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The problem: Hamiltonian learning

LetH be an N-qubit ✓-local Hamiltonian in dimension d, with d , ✓ = O(1):�

H =
M’
a=1

_ aEa for
_ a 2 [�1, 1]
Ea 2 C2

N⇥2N such that |SuppEa |  ✓ and kEa k  1

We further assume that the Ea ’s are distinct products of Paulis. For a known inverse temperature V ,
suppose we can prepare copies of the Gibbs state

d = d(_ ) = exp(�VH )
Tr exp(�VH ) .

E₁ E₃

E₂ E₄

52 3 41

The goal is to learn the coe�cients _ a to Y error.
�. sample complexity: number of copies of d used
�. time complexity: time to compute the _ a ’s

We expect hardness as V ! 0 and V ! 1.

�This implies thatM = O (N ) .
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The current state of things
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Blue indicates the assumption that V < Vc = ⇥(1)

�Results shown for the Ising model; sample complexity results assume the terms are also unknown [Santhanam and
Wainwright ����; Vu�ray, Misra, Lokhov, and Chertkov ����]

�Anshu, Arunachalam, Kuwahara, and Soleimanifar ����
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The classical setting
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Classical Gibbs states are samples from Markov Random Fields (MRFs)

Restrict to diagonal HamiltoniansH (i.e. Paulis Z , I ). Then the Gibbs state d is also diagonal, and so
is a sample from a classical probability distribution. This is a Markov Random Field (MRF).

Consider the Ising model: H is �-local on the graphG = ( [N ] , E). Interpret the basis states |0i and
|1i as ±1, so d is an element of {+1, �1}N , where

Pr[d = x] / exp
⇣
�V

’
(a,b)2E

_ abxaxb
⌘
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MRFs satisfy the Markov property

Conditioned on the neighborhood of i , xi is independent of the rest of the bits.

Pr[d = x] / exp
⇣
�V

’
(a,b)2E

_ abxaxb
⌘
=

÷
j2n (i)

exp(�V_ i j xi xj)
÷

(a,b)2E
a,b<i

exp(�V_ abxaxb)
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Optimal classical Hamiltonian learning using the Markov property

To learn a _ i j :

�. Get e
O ( V ) logM

V 2Y2
copies of d.

�. Consider only samples where xk = +1 for all k adjacent to {i , j};

Pr[d = x] / exp
⇣
�V

’
(a,b)2E

_ abxaxb
⌘

Pr[di , d j = xi , xj | dk = +1] / exp(�V_ i j xi xj � V[i xi � V[ j x j)

�. Learn the conditional distribution on {xi , xj} enough to infer _ i j ;

−+ − ++
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Sketching our main result
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Trying the natural approach: generalizing the Markov property

In the classical setting, we used the Markov property to restrict to a constant-sized subsystem.
However, the Markov property does not hold for general Hamiltonians.

An approximate version does hold for su�ciently small V (high temperature)�

I conditional mutual information bounds:

I (A : C | B)  e�⌦(�)

I e�ective Hamiltonian bounds: let

H̃A := �V�1 logTrAc (e�VH )
HA :=

Õ
a:Supp(Ea)✓A _ aEa .

then kH̃A[B � H̃B �HAk  e�⌦(�)

Can restrict to a subsystem: A [ B, for � = log 1Y .
However, this is logd 1Y qubits: not small enough.

       B

A
Δ

C

�Kuwahara, Kato, and Brandão ����



Looking closer: Anshu, Arunachalam, Kuwahara, and Soleimanifar ����

Claim
The values of Tr(Ea d(x)) for all a 2 [M] determines x 2 [�1, 1]M .�

Strategy: get estimates ẽa of Tr(Ea d) for all a 2 [M], then deduce estimates _̃ a of _ a .
The strategy works (information-theoretically) provided that

��Tr(Ea d(_̃ )) � Tr(Ea d(_ ))��  Y for all a 2 [M] =) k_̃ � _ k1  LY

for some bound L.

More precisely, consider the Jacobian of the map x 7! Tr(Ea d(x)). That is, Jab (x) = mb Tr(Ea d(x)).
Then if we show

k J�1 (x)k1!1  L for all x 2 [�1, 1]M ,

this implies that the strategy has sample complexityO(L2 logM
Y2

).

[AAKS��] prove an equivalent statement (strong concavity of the log-partition function).

�Recall d (x) = exp(�VH )/Tr exp(�VH ) forH =
Õ
a xaEa .
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✗ ↳ {Tr (Eapen }

banded (Jacobian)
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Exploiting high temperature: cluster expansion

Main idea: We use the structural results used by [KKB��] to achieve the high-temperature
approximate Markov properties to understand how {Tr(Ea d)}a and _ relate.

Cluster expansion�

The multivariate Taylor series expansion for the log-partition functionL,

L = logTr exp(�V
ÕM
a=1 _ aEa) =

’
V

_V

V!

⇣
mVL

���
_=0

⌘
,

converges for V < Vc = ⇥(1). So, we can write

Tr(Ea d) = � 1
V

⇣ m

m_ a
L
⌘
=

1’
m=0

Vmp (a)m (_ ) ,

where p (a)m (_ ) is some degree-m homogeneous polynomial (which we can compute).

�Kuwahara and Saito ����



Getting a sample complexity bound

Now, we have a system of polynomial equations,

Tr(Ea d) = 0 + V_ a + V 2p (a)2 (_ ) + V 2p (a)3 (_ ) + · · ·

In the V ! 0 regime, we have _ a = 1
V Tr(Ea d). So, all we need are estimates of the Tr(Ea d)’s to

V Y error (which takesO( logM
V 2Y2

) samples as desired).

Formally, we show that the Jacobian J with Jab = ma Tr(Eb d) satisfies

k J � V I k1!1  V

2
=) k J�1k1!1  2

V

for su�ciently small V .
J - pit Otp)



The full algorithm

Quantum part
Given copies of d(_ ) = exp(�VH )

Tr exp(�VH ) , get estimates ẽa of Tr(Ea d(_ )) up to V Y error, for all a 2 [M].

Classical part
We want to find an x such that, for all a 2 [M],

Tr(Ea d(_ )) ⇡ ẽa ⇡ V xa + V 2p (a)2 (x) + · · · + Vmp (a)m (x) ⇡
1’
m=1

Vmp (a)m (x) = Tr(Ea d(x)).

We truncate atm = O(log 1Y ).

In other words, we want that kF(x)k1  50V Y , for

F(x)a := �ẽa + V xa + V 2p (a)2 (x) + · · · + Vmp (a)m (x).

Use the Newton–Raphson method for root-finding: x (0) = Æ0, and

x (t+1) = x (t) � ( J�1F) (x (t) ) until convergence (O(log 1
V Y ) iterations).
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Thank you!
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Why is this algorithm optimal?

The runtime is dominated by the time to compute the polynomial approximation

Tr(Ea d(x)) ⇡ V xa + V 2p (a)2 (x) + · · · + Vmp (a)m (x) ,

for all a 2 [M]:M exp(cm). This gets easier as V gets smaller.

With our analysis, Vc is small enough thatm < 1
c log

1
Y + c0. This gives a runtime of

O(M 1
Y polylog( 1

Y V )) for the Newton–Raphson method, which is smaller than theO( N logM
V 2Y2

) time
needed to get the estimates.



Bounding the Taylor series expansion
The multivariate Taylor series expansion for the log-partition functionL,

L = logTr exp(�VH ) =
’
V

_V

V!

⇣
mVL

���
_=0

⌘
, where V = {(a, `(a)) : a 2 [M] , `(a) 2 Z�0}

Key observation
Define the dual graphG to have vertices [M] and an edge (a, b) i� |Supp(Ea) \ Supp(Eb) | < 0.
This graph is degreeO(1).
Then mVL|_=0 = 0 if V is not connected inG.
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The multivariate Taylor series expansion for the log-partition functionL,

L = logTr exp(�VH ) =
’

connected V

_V

V!

⇣
mVL

���
_=0

⌘
.

Lemma
There are exp(O(m)) many V’s that are connected and weight m.

Lemma
For a V of weight m, 1V! |mVL|_=0 | = exp(O(m)) Vm .


