construct infinite families.

Alon-Boppana’86: Can’t beat

[−2 𝑑 − 1, 2 𝑑 − 1]
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The infinite d-ary tree
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The meaning of  2 𝑑 − 1

The infinite d-ary tree

𝜆 𝐴𝑇 = [−2 𝑑 − 1, 2 𝑑 − 1]

Alon-Boppana’86: This is the best possible spectral expander.
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Definition: G is Ramanujan if all non-trivial eigs

have absolute value at most 2 𝑑 − 1

0
[ ]
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Ramanujan Graphs: 

Definition: G is Ramanujan if all non-trivial eigs

have absolute value at most 2 𝑑 − 1

0
[ ]
-d d

[
-2 𝑑 − 1

]
2 𝑑 − 1

Friedman’08: A random d-regular graph is almost 

Ramanujan : 2 𝑑 − 1 + 𝑜(1)

Margulis, Lubotzky-Phillips-Sarnak’88: Infinite 
sequences of Ramanujan graphs exist for 𝑑 = 𝑝 + 1

What about 
𝑑 ≠ 𝑝 + 1?
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[Marcus-Spielman-S’13]

Theorem. Infinite families of bipartite Ramanujan
graphs exist for every 𝑑 ≥ 3.

Proof is elementary, doesn’t use number theory.

Not explicit.

Based on a new existence argument: method of 
interlacing families of polynomials.

𝔼𝑝 𝑘 = 1 −
1

𝑚

𝜕

𝜕𝑥

𝑘

𝑥𝑛



Bilu-Linial’06 Approach

Find an operation which doubles the size of a 
graph without blowing up its eigenvalues.
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Bilu-Linial’06 Approach

Find an operation which doubles the size of a 
graph without blowing up its eigenvalues.

0
[ ]
-d d

[
-2 𝑑 − 1

]
2 𝑑 − 1

…∞
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b0

a1

c1

d1

e1

b1
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2-lifts of  graphs

for every pair of edges:

leave on either side (parallel),

or make both cross

a0

c0

d0

e0

b0

a1

d1

e1

b1

c1

2𝑚 possibilities



Eigenvalues of  2-lifts (Bilu-Linial)

Given a 2-lift of G,

create a signed adjacency matrix As

with a -1 for crossing edges

and a 1 for parallel edges

0    -1     0     0     1
-1     0     1     0     1
0     1     0    -1     0
0     0    -1     0    1
1     1     0    1     0

a0

c0

d0

e0

b0

a1

d1

e1

b1

c1



Eigenvalues of  2-lifts (Bilu-Linial)

Theorem:
The eigenvalues of the 2-lift are:

𝜆1, … , 𝜆𝑛 = 𝑒𝑖𝑔𝑠 𝐴
∪

𝜆1
′ …𝜆𝑛

′ = 𝑒𝑖𝑔𝑠(𝐴𝑠)

0    -1     0     0     1
-1     0     1     0     1
0     1     0    -1     0
0     0    -1     0    1
1     1     0    1     0

𝐴𝑠 =



Eigenvalues of  2-lifts (Bilu-Linial)

Theorem:
The eigenvalues of the 2-lift are the

union of the eigenvalues of A (old)
and the eigenvalues of As (new)

Conjecture:
Every d-regular graph has a 2-lift

in which all the new eigenvalues
have absolute value at most 
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Theorem:
The eigenvalues of the 2-lift are the

union of the eigenvalues of A (old)
and the eigenvalues of As (new)

Conjecture:

Every d-regular adjacency matrix A

has a signing 𝐴𝑠 with ||𝐴𝑆|| ≤ 2 𝑑 − 1

Bilu-Linial’06: This is true with 𝑂( 𝑑 log3 𝑑)



Eigenvalues of  2-lifts (Bilu-Linial)

Conjecture:
Every d-regular adjacency matrix A

has a signing 𝐴𝑠 with ||𝐴𝑆|| ≤ 2 𝑑 − 1

We prove this in the bipartite case.



Eigenvalues of  2-lifts (Bilu-Linial)

Theorem:
Every d-regular adjacency matrix A

has a signing 𝐴𝑠 with 𝜆1(𝐴𝑆) ≤ 2 𝑑 − 1



Eigenvalues of  2-lifts (Bilu-Linial)

Theorem:
Every d-regular bipartite adjacency matrix A

has a signing 𝐴𝑠 with ||𝐴𝑆|| ≤ 2 𝑑 − 1

Trick: eigenvalues of bipartite graphs
are symmetric about 0, 
so only need to bound largest



Random Signings

Idea 1: Choose 𝑠 ∈ −1,1 𝑚 randomly.



Random Signings

Idea 1: Choose 𝑠 ∈ −1,1 𝑚 randomly.

Unfortunately, 

(Bilu-Linial showed when

A is nearly Ramanujan ) 
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is an interlacing family.
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NOT 𝜆𝑚𝑎𝑥 𝜒𝐴𝑠
≤ 𝔼𝜆𝑚𝑎𝑥(𝜒𝐴𝑠

)
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Step 2: The expected polynomial

Theorem [Godsil-Gutman’81]

For any graph G,

the matching polynomial of G



The matching polynomial

(Heilmann-Lieb ‘72)

mi = the number of matchings with i edges





one matching with 0 edges



7 matchings with 1 edge
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The matching polynomial

(Heilmann-Lieb ‘72)

Theorem (Heilmann-Lieb)

all the roots are real

and have absolute value at most

The number 2 𝑑 − 1 comes by comparing

to an infinite 𝑑 −ary tree [Godsil].



3-Step Proof  Strategy

1. Show that some poly does as well as the      .

2. Calculate the expected polynomial.

[Godsil-Gutman’81]

3. Bound the largest root of the expected poly.

[Heilmann-Lieb’72]
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3-Step Proof  Strategy

1. Show that some poly does as well as the      .

2. Calculate the expected polynomial.

[Godsil-Gutman’81]

3. Bound the largest root of the expected poly.

[Heilmann-Lieb’72]

such that 







3-Step Proof  Strategy

1. Show that some poly does as well as the      .

Implied by:

“ is an interlacing family.”

such that 



Averaging Polynomials

Basic Question: Given when are the roots 
of the              related to roots of                  ?



Averaging Polynomials

Basic Question: Given when are the roots 
of the              related to roots of                  ?

Answer: Certainly not always



Averaging Polynomials

Basic Question: Given when are the roots 
of the              related to roots of                  ?

Answer: Certainly not always…

𝑝 𝑥 = 𝑥 − 1 𝑥 − 2 = 𝑥2 − 3𝑥 + 2

𝑞 𝑥 = 𝑥 − 3 𝑥 − 4 = 𝑥2 − 7𝑥 + 12

𝑥 − 2.5 + 3𝑖 𝑥 − 2.5 − 3𝑖 = 𝑥2 − 5𝑥 + 7

1

2
×

1

2
×



Averaging Polynomials

Basic Question: Given when are the roots 
of the              related to roots of                  ?

But sometimes it works:



A Sufficient Condition

Basic Question: Given when are the roots 
of the              related to roots of                  ?

Answer: When they have a common interlacing.

Definition.                                    interlaces

if
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Interlacing Family of  Polynomials

Theorem: There is an s so that



An interlacing family

Theorem:

Let 

is an interlacing family



To prove interlacing family

Let

Leaves of tree = signings 𝑠1, … , 𝑠𝑚

Internal nodes = partial signings 𝑠1, … , 𝑠𝑘



To prove interlacing family

Let

Leaves of tree = signings 𝑠1, … , 𝑠𝑚

Internal nodes = partial signings 𝑠1, … , 𝑠𝑘

Need to find common 
interlacing for every 

internal node 



How to Prove Common Interlacing

Lemma (Fisk’08, folklore): Suppose 𝑝(𝑥) and 
𝑞(𝑥) are monic and real-rooted. Then:

∃ a common interlacing 𝑟 of 𝑝 and 𝑞

∀ convex combinations,
𝛼𝑝 + 1 − 𝛼 𝑞

has real roots.
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To prove interlacing family

Need to prove that for all                , 

are fixed

is 1 with probability   , -1 with 

are uniformly 

is real rooted

Let
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Transformation to PSD Matrices



𝑣𝑖𝑗 =  
𝛿𝑖 − 𝛿𝑗 with probability λ𝑖𝑗

𝛿𝑖 + 𝛿𝑗 with probability (1−𝜆𝑖𝑗)

Transformation to PSD Matrices

𝔼𝑠 det 𝑥𝐼 − 𝑑𝐼 − 𝐴𝑠 = 𝔼det 𝑥𝐼 −  

𝑖𝑗∈𝐸

𝑣𝑖𝑗𝑣𝑖𝑗
𝑇

where



Master Real-Rootedness Theorem

Given any independent random vectors 
𝑣1, … , 𝑣𝑚 ∈ ℝ𝑑, their expected characteristic 
polymomial

has real roots.

𝔼det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇
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Given any independent random vectors 
𝑣1, … , 𝑣𝑚 ∈ ℝ𝑑, their expected characteristic 
polymomial

has real roots.

𝔼det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇

How to prove this?



The Multivariate Method

A. Sokal, 90’s-2005:
“…it is often useful to consider the multivariate 
polynomial … even if one is ultimately interested in 
a particular one-variable specialization”

Borcea-Branden 2007+: prove that univariate
polynomials are real-rooted by showing that 
they are nice transformations of real-rooted
multivariate polynomials. 
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univariate restriction in the strictly positive orthant:
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If it has real coefficients, it is called real stable.
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Real Stable Polynomials



Definition. 𝑝 ∈ ℝ 𝑥1, … , 𝑥𝑛 is real stable if every 
univariate restriction in the strictly positive orthant:

𝑝 𝑡 ≔ 𝑓  𝑥 + 𝑡  𝑦  𝑦 > 0

is real-rooted. 

Not positive

Real Stable Polynomials



A Useful Real Stable Poly

Borcea-Brändén ‘08:
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A Useful Real Stable Poly

Borcea-Brändén ‘08:

For PSD matrices 

is real stable

Proof: Every positive univariate restriction is the 
characteristic polynomial of a symmetric matrix.

det  

𝑖

𝑥𝑖𝐴𝑖 + 𝑡  

𝑖

𝑦𝑖𝐴𝑖 = det(𝑡𝐼 + 𝑆)



If is real stable, then so is

1. 𝑝(𝛼, 𝑧2, … , 𝑧𝑛) for any 𝛼 ∈ ℝ

2. 1 − 𝜕𝑧𝑖
𝑝(𝑧1, … 𝑧𝑛) [Lieb-Sokal’81]

Excellent Closure Properties

is real stable if for all i

Implies .

Definition: 



A Useful Real Stable Poly

Borcea-Brändén ‘08:

For PSD matrices 

is real stable

Plan: apply closure properties to this

to show that 𝔼det 𝑥𝐼 −  𝑖 𝑣𝑖𝑣𝑖
𝑇 is real stable.



Central Identity

Suppose 𝑣1, … , 𝑣𝑚 are independent random 
vectors with 𝐴𝑖 ≔ 𝔼𝑣𝑖𝑣𝑖

𝑇. Then

𝔼det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇

=   

𝑖=1

𝑚

1 −
𝜕

𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=⋯=𝑧𝑚=0
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Suppose 𝑣1, … , 𝑣𝑚 are independent random 
vectors with 𝐴𝑖 ≔ 𝔼𝑣𝑖𝑣𝑖

𝑇. Then

𝔼det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇

=   

𝑖=1

𝑚

1 −
𝜕

𝜕𝑧𝑖
det 𝑥𝐼 +  

𝑖

𝑧𝑖𝐴𝑖

𝑧1=⋯=𝑧𝑚=0

Key Principle: random rank one updates ≡ (1 − 𝜕𝑧) operators.
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Proof  of  Master Real-
Rootedness Theorem

Suppose 𝑣1, … , 𝑣𝑚 are independent random 
vectors with 𝐴𝑖 ≔ 𝔼𝑣𝑖𝑣𝑖

𝑇. Then
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The Whole Proof

𝔼det 𝑥𝐼 −  𝑖 𝑣𝑖𝑣𝑖
𝑇 is real-rooted for all indep. 𝑣𝑖.
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𝔼𝜒𝐴𝑠
(𝑑 − 𝑥) is real-rooted for all product 

distributions  on signings.

rank one structure naturally 
reveals interlacing.
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The Whole Proof

𝔼det 𝑥𝐼 −  𝑖 𝑣𝑖𝑣𝑖
𝑇 is real-rooted for all indep. 𝑣𝑖.

such that 

𝔼𝜒𝐴𝑠
(𝑥) is real-rooted for all product 

distributions  on signings.

𝜒𝐴𝑠
𝑥

𝑥∈ ±1 𝑚 is an interlacing family



3-Step Proof  Strategy

1. Show that some poly does as well as the      .

2. Calculate the expected polynomial.

3. Bound the largest root of the expected poly.

such that 









Infinite Sequences of  Bipartite 
Ramanujan Graphs

Find an operation which doubles the size of a 
graph without blowing up its eigenvalues.

0
[ ]
-d d

[
-2 𝑑 − 1

]
2 𝑑 − 1

…∞



Main Theme

Reduced the existence of a good matrix to:

1. Proving real-rootedness of an

expected polynomial. 

2. Bounding roots of the expected

polynomial.



Main Theme

Reduced the existence of a good matrix to:
1. Proving real-rootedness of an

expected polynomial. 
(rank-1 structure + real stability)

2. Bounding roots of the expected
polynomial.

(matching poly + combinatorics)



Beyond complete graphs

Unweighted sparsifiers of general graphs?



G

H

Beyond complete graphs

1
O(n)



G

H

Weights are Required in General

1
O(n)

This edge has 
high resistance.



What if all edges are equally important?

?
G



Unweighted Decomposition Thm.

G H1

H2

Theorem [MSS’13]: If all edges have resistance 𝑂(𝑛/𝑚), 
there is a partition of G into unweighted 1 + 𝜖-

sparsifiers, each with 𝑂
𝑛

𝜖2 edges. 



Unweighted Decomposition Thm.

G H1

H2

Theorem [MSS’13]: If all edges have resistance ≤ 𝛼, 
there is a partition of G into unweighted 𝑂(1)-
sparsifiers, each with 𝑂 𝑚𝛼 edges. 



Unweighted Decomposition Thm.

G H1

H2

Theorem [MSS’13]: If all edges have resistance 𝛼, there 
is a partition of G into two unweighted 1 + 𝛼-

approximations, each with half as many edges.



Unweighted Decomposition Thm.

Theorem [MSS’13]: Given any vectors  𝑖 𝑣𝑖𝑣𝑖
𝑇 = 𝐼 and 

𝑣𝑖 ≤ 𝜖, there is a partition into approximately 

1/2-spherical quadratic forms, each 
𝐼

2
± 𝑂 𝜖 .

 

𝑖

𝑣𝑖𝑣𝑖
𝑇 = 𝐼

 

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≈

𝐼

2

 

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≈

𝐼

2



Unweighted Decomposition Thm.

Theorem [MSS’13]: Given any vectors  𝑖 𝑣𝑖𝑣𝑖
𝑇 = 𝐼 and 

𝑣𝑖 ≤ 𝜖, there is a partition into approximately 

1/2-spherical quadratic forms, each 
𝐼

2
± 𝑂 𝜖 .

 

𝑖

𝑣𝑖𝑣𝑖
𝑇 = 𝐼

 

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≈

𝐼

2

 

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≈

𝐼

2

Proof: Analyze expected charpoly of a random 
partition:

𝔼det 𝑥𝐼 −  𝑖 𝑣𝑖𝑣𝑖
𝑇 det 𝑥𝐼 −  𝑖 𝑣𝑖𝑣𝑖

𝑇



Unweighted Decomposition Thm.

Theorem [MSS’13]: Given any vectors  𝑖 𝑣𝑖𝑣𝑖
𝑇 = 𝐼 and 

𝑣𝑖 ≤ 𝜖, there is a partition into approximately 

1/2-spherical quadratic forms, each 
𝐼

2
± 𝑂 𝜖 .

 

𝑖

𝑣𝑖𝑣𝑖
𝑇 = 𝐼

 

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≈

𝐼

2

 

𝑖

𝑣𝑖𝑣𝑖
𝑇 ≈

𝐼

2

Other applications:
Kadison-Singer Problem
Uncertainty principles.



Summary of Algorithms

Result Edges Weights Time

Spielman-S’08 O(nlogn) Yes O~(m)

Random Sampling with Effective Resistances
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Result Edges Weights Time

Spielman-S’08 O(nlogn) Yes O~(m)

Batson-Spielman-S’09 O(n) Yes 𝑂(𝑛4)



Summary of Algorithms

Result Edges Weights Time

Spielman-S’08 O(nlogn) Yes O~(m)

Batson-Spielman-S’09 O(n) Yes 𝑂(𝑛4)

Marcus-Spielman-S’13 O(n) No 𝑂(2𝑛)

𝔼det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇 det 𝑥𝐼 −  

𝑖

𝑣𝑖𝑣𝑖
𝑇



Open Questions

Non-bipartite graphs

Algorithmic construction

(computing generalized 𝜇𝐺 is hard)

More general uses of interlacing families



Open Questions

Nearly linear time algorithm for 4𝑛/𝜖2 size 
sparsifiers

Improve to 2𝑛/𝜖2 for graphs?

Fast combinatorial algorithm for 
approximating resistances


