Optimal learning of quantum Hamiltonians from high-temperature Gibbs states

Jeongwan Haah¹ Robin Kothari¹ Ewin Tang²

¹Microsoft Quantum

²University of Washington

July 12, 2021

The problem: Hamiltonian learning

Let H be an N-qubit ℓ -local Hamiltonian in dimension d, with $d, \ell = O(1)$:¹

$$H = \sum_{a=1}^{M} \lambda_a E_a \qquad \text{for} \qquad \begin{array}{l} \lambda_a \in [-1, 1] \\ E_a \in \mathbb{C}^{2^N \times 2^N} \text{ such that } |\text{Supp } E_a| \le \ell \text{ and } ||E_a|| \le 1 \end{array}$$

We further assume that the E_a 's are distinct products of Paulis. For a known inverse temperature β , suppose we can prepare copies of the *Gibbs state* d = 4

2. *time complexity*: time to compute the λ_a 's

We expect hardness as $\beta \to 0$ and $\beta \to \infty$.

¹This implies that M = O(N).

The current state of things

	sample lower bound	sample upper bound	time upper bound
classical ²	$\frac{e^{\Omega(\beta)}}{\beta^2\varepsilon^2}\log N \boldsymbol{\star}$	$\frac{e^{O(\beta)}}{\beta^2\varepsilon^2}\log N$	$\frac{e^{O(\beta)}}{\beta^2\varepsilon^2}N\log N$
quantum ³	$\frac{1}{\beta \varepsilon}$	$\frac{e^{O(\beta^{4+c})}}{\beta^{4+c'}\varepsilon^2}N^2\log N$	

²Results shown for the Ising model; sample complexity results assume the terms are also unknown [Santhanam and Wainwright 2012; Vuffray, Misra, Lokhov, and Chertkov 2016]

³Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021

The current state of things

	sample lower bound	sample upper bound	time upper bound
classical ²	$\frac{e^{\Omega(\beta)}}{\beta^2\varepsilon^2}\log N \star$	$\frac{e^{O(\beta)}}{\beta^2\varepsilon^2}\log N$	$\frac{e^{O(\beta)}}{\beta^2\varepsilon^2}N\log N$
quantum ³	$\frac{1}{\beta \varepsilon}$	$\frac{e^{O(\beta^{4+c})}}{\beta^{4+c'}\varepsilon^2}N^2\log N$	$\frac{1}{\beta^{4+c'}\varepsilon^2}N^{2+c''}$

Blue indicates the assumption that $\beta < \beta_c = \Theta(1)$

²Results shown for the Ising model; sample complexity results assume the terms are also unknown [Santhanam and Wainwright 2012; Vuffray, Misra, Lokhov, and Chertkov 2016]

³Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021

The current state of things

	sample lower bound	sample upper bound	time upper bound
classical ²	$\frac{e^{\Omega(\beta)}}{\beta^2\varepsilon^2}\log N \star $	$\frac{e^{O(\beta)}}{\beta^2\varepsilon^2}\log N$	$\frac{e^{O(\beta)}}{\beta^2\varepsilon^2}N\log N$
quantum ³	$\frac{1}{\beta \varepsilon}$	$\frac{e^{O(\beta^{4+c})}}{\beta^{4+c'}\varepsilon^2}N^2\log N$	$rac{1}{eta^{4+c'}arepsilon^2}N^{2+c''}$
our work	$\frac{e^{2\beta}}{\beta^2\varepsilon^2}\log N$	$\frac{1}{\beta^2 \varepsilon^2} \log N$	$\frac{1}{\beta^2 \varepsilon^2} N \log N$

Blue indicates the assumption that $\beta < \beta_c = \Theta(1)$

²Results shown for the Ising model; sample complexity results assume the terms are also unknown [Santhanam and Wainwright 2012; Vuffray, Misra, Lokhov, and Chertkov 2016]

³Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021

The classical setting

	sample lower bound	sample upper bound	time upper bound
classical		$\frac{e^{O(\beta)}}{\beta^2\varepsilon^2}\log N$	$\frac{e^{O(\beta)}}{\beta^2 \varepsilon^2} N \log N$
quantum			
our work			

Classical Gibbs states are samples from Markov Random Fields (MRFs)

Restrict to diagonal Hamiltonians H (i.e. Paulis Z, I). Then the Gibbs state ρ is also diagonal, and so is a sample from a classical probability distribution. This is a *Markov Random Field* (MRF).

Consider the *Ising model*: H is 2-local on the graph G = ([N], E). Interpret the basis states $|0\rangle$ and $|1\rangle$ as ± 1 , so ρ is an element of $\{+1, -1\}^N$, where

$$\Pr[\rho = x] \propto \exp\left(-\beta \sum_{(a,b) \in E} \lambda_{ab} x_a x_b\right)$$

MRFs satisfy the Markov property

Conditioned on the neighborhood of i, x_i is independent of the rest of the bits.

$$\Pr[\rho = x] \propto \exp\left(-\beta \sum_{(a,b) \in E} \lambda_{ab} x_a x_b\right) = \prod_{j \in n(i)} \exp(-\beta \lambda_{ij} x_i x_j) \prod_{\substack{(a,b) \in E \\ a,b \neq i}} \exp(-\beta \lambda_{ab} x_a x_b)$$

Optimal classical Hamiltonian learning using the Markov property

To learn a λ_{ij} :

- 1. Get $\frac{e^{O(\beta)}\log M}{\beta^2\varepsilon^2}$ copies of ρ .
- **2.** Consider only samples where $x_k = +1$ for all k adjacent to $\{i, j\}$;

$$\Pr[\rho = x] \propto \exp\left(-\beta \sum_{(a,b) \in E} \lambda_{ab} x_a x_b\right)$$

 $\Pr[\rho_i, \rho_j = x_i, x_j \mid \rho_k = +1] \propto \exp(-\beta \lambda_{ij} x_i x_j - \beta \eta_i x_i - \beta \eta_j x_j)$

3. Learn the conditional distribution on $\{x_i, x_j\}$ enough to infer λ_{ij} ;

Optimal classical Hamiltonian learning using the Markov property

To learn a λ_{ij} :

- 1. Get $\frac{e^{O(\beta)}\log M}{\beta^2\varepsilon^2}$ copies of ρ .
- **2.** Consider only samples where $x_k = +1$ for all k adjacent to $\{i, j\}$;

$$\Pr[\rho = x] \propto \exp\left(-\beta \sum_{(a,b) \in E} \lambda_{ab} x_a x_b\right)$$

$$\Pr[\rho_i, \rho_j = x_i, x_j \mid \rho_k = +1] \propto \exp(-\beta \lambda_{ij} x_i x_j - \beta \eta_i x_i - \beta \eta_j x_j)$$

3. Learn the conditional distribution on $\{x_i, x_j\}$ enough to infer λ_{ij} ;

Optimal classical Hamiltonian learning using the Markov property

To learn a λ_{ij} :

- 1. Get $\frac{e^{O(\beta)}\log M}{\beta^2\varepsilon^2}$ copies of ρ .
- **2.** Consider only samples where $x_k = +1$ for all k adjacent to $\{i, j\}$;

$$\Pr[\rho = x] \propto \exp\left(-\beta \sum_{(a,b) \in E} \lambda_{ab} x_a x_b\right)$$

 $\Pr[\rho_i, \rho_j = x_i, x_j \mid \rho_k = +1] \propto \exp(-\beta \lambda_{ij} x_i x_j - \beta \eta_i x_i - \beta \eta_j x_j)$

3. Learn the conditional distribution on $\{x_i, x_j\}$ enough to infer λ_{ij} ;

Sketching our main result

	sample lower bound	sample upper bound	time upper bound
classical			
quantum			
our work		$\frac{1}{\beta^2 \varepsilon^2} \log N$	$\frac{1}{\beta^2 \varepsilon^2} N \log N$

Trying the natural approach: generalizing the Markov property

In the classical setting, we used the Markov property to *restrict to a constant-sized subsystem*. However, the Markov property does not hold for general Hamiltonians.

An approximate version *does hold* for sufficiently small β (high temperature)⁴

conditional mutual information bounds:

 $I(A:C\mid B) \le e^{-\Omega(\Delta)}$

effective Hamiltonian bounds: let

$$\begin{split} \tilde{H}_{A} &:= -\beta^{-1} \log \operatorname{Tr}_{\mathcal{A}^{c}}(e^{-\beta H}) \\ H_{A} &:= \sum_{a: \operatorname{Supp}(E_{a}) \subseteq \mathcal{A}} \lambda_{a} E_{a}. \\ \text{then } \|\tilde{H}_{A \cup B} - \tilde{H}_{B} - H_{A}\| \leq e^{-\Omega(\Delta)} \end{split}$$

Can restrict to a subsystem: $A \cup B$, for $\Delta = \log \frac{1}{\varepsilon}$. However, this is $\log^d \frac{1}{\varepsilon}$ qubits: not small enough.

⁴Kuwahara, Kato, and Brandão 2020

Looking closer: Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021

Claim

The values of $\operatorname{Tr}(E_a \rho(x))$ for all $a \in [M]$ determines $x \in [-1, 1]^{M.5}$

⁵Recall $\rho(x) = \exp(-\beta H)/\operatorname{Tr} \exp(-\beta H)$ for $H = \sum_{a} x_{a} E_{a}$.

Looking closer: Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021

Claim

The values of $\operatorname{Tr}(E_a \rho(x))$ for all $a \in [M]$ determines $x \in [-1, 1]^M$.⁵

Strategy: get estimates \tilde{e}_a of $\operatorname{Tr}(E_a \rho)$ for all $a \in [M]$, then deduce estimates $\tilde{\lambda}_a$ of λ_a . The strategy works (information-theoretically) provided that

$$\left| \operatorname{Tr}(E_a \rho(\tilde{\lambda})) - \operatorname{Tr}(E_a \rho(\lambda)) \right| \leq \varepsilon \text{ for all } a \in [M] \implies \|\tilde{\lambda} - \lambda\|_{\infty} \leq L\varepsilon$$

for some bound *L*.

$$\{ T_r(E_a p(x)) \}_{a \in [M]} \mapsto \chi$$
bounded Jacobian
$$\chi \mapsto \{ T_r(E_a p(x)) \}$$
banded (Jacobian)^{-1}

⁵Recall $\rho(x) = \exp(-\beta H)/\operatorname{Tr} \exp(-\beta H)$ for $H = \sum_{a} x_{a} E_{a}$.

Looking closer: Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021

Claim

The values of $\operatorname{Tr}(E_a \rho(x))$ for all $a \in [M]$ determines $x \in [-1, 1]^M$.⁵

Strategy: get estimates \tilde{e}_a of $\operatorname{Tr}(E_a \rho)$ for all $a \in [M]$, then deduce estimates $\tilde{\lambda}_a$ of λ_a .

The strategy works (information-theoretically) provided that

$$\left| \operatorname{Tr}(E_a \rho(\tilde{\lambda})) - \operatorname{Tr}(E_a \rho(\lambda)) \right| \leq \varepsilon \text{ for all } a \in [M] \implies \|\tilde{\lambda} - \lambda\|_{\infty} \leq L\varepsilon$$

for some bound L.

More precisely, consider the Jacobian of the map $x \mapsto Tr(E_a \rho(x))$. That is, $J_{ab}(x) = \partial_b Tr(E_a \rho(x))$. Then if we show

 $||J^{-1}(x)||_{\infty \to \infty} \le L$ for all $x \in [-1, 1]^M$,

this implies that the strategy has sample complexity $O(L^2 \frac{\log M}{\epsilon^2})$.

[AAKS21] prove an equivalent statement (strong concavity of the log-partition function).

⁵Recall $\rho(x) = \exp(-\beta H)/\operatorname{Tr} \exp(-\beta H)$ for $H = \sum_a x_a E_a$.

Exploiting high temperature: cluster expansion

Main idea: We use the structural results used by [KKB20] to achieve the high-temperature approximate Markov properties to understand how $\{Tr(E_a \rho)\}_a$ and λ relate.

Cluster expansion⁶

The multivariate Taylor series expansion for the log-partition function ${\mathcal L}$,

$$\mathcal{L} = \log \operatorname{Tr} \exp(-\beta \sum_{a=1}^{M} \lambda_a E_a) = \sum_{\mathbf{V}} \frac{\lambda^{\mathbf{V}}}{\mathbf{V}!} \Big(\partial_{\mathbf{V}} \mathcal{L} \Big|_{\lambda=0} \Big),$$

converges for $\beta < \beta_c = \Theta(1)$. So, we can write

$$\operatorname{Tr}(E_a \rho) = -\frac{1}{\beta} \left(\frac{\partial}{\partial \lambda_a} \mathscr{L} \right) = \sum_{m=0}^{\infty} \beta^m p_m^{(a)}(\lambda),$$

where $p_m^{(a)}(\lambda)$ is some degree-*m* homogeneous polynomial (which we can compute).

⁶Kuwahara and Saito 2019

Getting a sample complexity bound

Now, we have a system of polynomial equations,

$$\operatorname{Tr}(E_a \rho) = 0 + \beta \lambda_a + \beta^2 p_2^{(a)}(\lambda) + \beta^2 p_3^{(a)}(\lambda) + \cdots$$

In the $\beta \to 0$ regime, we have $\lambda_a = \frac{1}{\beta} \operatorname{Tr}(E_a \rho)$. So, all we need are estimates of the $\operatorname{Tr}(E_a \rho)$'s to $\beta \varepsilon$ error (which takes $O(\frac{\log M}{R^2 c^2})$ samples as desired).

Formally, we show that the Jacobian J with $J_{ab} = \partial_a \operatorname{Tr}(E_b \rho)$ satisfies

$$\|J - \beta I\|_{\infty \to \infty} \le \frac{\beta}{2} \implies \|J^{-1}\|_{\infty \to \infty} \le \frac{2}{\beta}$$

for sufficiently small β .

 $J = \beta I + O(\beta^2)$

The full algorithm

Quantum part

Given copies of $\rho(\lambda) = \frac{\exp(-\beta H)}{\operatorname{Tresp}(-\beta H)}$, get estimates \tilde{e}_a of $\operatorname{Tr}(E_a \rho(\lambda))$ up to $\beta \varepsilon$ error, for all $a \in [M]$.

Classical part

We want to find an x such that, for all $a \in [M]$,

$$\operatorname{Tr}(E_a\rho(\lambda)) \approx \tilde{e}_a \approx \beta x_a + \beta^2 p_2^{(a)}(x) + \dots + \beta^{\mathfrak{m}} p_{\mathfrak{m}}^{(a)}(x) \approx \sum_{m=1}^{\infty} \beta^m p_m^{(a)}(x) = \operatorname{Tr}(E_a\rho(x)).$$

We truncate at $\mathfrak{m} = O(\log \frac{1}{\varepsilon})$.

The full algorithm

Quantum part

Given copies of $\rho(\lambda) = \frac{\exp(-\beta H)}{\operatorname{Tresp}(-\beta H)}$, get estimates \tilde{e}_a of $\operatorname{Tr}(E_a \rho(\lambda))$ up to $\beta \varepsilon$ error, for all $a \in [M]$.

Classical part

We want to find an x such that, for all $a \in [M]$,

$$\operatorname{Tr}(E_a\rho(\lambda)) \approx \tilde{e}_a \approx \beta x_a + \beta^2 p_2^{(a)}(x) + \dots + \beta^{\mathfrak{m}} p_{\mathfrak{m}}^{(a)}(x) \approx \sum_{m=1}^{\infty} \beta^m p_m^{(a)}(x) = \operatorname{Tr}(E_a\rho(x)).$$

We truncate at $\mathfrak{m} = O(\log \frac{1}{\varepsilon})$. In other words, we want that $\|\mathscr{F}(x)\|_{\infty} \le 50\beta\varepsilon$, for

$$\mathcal{F}(x)_a := -\tilde{e}_a + \beta x_a + \beta^2 p_2^{(a)}(x) + \dots + \beta^{\mathfrak{m}} p_{\mathfrak{m}}^{(a)}(x).$$

Use the Newton-Raphson method for root-finding: $x^{(0)} = \vec{0}$, and

$$x^{(t+1)}=x^{(t)}-(J^{-1}\mathcal{F})(x^{(t)})$$
 until convergence ($O(\lograc{1}{etaarepsilon})$ iterations).

Thank you!

$$\begin{bmatrix} 1+2\\ 1-2\\ -2 \end{bmatrix} or \begin{bmatrix} 1\\ 1\\ -2 \end{bmatrix}$$

	sample lower bound	sample upper bound	time upper bound
classical ⁷	$rac{e^{\Omega(eta)}}{eta^2arepsilon^2}\log N$ *	$\frac{e^{O(\beta)}}{\beta^2\varepsilon^2}\log N$	$\frac{e^{O(\beta)}}{\beta^2\varepsilon^2}N\log N$
quantum ⁸	$\frac{1}{\beta\varepsilon}$	$\frac{e^{O(\beta^{4+c})}}{\beta^{4+c'}\varepsilon^2}N^2\log N$	$\frac{1}{\beta^{4+c'}\varepsilon^2}N^{2+c''}$
our work	$\frac{e^{2\beta}}{\beta^2\varepsilon^2}\log N$	$\frac{1}{\beta^2 \varepsilon^2} \log N$	$\frac{1}{\beta^2 \varepsilon^2} N \log N$

Blue indicates the assumption that $\beta < \beta_c = \Theta(1)$

⁷Results shown for the Ising model; sample complexity results assume the terms are also unknown [Santhanam and Wainwright 2012; Vuffray, Misra, Lokhov, and Chertkov 2016]

⁸Anshu, Arunachalam, Kuwahara, and Soleimanifar 2021

Why is this algorithm optimal?

The runtime is dominated by the time to compute the polynomial approximation

 $\operatorname{Tr}(E_a\rho(x)) \approx \beta x_a + \beta^2 p_2^{(a)}(x) + \dots + \beta^{\mathfrak{m}} p_{\mathfrak{m}}^{(a)}(x),$

for all $a \in [M]$: $M \exp(c\mathfrak{m})$. This gets easier as β gets smaller.

With our analysis, β_c is small enough that $\mathfrak{m} < \frac{1}{c} \log \frac{1}{\varepsilon} + c'$. This gives a runtime of $O(M\frac{1}{\varepsilon} \operatorname{polylog}(\frac{1}{\varepsilon\beta}))$ for the Newton-Raphson method, which is smaller than the $O(\frac{N\log M}{\beta^2 \varepsilon^2})$ time needed to get the estimates.

Bounding the Taylor series expansion

The multivariate Taylor series expansion for the log-partition function \mathcal{L} ,

$$\mathcal{L} = \log \operatorname{Trexp}(-\beta H) = \sum_{\mathbf{V}} \frac{\lambda^{\mathbf{V}}}{\mathbf{V}!} \Big(\partial_{\mathbf{V}} \mathcal{L} \Big|_{\lambda=0} \Big), \text{ where } \mathbf{V} = \{(a, \mu(a)) : a \in [M], \mu(a) \in \mathbb{Z}_{\geq 0} \}$$

Key observation

Define the *dual graph* \mathfrak{G} to have vertices [M] and an edge (a, b) iff $|\text{Supp}(E_a) \cap \text{Supp}(E_b)| \neq 0$. This graph is degree O(1).

Then $\partial_{\mathbf{V}} \mathscr{L}|_{\lambda=0} = 0$ if \mathbf{V} is not connected in \mathfrak{G} .

Bounding the Taylor series expansion

The multivariate Taylor series expansion for the log-partition function $\mathcal L$,

$$\mathcal{L} = \log \operatorname{Tr} \exp(-\beta H) = \sum_{\text{connected } \mathbf{V}} \frac{\lambda^{\mathbf{V}}}{\mathbf{V}!} \Big(\partial_{\mathbf{V}} \mathcal{L} \Big|_{\lambda=0} \Big).$$

Lemma

There are $\exp(O(m))$ many V's that are connected and weight m.

Lemma

For a V of weight *m*, $\frac{1}{V!} |\partial_V \mathcal{L}|_{\lambda=0}| = \exp(O(m))\beta^m$.