Graph Sparsification III: Ramanujan Graphs, Lifts, and Interlacing Families

Nikhil Srivastava Microsoft Research India

Simons Institute, August 27, 2014

The Last Two Lectures

Lecture 1. Every weighted undirected G has a weighted subgraph H with O $n \log n$ $\left(\frac{\log n}{\epsilon^2}\right)$ edges which satisfies

$$
L_G \le L_H \le (1+\epsilon)L_G
$$

random sampling

The Last Two Lectures

Lecture 1. Every weighted undirected G has a weighted subgraph H with O $n \log n$ $\left(\frac{\log n}{\epsilon^2}\right)$ edges which satisfies

$$
L_G \le L_H \le (1+\epsilon)L_G
$$

The Last Two Lectures

Lecture 1. Every weighted undirected G has a weighted subgraph H with O $n \log n$ $\left(\frac{\log n}{\epsilon^2}\right)$ edges which satisfies $L_G \le L_H \le (1+\epsilon)L_G$

Lecture 2. Improved this to $4n/\epsilon^2$.

Suboptimal for K_n in two ways: weights, and $2n/\epsilon^2$.

Good Sparsifiers of

G=K_n **H** = random d-regular x (n/d)

Good Sparsifiers of

$G=K_n$ **H** = random d-regular x (n/d)

$G=K_n$ weights back $\leftarrow H =$ random d-regular $|E_H| = dn/2$ $d(1 - \epsilon) \le L_H \le d(1 + \epsilon)$ $|E_G| = O(n^2)$ **Regular Unweighted Sparsifiers of** Rescale weights back to 1

Regular Unweighted Sparsifiers of

 $G = K_n$ **H** = random d-regular

Regular Unweighted Sparsifiers of

Why do we care so much about K_n ?

Unweighted d-regular approximations of K_n are called **expanders.**

They behave like random graphs: the right # edges across cuts fast mixing of random walks

Prototypical 'pseudorandom object'. Many uses in CS and math (Routing, Coding, Complexity…)

Switch to Adjacency Matrix

Let *G* be a graph and *A* be its adjacency matrix

eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_n$

$$
L = dI - A
$$

Switch to Adjacency Matrix

Let *G* be a graph and *A* be its adjacency matrix

Definition: G is a good expander if all non-trivial eigenvalues are small

Definition: G is a good expander if all non-trivial eigenvalues are small

e.g. K_d and $K_{d,d}$ have all nontrivial eigs 0.

Definition: G is a good expander if all non-trivial eigenvalues are small

Definition: G is a good expander if all non-trivial eigenvalues are small

The meaning of $2\sqrt{d-1}$ $\boldsymbol{\delta}$ The infinite d-ary tree $\lambda(A_T) = [-2\sqrt{d-1}, 2\sqrt{d-1}]$

The meaning of $2\sqrt{d-1}$ The infinite d-ary tree $\lambda(A_T) = [-2\sqrt{d-1}, 2\sqrt{d-1}]$

Alon-Boppana'86: This is the best possible spectral expander.

Definition: *G* is **Ramanujan** if all non-trivial eigs have absolute value at most $2\sqrt{d-1}$

$$
-\begin{bmatrix} 1 & 0 & 1 \\ -d & -2\sqrt{d-1} & 0 & 2\sqrt{d-1} \end{bmatrix}
$$

Definition: *G* is **Ramanujan** if all non-trivial eigs have absolute value at most $2\sqrt{d-1}$

$$
\begin{array}{c|c}\n & 1 \\
\hline\n-d & -2\sqrt{d-1} & 0 \\
\end{array}\n\quad \text{and} \quad \frac{1}{2\sqrt{d-1}}\n\quad \text{d}
$$

Friedman'08: A random d-regular graph is almost Ramanujan : $2\sqrt{d} - 1 + o(1)$

Definition: *G* is **Ramanujan** if all non-trivial eigs have absolute value at most $2\sqrt{d-1}$

$$
\begin{array}{c|c}\n & \text{f} \\
-d & \text{-2}\sqrt{d-1} \\
0 & 2\sqrt{d-1} \\
\end{array}
$$

Friedman'08: A random d-regular graph is almost Ramanujan : $2\sqrt{d-1} + o(1)$

Margulis, Lubotzky-Phillips-Sarnak'88: Infinite sequences of Ramanujan graphs exist for $d = p + 1$

Definition: *G* is **Ramanujan** if all non-trivial eigs have absolute value at most $2\sqrt{d-1}$

0 [] -d d [-2 − 1] 2 − 1 **Friedman'08:** A random d-regular graph is almost Ramanujan : 2 − 1 + (1) **Margulis, Lubotzky-Phillips-Sarnak'88:** Infinite sequences of Ramanujan graphs exist for = + 1 What about ≠ + 1?

[Marcus-Spielman-S'13]

Theorem. Infinite families of bipartite Ramanujan graphs exist for every $d \geq 3$.

[Marcus-Spielman-S'13]

Theorem. Infinite families of bipartite Ramanujan graphs exist for every $d \geq 3$.

Proof is elementary, doesn't use number theory. Not explicit.

Based on a new existence argument: method of **interlacing families of polynomials**.

[Marcus-Spielman-S'13]

Proof is elementary, doesn't use number theory. Not explicit. Based on a new existence argument: method of **interlacing families of polynomials**.

Bilu-Linial'06 Approach

Find an operation which doubles the size of a graph without blowing up its eigenvalues.

$$
\begin{array}{c|c|c}\n & 1 & 0 & 0 & 0 \\
\hline\n- d & -2\sqrt{d-1} & 0 & 2\sqrt{d-1} & 0\n\end{array}
$$

Bilu-Linial'06 Approach

Find an operation which doubles the size of a graph without blowing up its eigenvalues.

Bilu-Linial'06 Approach

Find an operation which doubles the size of a graph without blowing up its eigenvalues.

duplicate every vertex

duplicate every vertex

for every pair of edges: leave on either side (parallel), or make both cross

for every pair of edges: leave on either side (parallel), or make both cross

for every pair of edges: leave on either side (parallel), or make both cross

Eigenvalues of 2-lifts (Bilu-Linial)

Given a 2-lift of *G*, create a signed adjacency matrix *A^s* with a -1 for crossing edges and a 1 for parallel edges

Eigenvalues of 2-lifts (Bilu-Linial)

Theorem:

The eigenvalues of the 2-lift are: $\{\lambda_1, ..., \lambda_n\} = eig(S(A))$ ∪ $\lambda'_1 \dots \lambda'_n$ = $eigs(A_s)$ 0 -1 0 0 1 -1 0 1 0 1 $A_{S} = \begin{array}{cccccc} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 \end{array}$ 0 0 -1 0 1 1 1 0 1 0
Theorem:

The eigenvalues of the 2-lift are the union of the eigenvalues of *A* (old) and the eigenvalues of *A^s* (new)

Conjecture:

Every *d*-regular graph has a 2-lift in which all the new eigenvalues have absolute value at most $2\sqrt{d-1}$

Theorem:

The eigenvalues of the 2-lift are the union of the eigenvalues of *A* (old) and the eigenvalues of *A^s* (new)

Conjecture:

Every d-regular adjacency matrix *A* has a signing A_s with $||A_S|| \leq 2\sqrt{d-1}$

Theorem:

The eigenvalues of the 2-lift are the union of the eigenvalues of *A* (old) and the eigenvalues of *A^s* (new)

Conjecture:

Every d-regular adjacency matrix *A* has a signing A_s with $||A_S|| \leq 2\sqrt{d-1}$

Bilu-Linial'06: This is true with $O(\sqrt{d} \log^3 d)$

Conjecture:

Every d-regular adjacency matrix *A* has a signing A_s with $||A_S|| \leq 2\sqrt{d-1}$

We prove this in the bipartite case.

Theorem:

Every d-regular adjacency matrix *A* has a signing A_s with $\lambda_1(A_s) \leq 2\sqrt{d-1}$

Theorem:

Every d-regular **bipartite** adjacency matrix *A* has a signing $A_{\rm s}$ with $||A_{\rm s}|| \leq 2 \sqrt{d-1}$

Trick: eigenvalues of bipartite graphs are symmetric about 0, so only need to bound largest

Idea 1: Choose $s \in \{-1,1\}^m$ randomly.

Idea 1: Choose $s \in \{-1,1\}^m$ randomly.

Unfortunately, $\mathbb{E}||A_s|| \gg 2\sqrt{d-1}$ (Bilu-Linial showed $O(\sqrt{d \log^3 d})$ when *A* is nearly Ramanujan)

Idea 2: Observe that $\lambda_1(A_s) = \lambda_{max}(\chi_{A_s})$ where $\chi_{A_c}(x) := \det(xI - A_s)$

Idea 2: Observe that $\lambda_1(A_s) = \lambda_{max}(\chi_{A_s})$ where $\chi_{A_s}(x):=\det(xI-A_s)$

$$
\left(\text{Consider } \mathbb{E}_{s \in \{\pm 1\}^m} \chi_{A_s}(x) \right)
$$

Idea 2: Observe that $\lambda_1(A_s) = \lambda_{max}(\chi_{A_s})$ where $\chi_{A_s}(x):=\det(xI-A_s)$

Idea 2: Observe that where

$$
\text{Consider } \mathbb{E}_{s \in \{\pm 1\}^m} \chi_{A_s}(x)
$$

Usually useless, but **not here**!

$$
\{\chi_{A_s}\}_{s\in\{\pm1\}^m\text{ is an interlacing family.}}
$$

$$
\exists s \text{ such that } \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})
$$

1. Show that some poly does as well as the \mathbb{F} .

 $\left\| \ \exists s \ \textit{such that} \ \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s}) \right\|$

3-Step F

\n**NOTE**

\n1. Show that some poly does as w as the
$$
\mathbb{E}
$$
.

\n $\boxed{\exists s \text{ such that } \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})}$

1. Show that some poly does as well as the \mathbb{F} .

$$
\exists s \text{ such that } \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})
$$

2. Calculate the expected polynomial.

$$
\mathbb{E}\chi_{A_s}(x)=\mu_G(x)
$$

1. Show that some poly does as well as the \mathbb{E} .

$$
\exists s \text{ such that } \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})
$$

2. Calculate the expected polynomial.

$$
\mathbb{E}\chi_{A_s}(x)=\mu_G(x)
$$

$$
\lambda_{max}(\mu_G(x)) \le 2\sqrt{d-1}
$$

1. Show that some poly does as well as the \mathbb{F} .

$$
\exists s \text{ such that } \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})
$$

2. Calculate the expected polynomial.

$$
\mathbb{E}\chi_{A_s}(x)=\mu_G(x)
$$

$$
\lambda_{max}(\mu_G(x)) \le 2\sqrt{d-1}
$$

1. Show that some poly does as well as the \mathbb{F} .

$$
\exists s\ \textit{such that} \ \ \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})
$$

2. Calculate the expected polynomial.

$$
\mathbb{E}\chi_{A_s}(x)=\mu_G(x)
$$

$$
\lambda_{max}(\mu_G(x)) \le 2\sqrt{d-1}
$$

Step 2: The expected polynomial

Theorem [Godsil-Gutman'81]

For any graph *G,* $\mathbb{E}\left[\chi_{A_s}(x)\right]=\mu_G(x)$ the matching polynomial of *G*

The matching polynomial (Heilmann-Lieb '72)

$$
\mu_G(x) = \sum_{i \ge 0} x^{n-2i} (-1)^i m_i
$$

 m_i = the number of matchings with *i* edges

 $\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2$

$\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2$
One matching with 0 edges

$\mu_G(x) = x^6 - 7x^4 + 11x^2 - 2$

7 matchings with 1 edge

Proof that $\mathbb{E}[\chi_{A_s}(x)] = \mu_G(x)$

x ±1 0 0 ±1 ±1 ±1 x ±1 0 0 0 0 ±1 x ±1 0 0 0 0 ± 1 x ± 1 0 ±1 0 0 ±1 x ±1 ± 1 0 0 0 ± 1 x

Proof that $\mathbb{E}[\chi_{A_s}(x)] = \mu_G(x)$

same edge: same value

Proof that $\mathbb{E}[\chi_{A_s}(x)] = \mu_G(x)$

same edge: same value

Proof that $\mathbb{E}[\chi_{A_s}(x)] = \mu_G(x)$

Get 0 if hit any 0s

Proof that $\mathbb{E}[\chi_{A_s}(x)] = \mu_G(x)$

Get 0 if take just one entry for any edge

Proof that $\mathbb{E}[\chi_{A_s}(x)] = \mu_G(x)$

Only permutations that count are involutions

Proof that $\mathbb{E}[\chi_{A_s}(x)] = \mu_G(x)$

Only permutations that count are involutions

Proof that $\mathbb{E}[\chi_{A_s}(x)] = \mu_G(x)$

 $x \left(\pm 1\right) 0 0 \pm 1 \pm 1$ ± 1 x ± 1 0 0 0 0 ± 1 x (± 1) 0 0 0 0 (± 1) x ± 1 ± 1 0 0 ± 1 x (± 1) ± 1 0 0 0 (± 1) x Expand $\mathbb{E}[\det(xI-A_s)]$ using permutations

Only permutations that count are involutions

Correspond to matchings

Proof that $\mathbb{E}[\chi_{A_s}(x)] = \mu_G(x)$

 $x \left(\pm 1\right) 0 0 \pm 1 \pm 1$ ± 1 x ± 1 0 0 0 0 ± 1 x (± 1) 0 0 0 0 (± 1) x ± 1 ± 1 0 0 ± 1 x (± 1) ± 1 0 0 0 (± 1) x Expand $\mathbb{E}[\det(xI-A_s)]$ using permutations

Only permutations that count are involutions

Correspond to matchings

1. Show that some poly does as well as the \mathbb{F} .

$$
\exists s\ \textit{such that} \ \ \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})
$$

2. Calculate the expected polynomial.
 $\mathbb{E}\chi_{A_s}(x) = \mu_G(x)$ [Godsil-**[Godsil-Gutman'81]** $\boldsymbol{\gamma}$

$$
\lambda_{max}(\mu_G(x)) \le 2\sqrt{d-1}
$$

1. Show that some poly does as well as the \mathbb{F} .

$$
\exists s \text{ such that } \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})
$$

 $\sqrt{}$ **2.** Calculate the expected polynomial. **[Godsil-Gutman'81]** $\mathbb{E}\chi_{A_s}(x)=\mu_G(x)$

$$
\lambda_{max}(\mu_G(x)) \le 2\sqrt{d-1}
$$
The matching polynomial (Heilmann-Lieb '72)

$$
\mu_G(x) = \sum_{i \ge 0} x^{n-2i} (-1)^i m_i
$$

Theorem (Heilmann-Lieb) all the roots are real

The matching polynomial (Heilmann-Lieb '72)

$$
\mu_G(x) = \sum_{i \ge 0} x^{n-2i} (-1)^i m_i
$$

Theorem (Heilmann-Lieb) all the roots are real and have absolute value at most $2\sqrt{d-1}$

3-Step Proof Strategy

1. Show that some poly does as well as the \mathbb{F} .

$$
\exists s\ \textit{such that} \ \ \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})
$$

 $\sqrt{}$ **2.** Calculate the expected polynomial. **[Godsil-Gutman'81]** $\mathbb{E}\chi_{A_s}(x)=\mu_G(x)$

3. Bound the largest root of the expected poly. **[Heilmann-Lieb'72]** γ'

3-Step Proof Strategy

1. Show that some poly does as well as the \mathbb{F} .

$$
\exists s \text{ such that } \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})
$$

 $\overline{\mathcal{V}}$ **2.** Calculate the expected polynomial. **[Godsil-Gutman'81]** $\mathbb{E}\chi_{A_{\infty}}(x)=\mu_{G}(x)$

3. Bound the largest root of the expected poly. $\lambda_{max}(\mu_G(x)) \leq 2\sqrt{d-1}$ [Heilmann-Lieb'72] $\sqrt{}$

3-Step Proof Strategy

1. Show that some poly does as well as the \mathbb{E} .

$$
\exists s \text{ such that } \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})
$$

Implied by:

" $\{ \chi_{A_s} \}_{s \in \{\pm 1\}^m}$ is an interlacing family."

Averaging Polynomials

Basic Question: Given p_0, p_1 when are the roots of the $p_i(x)$ related to roots of $\mathbb{E}_i p_i(x)$?

Averaging Polynomials Basic Question: Given p_0, p_1 when are the roots of the $p_i(x)$ related to roots of $\mathbb{E}_i p_i(x)$?

Answer: Certainly not always

Averaging Polynomials Basic Question: Given p_0, p_1 when are the roots of the $p_i(x)$ related to roots of $\mathbb{E}_i p_i(x)$?

Answer: Certainly not always…

 $\overline{1}$

$$
\frac{1}{2} \times \qquad p(x) = (x - 1)(x - 2) = x^2 - 3x + 2
$$
\n
$$
\frac{1}{2} \times \qquad q(x) = (x - 3)(x - 4) = x^2 - 7x + 12
$$

 $(x - 2.5 + \sqrt{3}i)(x - 2.5 - \sqrt{3}i) = x^2 - 5x + 7$

Averaging Polynomials Basic Question: Given p_0, p_1 when are the roots of the $p_i(x)$ related to roots of $\mathbb{E}_i p_i(x)$?

But sometimes it works:

A Sufficient Condition

Basic Question: Given p_0, p_1 when are the roots of the $p_i(x)$ related to roots of $\mathbb{E}_i p_i(x)$?

Answer: When they have a *common interlacing*. **Definition.** $q = \prod_{i=1}^{n-1} (x - \alpha_i)$ interlaces $p = \prod_{i=1}^{n} (x - \beta_i)$ if $\beta_n \leq \alpha_{n-1} \leq \beta_{n-1} \ldots \leq \alpha_1 \leq \beta_1.$

Proof.

So $\lambda_{max}(\ell_{o}) \leq \lambda_{max}(\mathbb{E}p_{i})$

Proof.

So $\lambda_{max}(\ell_{o}) \leq \lambda_{max}(\mathbb{E}p_{i})$

Proof: By common interlacing, one of p_0 , p_1 has $\lambda_{max} < \lambda_{max}(p_{\emptyset})$

Proof: By common interlacing, one of p_0 , p_1 has $\lambda_{max} \leq \lambda_{max}(p_{\emptyset})$

has $\lambda_{max} \leq \lambda_{max}(p_0)$

An interlacing family

To prove interlacing family

Let
$$
p_{s_1,\ldots,s_k}(x) = \mathbb{E}_{s_{k+1},\ldots,s_m}[p_{s_1,\ldots,s_m}(x)]
$$

Leaves of tree = signings $s_1, ..., s_m$ Internal nodes = partial signings $s_1, ..., s_k$

To prove interlacing family

Let
$$
p_{s_1,...,s_k}(x) = \mathbb{E}_{s_{k+1},...,s_m} [p_{s_1,...,s_m}(x)]
$$

Leaves of tree = signings $s_1, ..., s_m$ Internal nodes = partial signings $s_1, ..., s_k$

How to Prove Common Interlacing

Lemma (Fisk'08, folklore): Suppose $p(x)$ and $q(x)$ are monic and real-rooted. Then:

To prove interlacing family

Let
$$
p_{s_1,...,s_k}(x) = \mathbb{E}_{s_{k+1},...,s_m} [p_{s_1,...,s_m}(x)]
$$

Need to prove that for all $s_1, \ldots, s_k, \lambda \in [0,1]$

$$
\lambda p_{s_1,\ldots,s_k,1}(x) + (1-\lambda)p_{s_1,\ldots,s_k,-1}(x)
$$

is real rooted

$$
p_0
$$

 p_1
 p_1
 p_{10}
 p_{11}

To prove interlacing family

Let
$$
p_{s_1,...,s_k}(x) = \mathbb{E}_{s_{k+1},...,s_m} [p_{s_1,...,s_m}(x)]
$$

Need to prove that for all $s_1, \ldots, s_k, \lambda \in [0,1]$

$$
\lambda p_{s_1,\ldots,s_k,1}(x) + (1-\lambda)p_{s_1,\ldots,s_k,-1}(x)
$$

is real rooted

 s_1, \ldots, s_k are fixed *is 1 with probability* λ *-1 with* $1 - \lambda$ s_{k+1} s_{k+2}, \ldots, s_m are uniformly ± 1

Generalization of Heilmann-Lieb

Suffices to prove that

 $\mathbb{E}_{s \in \{\pm 1\}^m}$ $[p_s(x)]$ is real rooted

for **every** product distribution on the entries of *s*
Generalization of Heilmann-Lieb

Suffices to show real rootedness of

 $\mathbb{E}_{s \in {\{\pm 1\}}^m} p_s(x - d) = \mathbb{E}_{s \in {\{\pm 1\}}^m} \det(xI - (dI - A_s))$

Suffices to show real rootedness of

 $\mathbb{E}_{s \in {\{\pm 1\}}^m} p_s(x - d) = \mathbb{E}_{s \in {\{\pm 1\}}^m} \det(xI - (dI - A_s))$

Why is this useful? $A_s = \sum_{ij \in E} s_{ij} (\delta_i \delta_j^T + \delta_j \delta_i^T)$

Suffices to show real rootedness of

 $\mathbb{E}_{s \in {\{\pm 1\}}^m} p_s(x - d) = \mathbb{E}_{s \in {\{\pm 1\}}^m} \det(xI - (dI - A_s))$

Why is this useful? $A_s = \sum_{ij \in E} s_{ij} (\delta_i \delta_j^T + \delta_j \delta_i^T)$ $dI - A_s = \sum (\delta_i - \delta_j)(\delta_i - \delta_j)^T$ $s_{i,j}=1$ + $\sum (\delta_i + \delta_j)(\delta_i + \delta_j)^T$ $s_{i,j} = -1$

$$
dI - A_s = \sum_{s_{ij}=1} (\delta_i - \delta_j)(\delta_i - \delta_j)^T
$$

$$
+ \sum_{s_{ij}=-1} (\delta_i + \delta_j)(\delta_i + \delta_j)^T
$$

$$
dI - A_s = \sum_{s_{ij}=1} (\delta_i - \delta_j)(\delta_i - \delta_j)^T
$$

+
$$
\sum_{s_{ij}=-1} (\delta_i + \delta_j)(\delta_i + \delta_j)^T
$$

$$
\mathbb{E}_s \det(xI - (dI - A_s)) = \mathbb{E} \det \left(xI - \sum_{ij \in E} v_{ij} v_{ij}^T\right)
$$

where
$$
v_{ij} = \begin{cases} (\delta_i - \delta_j) \text{ with probability } \lambda_{ij} \\ (\delta_i + \delta_j) \text{ with probability } (1 - \lambda_{ij}) \end{cases}
$$

Master Real-Rootedness Theorem

Given *any* independent random vectors $v_1, ..., v_m \in \mathbb{R}^d$, their expected characteristic polymomial

$$
\text{Edet}\left(xI - \sum_{i} v_i v_i^T\right)
$$

has real roots.

Master Real-Rootedness Theorem

Given *any* independent random vectors $v_1, ..., v_m \in \mathbb{R}^d$, their expected characteristic polymomial

The Multivariate Method

A. Sokal, 90's-2005:

"…it is often useful to consider the multivariate polynomial … even if one is ultimately interested in a particular one-variable specialization"

Borcea-Branden 2007+: prove that univariate polynomials are real-rooted by showing that they are nice transformations of *real-rooted multivariate polynomials*.

Definition. $p \in \mathbb{R}[x_1, ..., x_n]$ is *real stable* if every univariate restriction in the strictly positive orthant: $p(t) \coloneqq f(\vec{x} + t\vec{y}) \qquad \vec{y} > 0$

is real-rooted.

If it has real coefficients, it is called *real stable.*

Definition. $p \in \mathbb{C}[x_1, ..., x_n]$ is *real stable* if every univariate restriction in the strictly positive orthant: $p(t) \coloneqq f(\vec{x} + t\vec{y}) \qquad \vec{y} > 0$

Definition. $p \in \mathbb{R}[x_1, ..., x_n]$ is *real stable* if every univariate restriction in the strictly positive orthant: $p(t) \coloneqq f(\vec{x} + t\vec{y}) \qquad \vec{y} > 0$

Definition. $p \in \mathbb{R}[x_1, ..., x_n]$ is *real stable* if every univariate restriction in the strictly positive orthant: $p(t) \coloneqq f(\vec{x} + t\vec{y}) \qquad \vec{y} > 0$

Definition. $p \in \mathbb{R}[x_1, ..., x_n]$ is *real stable* if every univariate restriction in the strictly positive orthant: $p(t) \coloneqq f(\vec{x} + t\vec{y}) \qquad \vec{y} > 0$

Definition. $p \in \mathbb{R}[x_1, ..., x_n]$ is *real stable* if every univariate restriction in the strictly positive orthant: $p(t) \coloneqq f(\vec{x} + t\vec{y}) \qquad \vec{y} > 0$

A Useful Real Stable Poly

Borcea-Brändén '08: For PSD matrices A_1, \ldots, A_k $\det(\sum_{i} z_i A_i)$

is real stable

A Useful Real Stable Poly

Borcea-Brändén '08: For PSD matrices A_1, \ldots, A_k $\det(\sum_i z_i A_i)$

is real stable

Proof: Every positive univariate restriction is the characteristic polynomial of a symmetric matrix.

$$
\det\left(\sum_{i} x_i A_i + t \sum_{i} y_i A_i\right) = \det(tI + S)
$$

Excellent Closure Properties

is *real* stable if $\operatorname{imag}(z_i) > 0$ for all *i* Implies $p(z_1,\ldots,z_n) \neq 0$. **Definition**: $p \in \mathbb{R}[z_1, \ldots, z_n]$

If $p \in \mathbb{R}[z_1, \ldots, z_n]$ is real stable, then so is

1. $p(\alpha, z_2, ..., z_n)$ for any $\alpha \in \mathbb{R}$

2. $(1 - \partial_{z_i}) p(z_1, ... z_n)$ [Lieb-Sokal'81]

A Useful Real Stable Poly

Borcea-Brändén '08: For PSD matrices A_1, \ldots, A_k $\det(\sum_{i} z_i A_i)$

is real stable

Plan: apply closure properties to this to show that $\mathbb{E} \text{det} \big(\overline{x} I - \sum_i \overline{\nu}_i \overline{\nu}_i^T \big)$ is real stable.

Central Identity

Suppose v_1 , ..., v_m are **independent** random vectors with $A_i \coloneqq \mathbb{E} v_i v_i^T$. Then

$$
\begin{aligned} \n\text{Edet}\left(xI - \sum_{i} v_i v_i^T\right) \\ \n&= \prod_{i=1}^{m} \left(1 - \frac{\partial}{\partial z_i}\right) \det\left(xI + \sum_{i} z_i A_i\right) \bigg|_{z_1 = \dots = z_m = 0} \n\end{aligned}
$$

Central Identity

Suppose $v_1, ..., v_m$ are **independent** random vectors with $A_i \coloneqq \mathbb{E} v_i v_i^T$. Then

$$
\begin{aligned} \n\text{Edet}\left(xI - \sum_{i} v_i v_i^T\right) \\
&= \prod_{i=1}^m \left(1 - \frac{\partial}{\partial z_i}\right) \det\left(xI + \sum_{i} z_i A_i\right)\Big|_{z_1 = \dots = z_m = 0} \n\end{aligned}
$$

Key Principle: random rank one updates $\equiv (1 - \partial_z)$ operators.

Suppose $v_1, ..., v_m$ are **independent** random vectors with $A_i \coloneqq \mathbb{E} v_i v_i^T$. Then

$$
\begin{aligned} \n\text{Edet}\left(xI - \sum_{i} v_i v_i^T\right) \\ \n&= \prod_{i=1}^m \left(1 - \frac{\partial}{\partial z_i}\right) \det\left(xI + \sum_i z_i A_i\right) \bigg|_{z_1 = \dots = z_m = 0} \n\end{aligned}
$$

Suppose $v_1, ..., v_m$ are **independent** random Real Stable vectors with $A_i \coloneqq \mathbb{E} v_i v_i^T$. Then $\text{Edet}\left(xI-\sum v_i v_i^T\right)$ $= \prod_{i=1}^{11} \left(1 - \frac{\partial}{\partial z_i}\right) \det \left(xI + \sum z_i A_i\right)$ $z_m=0$

Suppose $v_1, ..., v_m$ are **independent** random vectors with $A_i := \mathbb{E} v_i v_i^T$. Then

Suppose $v_1, ..., v_m$ are **independent** random vectors with $A_i := \mathbb{E} v_i v_i^T$. Then

Suppose $v_1, ..., v_m$ are **independent** random vectors with $A_i \coloneqq \mathbb{E} v_i v_i^T$. Then

rank one structure naturally reveals interlacing.

 $\mathbb{E} \chi_{A_s}(d-x)$ is real-rooted for all product distributions on signings.

 $\mathbb{E} \chi_{A_{\mathcal{S}}}(x)$ is real-rooted for all product distributions on signings.

$$
\left\{\chi_{A_S}(x)\right\}_{x \in \{\pm 1\}^m}
$$
 is an interlacing family

$\mathbb{E} \chi_{A_{\mathcal{S}}}(x)$ is real-rooted for all product distributions on signings.

$$
\exists s \text{ such that } \lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})
$$

 $\chi_{A_S}(x)\big\}_{x\in \{\pm 1\}^m}$ is an interlacing family

 $\mathbb{E} \chi_{A_{\mathcal{S}}}(x)$ is real-rooted for all product distributions on signings.

3-Step Proof Strategy

1. Show that some poly does as well as the \mathcal{F} .

Show that some poly does as well as the
$$
\mathbb{E}
$$
. \bigvee_{\square} $\exists s$ such that $\lambda_{max}(\chi_{A_s}) \leq \lambda_{max}(\mathbb{E}\chi_{A_s})$

 $\sqrt{}$

 $\sqrt{}$

2. Calculate the expected polynomial.

$$
\mathbb{E}\chi_{A_s}(x)=\mu_G(x)
$$

3. Bound the largest root of the expected poly.

$$
\lambda_{max}(\mu_G(x)) \le 2\sqrt{d-1}
$$

Infinite Sequences of Bipartite Ramanujan Graphs

Find an operation which doubles the size of a graph without blowing up its eigenvalues.

Main Theme

Reduced the existence of a good matrix to: 1. Proving real-rootedness of an expected polynomial.

2. Bounding roots of the expected polynomial.

Main Theme

Reduced the existence of a good matrix to: 1. Proving real-rootedness of an expected polynomial. (rank-1 structure + real stability)

2. Bounding roots of the expected polynomial. (matching poly + combinatorics)

Beyond complete graphs

Unweighted sparsifiers of general graphs?
Beyond complete graphs

Weights are Required in General

What if all edges are equally important?

Theorem [MSS'13]: If all edges have resistance $O(n/m)$, there is a partition of G into **unweighted** $1 + \epsilon$ sparsifiers, each with O \overline{n} $\left(\frac{n}{\epsilon^2}\right)$ edges.

Theorem [MSS'13]: If all edges have resistance $\leq \alpha$, there is a partition of **G** into **unweighted** $O(1)$ sparsifiers, each with $O(m\alpha)$ edges.

Theorem [MSS'13]: If all edges have resistance α , there is a partition of G into two **unweighted** $1 + \alpha$ approximations, each with **half** as many edges.

Theorem [MSS'13]: Given any vectors $\sum_i \nu_i \nu_i^T = I$ and $|v_i| \leq \epsilon$, there is a partition into approximately 1/2-spherical quadratic forms, each $\frac{1}{2}$ 2 $\pm O(\epsilon).$

University of a random **Proof:** Analyze expected charpoly of a random partition:

$$
\text{Edet}(xI - \sum_i v_i v_i^T) \det(xI - \sum_i v_i v_i^T)
$$

Theorem [MSS'13]: Given any vectors $\sum_i \nu_i \nu_i^T = I$ and $|v_i| \leq \epsilon$, there is a partition into approximately 1/2-spherical quadratic forms, each $\frac{1}{2}$ 2 $\pm O(\epsilon).$

Theorem [MSS'13]: Given any vectors $\sum_i v_i v_i^T = I$ and $|v_i| \leq \epsilon$, there is a partition into approximately 1/2-spherical quadratic forms, each $\frac{1}{2}$ 2 $\pm O(\epsilon).$

Summary of Algorithms

Random Sampling with Effective Resistances

Summary of Algorithms

Summary of Algorithms

Open Questions

Non-bipartite graphs

Algorithmic construction (computing generalized μ_G is hard)

More general uses of interlacing families

Open Questions

Nearly linear time algorithm for $4n/\epsilon^2$ size sparsifiers

Improve to
$$
2n/\epsilon^2
$$
 for graphs?

Fast combinatorial algorithm for approximating resistances