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The problem: Hamiltonian learning

Let H be an N-qubit £-local Hamiltonian in dimension d, with d, £ = O(1):

M Aq. € [-1,1]
H = Z/l(,Ea for 9N 5oV
E, € C** suchthat |SuppE,| < fand ||E,|| < 1

We further assume that the E,’s are distinct products of Paulis. For a known inverse temperature S,

suppose we can prepare copies of the Gibbs state a= 4
-0 = =2
p N
exp(-pH) ~—7 2 E, E,
p=p)=

_oCAID) ) —— — )
Trexp(—ﬁH)@’\W* (O (OJ LO} (OJ OJ

E, E,
The goal is to learn the coefficients A, to € error. E,cL @ \"T\\/ $T o T
1. sample complexity: number of copies of p used zZ9 (
2. time complexity: time to compute the 4,'s

We expect hardnessas 8 — 0 and 8 — co.

'This implies that M = O(N).



The current state of things
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3Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021



The current state of things

sample lower bound sample upper bound time upper bound

2(B) 0(B) 20(B)
classical? ,81 5 log N * ,81 5 log N 5% —5 5 NlogN
1 0ty 1 4o
quantum? — %Nﬁ log N — N
Bg ﬁ4+€ Sz ﬁ4+( 82

Blue indicates the assumption that 8 < 8, = ©(1)

2Results shown for the Ising model; sample complexity results assume the terms are also unknown [Santhanam and
Wainwright 2012; Vuffray, Misra, Lokhov, and Chertkov 2016]
3Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021



The current state of things

sample lower bound sample upper bound time upper bound
) R(B) 20 (B) 20(B)

classical? ,81 5 log N * ,81 5 log N 5% —5 5 NlogN
1 0ty 1 g

quantum? Be ﬁNﬁ log N W 4+

& & 4+’ ¢

2P 1 ) 1 )

our work ﬂQ B loqN @ l()g;\‘ @;\° 1OgA\

Blue indicates the assumption that 8 < 8, = ©(1)

2Results shown for the Ising model; sample complexity results assume the terms are also unknown [Santhanam and
Wainwright 2012; Vuffray, Misra, Lokhov, and Chertkov 2016]
3Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021



The classical setting
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Classical Gibbs states are samples from Markov Random Fields (MRFs)

Restrict to diagonal Hamiltonians H (i.e. Paulis Z, I). Then the Gibbs state p is also diagonal, and so
is a sample from a classical probability distribution. This is a Markov Random Field (MRF).

Consider the Ising model: H is 2-local on the graph G = ([N], E). Interpret the basis states |0) and
|1) as +1, s0 p is an element of {+1, —1}", where

Prip =] xexp(-f D Awtows)
(a,b)eE




MRFs satisfy the Markov property

Conditioned on the neighborhood of 7, x; is independent of the rest of the bits.

Prlp=alcesp(-f Y. Awtan)= || en-paijuz) [ en-prazs)

(d,b)€E jen(i) 'g (a,b)€E
a,b#i

+1




Optimal classical Hamiltonian learning using the Markov property

To learna 4;;:

O(B) 1og M
1. Get 6’32—605

2. Consider only samples where x; = +1 for all k£ adjacent to {z, j };

copies of p.

Pr[p =] « exp(—,B Z /labxaxb)
(a,b)€eE

Prlpi, pj = xi, xj | pr = +1] o exp(=BA;aix; — Bnix; — Bn;x;)

3. Learn the conditional distribution on {z;, x;} enough to infer A,;;
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Sketching our main result
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Trying the natural approach: generalizing the Markov property

In the classical setting, we used the Markov property to restrict to a constant-sized subsystem.
However, the Markov property does not hold for general Hamiltonians.

An approximate version does hold for sufficiently small B (high temperature)*
> conditional mutual information bounds:
I[(A:C|B) <e®®W c
> effective Hamiltonian bounds: let
H,:= —,8_1 logTrAc(e_ﬁH)

Hy = Yosupp(E)ca Aol
then ||Fyup — Hp — Hyl| < 7@

Can restrict to a subsystem: 4 U B, for A = log %
However, this is logd % qubits: not small enough.

4Kuwahara, Kato, and Brandao 2020



Looking closer: Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021

Claim
The values of Tr(E, p(z)) forall a € [M] determinesx € [-1, 1]M 5

5Recall p(x) = exp(=BH)/Trexp(-BH) for H = Y, x,E,.
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Claim
The values of Tr(E, p(z)) forall a € [M] determinesx € [—-1, 1]V 5

Strategy: get estimates ¢, of Tr(E, p) for all « € [M], then deduce estimates A, of A,.
The strategy works (information-theoretically) provided that

[Tr(E,p(1)) - Tr(E,p(1))| < eforalla € [M] = |1 - Ao < Le
for some bound L.
ST Bap () e
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Looking closer: Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021

Claim
The values of Tr(E, p(z)) forall a € [M] determinesx € [—-1, 1]V 5

Strategy: get estimates ¢, of Tr(F,p) forall a € [M], then deduce estimates A, of A,.
The strategy works (information-theoretically) provided that
[Tr(E,p(1)) - Tr(E,p(1))| < eforalla € [M] = |1 - Ao < Le

for some bound L.

More precisely, consider the Jacobian of the map x — Tr(E, p(x)). Thatis, J,;(x) = 9, Tr(E,p(x)).
Then if we show

177 (@) loomseo < L forallx € [-1, 117,
this implies that the strategy has sample complexity O(L? —l°§QM .

[AAKS21] prove an equivalent statement (strong concavity of the log-partition function).

5Recall p(x) = exp(=BH)/Trexp(-BH) for H = Y, x,E,.



Exploiting high temperature: cluster expansion

Main idea: We use the structural results used by [KKB20] to achieve the high-temperature
approximate Markov properties to understand how {Ir(E,p)}, and A relate.

Cluster expansion®

The multivariate Taylor series expansion for the log-partition function &£,
M Y

Z =logTrexp(=BY . Aakd) = Z W(avi/’L:O),

\%

converges for 8 < B, = ©(1). So, we can write

Ti(Eap) =5 (22) = Y g0 ),

m=0

where p,(,,a)(/l) is some degree-m homogeneous polynomial (which we can compute).

SKuwahara and Saito 2019



Getting a sample complexity bound

Now, we have a system of polynomial equations,
Tr(E.p) = 0+ Bag + B2 (1) + B2l (1) +- -
r(Lqp a 2 Pg

In the 8 — 0 regime, we have 4, = % Tr(E, p). So, all we need are estimates of the Tr(E, p)’s to
log M

5957 ) samples as desired).

B error (which takes O(

Formally, we show that the Jacobian J with J,;, = 9, Tr(E, p) satisfies

B

lJ = BIllcomseo < E == ||J_1||oo—>oo <

2
B
for sufficiently small 5. J= B/E 3 O<(51>



The full algorithm

Quantum part
Given copies of p(1) = %, get estimates &, of Tr(£,p(1)) up to S& error, forall a € [M].

Classical part
We want to find an x such that, forall a € [M],

Tr(Eap()) % 2, = By + B7py" (0) + -+ B0y (0) % Y7 By (2) = Tr(Eap(a)).
m=1

We truncate at m = O(log %).



The full algorithm

Quantum part

Given copies of p(1) = %, get estimates &, of Tr(£,p(1)) up to S& error, forall a € [M].

Classical part
We want to find an x such that, forall a € [M],

Tr(Eop(2)) ~ 2, ~ Bag + B0y () +---+ B py (2) = Zﬁ "oy (2) = Tr(E,p(a)).

m=1

We truncate at m = O(log %). In other words, we want that ||F (x)||» < 508 ¢, for
F(2) 1= =P+ By + B2 (1) +---+ B"py) (@)
Use the Newton-Raphson method for root-finding: () = 6, and

2D = 20— (J71F) (™) until convergence (O(log = 57) iterations).



|
Thank you! e {
-& o 1
- -2

sample lower bound sample upper bound time upper bound
) eR(B) 20 (B) 20(B)

classical’ ﬁz 5 log N * ﬂz 5 log N 5% —55NlogN
1 0™ 1 g

quantum?® 3o th log N Frgd J 2+

& & e

%P 1 : 1 :

our work BQ b} IOQN @ lOgA\ @A\ ]0g;\°

Blue indicates the assumption that 8 < 8, = ©(1)

7Results shown for the Ising model; sample complexity results assume the terms are also unknown [Santhanam and
Wainwright 2012; Vuffray, Misra, Lokhov, and Chertkov 2016]
8Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021






Why is this algorithm optimal?

The runtime is dominated by the time to compute the polynomial approximation
Tr(Eap(@) = By + B2y () + -+ B"py (),
forall a € [M]: M exp(cm). This gets easier as 8 gets smaller.

With our analysis, 8. is small enough that m < % log % + ¢’. This gives a runtime of

O(M% polylog(#)) for the Newton-Raphson method, which is smaller than the O(
needed to get the estimates.
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Bounding the Taylor series expansion

The multivariate Taylor series expansion for the log-partition function &,

\%
% =log Trexp(-BH) = y %(avgh_o), where V = {(a, u(a)) : a € [M], u(a) € Zso}
\% : -

Key observation
Define the dual graph G to have vertices [M] and an edge (a, b) iff |[Supp(£,) N Supp(Ey)| # 0.
This graph is degree O(1).

Then dvZ£|,-0 = 0 if V is not connected in 6.



Bounding the Taylor series expansion

The multivariate Taylor series expansion for the log-partition function &,

£ =logTrexp(-BH) = Z %(%g‘ko)‘

connected V

Lemma
There are exp(O(m)) many V'’s that are connected and weight m.

Lemma
Fora 'V of weight m, 5|0v<£|1-0| = exp(O(m))B™.



