Symmetries, graph properties,
and quantum speedups

Andrew Childs U|V||ACS JOINT CENTER FOR
Uni . £ Marvland University fA“;' yiane QUANTUM INFORMATION
niversity or IMlarylan compuTeR science Computer Studie AND COMPUTER SCIENCE

Shalev Ben-David Andras Gilyen William Kretschmer Supartha Podder Daochen Wang
University of Waterloo Caltech/Berkeley UT Austin University of Ottawa University of Maryland

arXiv:2006.12760 / FOCS 2020

The power of quantum computers

Using carefully designed interference between different computational paths, quantum
computers can solve some problems dramatically faster than classical computers.

Some problems admit exponential quantum speedup.

Period finding, factoring, discrete log, quantum simulation, quantum linear algebra, Jones
polynomial approximation, counting points on curves, graph connectivity with cut queries, ...

Some problems only admit polynomial quantum speedup.

Unstructured search, formula evaluation, collision finding, network flows, finding subgraphs,
minor-closed graph properties, group commutativity, convex optimization, ...

Why!? Quantum computers need a lot of structure to get significant speedup.

Query complexity

The model of query complexity provides a useful way of exploring the relative power of classical
and quantum computers.

Main idea: Input string is described by a black box that can be queried to learn any given
character. How many queries are needed to learn some Boolean property of the input?

* Deterministic query complexity, D: how many queries are needed for a deterministic classical
algorithm to produce the correct answer?

* Randomized query complexity, : how many queries are needed for a randomized classical
algorithm to produce the correct answer with probability at least 2/3?

e Quantum query complexity, (): how many queries are needed for a quantum algorithm to
produce the correct answer with probability at least 2/3?

Example: Input describes an n-bit string. Compute the logical OR of the bits.

D(OR)=0(n) R(OR)=06(n) @Q(OR)=06(n!/2)

Promise problems

General quantum query problem:

Given a black-box input x € P C "
A query to the black box reveals z; for any specified i € [n| :={1,...,n}

Goal: compute f(x),where f: P — {0, 1}, using as few queries as possible
If P = X" then we say f is total. Otherwise f is partial, or a promise problem.

The promise that £ comes from P can significantly affect the difficulty of the problem.

If fis total then R(f) = O(Q(f)®)
R(f) = O(Q(f)*)

So promises are necessary for exponential quantum speedup.

Structure and speedup

But having a promise is not enough! Some promises allow significant speedup; others don’t.

Example:

Promise on x € ¥": Either |-to-I (all x;s distinct; then f(z)=0)
or 2-to-1 (xis come in pairs; then f(x)=1)

R(f) =0©(n'2), Q(f) =06(n'/3)

Example:

Peyr
'hutat,'o ”'Syn,
metr‘
IC

ldentify the indices of z € X" with logs n-bit strings

ho
'Shi), strUCtu
Promise on x € ¥": Either I-to-1 (then f(z)=0) redPromiSe

or there exists an s # 0 such that z; = x;¢s (then f(x)=1)

R(f)=0©(n'/2),Q(f) =O(logn)

Symmetry prevents speedup

More generally, we cannot have exponential quantum speedup if the problem is too symmetric.

Say a function f: P — {0, 1}is permutation-invariant if for all 7 € 5,

r=(T1,...,%,) EP = x0T = (Tr1), -+ Tr(n)) €EP

and f(x) = f(x om)

Theorem. If fis permutation-invariant then R(f) = O(Q(f)3).

What if f has less than full permutation symmetry? How much symmetry is enough to prevent
exponential quantum speedup!?

Graph symmetry

In a graph property, the input is a graph and the property depends only on its isomorphism class.
l.e., for any n-vertex graph G € Pand 7 € S,,, n(G) € P and f(7(G)) = f(G)
The input describes which edges are present.

A vertex permutation m € S,, induces an edge permutation in SfLZ) < 5,2, namely

m(u,v) = (m(uw), m(v)).

This is much less than full permutation symmetry on the edges! (n! < (n*)!)

&

Graph property testing
In the setting of property testing, we ask if some property is satisfied or far from being satisfied.

: In the adjacency-list model for bounded-degree n-vertex graphs, the
randomized query complexity of testing bipartiteness and expansion is ©(nl/2).

:In the same model, the quantum query complexity of testing
bipartiteness and expansion is O(n!/3).Testing expansion requires Q(n1/4) queries.

Testing bipartiteness remains wide open: Is exponential speedup possible?
Can we rule out exponential speedup for any graph property!?

The answer could depend on the query model (adjacency matrix vs. adjacency list).

Our results

Theorem. R(f) =O(Q(f)%) for all graph properties f in the adjacency matrix model.
More generally, R(f) = O(Q(f)3*) for all k-uniform hypergraph properties f.

Theorem (informal). Let G be a primitive permutation group.

If & is “large” (superpolynomial base size) then any GG-symmetric function has at most
polynomial quantum speedup.

If & is “small” (polynomial base size) then there exists a (G-symmetric function with
superpolynomial quantum speedup.

Permutation groups are “large” iff they are hypergraph symmetries, so these are essentially the
only symmetres that prevent exponential speedup.

Theorem. There is a graph property testing problem for bounded-degree graphs in the
adjacency list model that can be solved with poly(logn) quantum queries, but that needs
oStlog) classical queries.

No superpolynomial speedup for
adjacency-matrix graph properties

Chailloux’s proof
Suppose f: P C X" — {0, 1} is permutation-invariant.

Given an algorithm for computing f, if we replace the input x € P by xom = (2(1),- .., Tr(n))
for a random 7 € S5,,, then the algorithm still correctly computes f.

Main idea: Replace 7 by a random range-r function, o:: [n| — [n|with |a(|n])| =r

If a quantum algorithm distinguishes = o 7w from x o «, then it distinguishes 7 from a.
(If it cannot distinguish 7 from « then it cannot distinguish x o m from x o «.)

Theorem . Distinguishing a random range-r function from a random permutation
requires (r1/3) quantum queries.

Taking 7 = Q(f)3, we see that a Q(f)-query quantum algorithm cannot distinguish = o 7 from
x o . But a quantum algorithm on x o & can be simulated with 7 classical queries.

More general symmetries

Let G < S,, be a permutation group. Say a function f: P C X" — {0, 1} is G-invariant if for all
m € Gandx € P,wehave xom € Pand f(xom) = f(x).

Suppose we need Q(rl/c) quantum queries to distinguish a random range-r function from a
random 7 € G. (We say such a G is well-shuffling.)

Then by Chailloux’s argument, R(f) = O(Q(f)°).
For graph symmetries, consider G = S'%) mapping (u, v) — (7(u), 7(v)) for 7 € S,,.

If we can distinguish a random 7 & S,,(f) from a random range-r2 function on |[n2| with)
quantum queries, then we can distinguish a random 7 € .S,, from a random range-r function on
n] with 2Q quantum queries. Q = /3 = (r2)1/6,s0 S?) is well-shuffling with ¢ = 6.

Graph symmetries have some additional constraints, but they are only “more well-shuffling”.

Exponential speedup for
adjacency-list graph property testing

Exponential speedup by quantum walk

Quantum analogs of random walks explore
graphs in superposition.

“Welded trees” problem: given an adjacency-list
black box for two binary trees joined by a ENTRANCE P
random cycle, and given the name of one of the
roots (the ENTRANCE), find the name of the ,
other root (the EXIT). 7

0 EXIT

-
4
4

s

X

{ ‘
'/‘\‘l
’/‘\
S
',\

Theorem. For an n-vertex welded trees graph, a
quantum walk finds the EXIT in time poly(logn), while
a randomized classical algorithm needs time 282(n),

This is not a graph property because the ENTRANCE is known and the property depends on
how vertices are labeled.

Graph property speedup

For “yes” instances, join three “marker”
vertices to the EXIT.

Property: Is there a vertex of degree 5! : A

. MARKERs
’ \‘

ENTRANCE EXIT

L2

AW
£

Connect a large binary tree (the “antenna”) to
the ENTRANCE.A random vertex is a leaf of
the antenna with probability about |/2. From < o > >
such a vertex it is easy to find the ENTRANCE o ' '
and then run the quantum walk to find the

EXIT.

A classical algorithm still needs 282(n) queries to solve the problem.

However, this is not a graph property testing problem: yes and no instances are close.

Graph property testing speedup

To make a property testing problem, design a graph structure that can be detected efficiently by

a quantum algorithm, but that a classical algorithm has a hard time distinguishing even from very
different graphs.

Main idea: Use many copies of the welded trees.
Add “advice edges” that let a quantum computer test
whether a vertex is in the weld. This makes it easy — &
for a quantum computer to test the graph structure.
The advice requires traversing the welded tree, so it
cannot be read by a classical algorithm.

/

ROOT ROOT

Antenna
Antenna

Quantum testing algorithm

Consider “testing with advice”: Given untrusted advice indicating whether each vertex is a weld
or non-weld vertex, even a classical computer can efficiently test the property.

Testing algorithm uses non-backtracking walks
to perform various consistency checks:

* binary tree structure

* welds between pairs of binary trees T °
* consistency of advice

A yes instance definitely passes, and we prove

that a no instance is likely to be rejected. o 7| TN

A quantum computer can efficiently produce
the advice using classical non-backtracking
walks and the welded tree traversal algorithm. X

Classical hardness

We show that it is hard for a classical computer to distinguish a valid yes instance from similar
instances in which the trees are “self-welded”:

This gives a specific set of no instances (they are typically far from the yes instances; in
particular, they are typically far from bipartite).

An algorithm can only explore the graph locally. When exploring the central “body,” it is hard to
distinguish the graph from a large 3-regular tree, as in the lower bound for the original welded

tree problem.

Open problems

What is the largest possible separation for testing (hyper)graph properties!?
We know R(f) =O(Q(f)3*) for k-uniform hypergraphs.

For k=1: R(f) = O(Q(f)3); best known separation is R(OR) = Q(Q(OR)?).
For k> 1: best known separation is R(f) = Q(Q(f)*/?), using Forrelation.
Can we tighten this?

Can we fully characterize which permutation groups allow superpolynomial speedup!?
(Our characterization is already close to this.)

Is there a practical graph property testing problem (in the adjacency-list model) with
exponential quantum speedup? How about testing bipartiteness! Can we show that testing

monotone graph properties cannot have exponential speedup!?

