Graph Sparsification II: Rank one updates, Interlacing, and Barriers

Nikhil Srivastava

Simons Institute August 26, 2014

Previous Lecture

Definition. $H = (V, F, u)$ is a κ -approximation of $G =$ (V, E, w) if:

$$
L_H \le L_G \le \kappa \cdot L_H
$$

Theorem. Every G has a $(1 + \epsilon)$ -approximation H with $O(n \log n/\epsilon^2)$ edges. There is a nearly linear time algorithm which finds it.

There is no log(n) here…

G=K_n **H** = random d-regular x (n/d)

Proof: Approximating the Identity

Given
$$
\sum_{i \leq m} v_i v_i^T = I_n
$$
 there are $s_i \geq 0$ with:
\n• $(1 - \epsilon)I \preceq \sum_i s_i v_i v_i^T \preceq (1 + \epsilon)I$
\n• $\text{supp}(s) \leq n \log n/\epsilon^2$

Suppose $X_1, ..., X_k$ are i.i.d. random $n \times n$ **matrices** with $0 \leq X_i \leq M \cdot I$ and $\mathbb{E}X_i = I$. Then

$$
\mathbb{P}\left[\left\|\frac{1}{k}\sum_{i}X_{i}-I\right\| \geq \epsilon\right] \leq 2n\exp\left(-\frac{k\epsilon^{2}}{4M}\right)
$$

Shows O $n \log n$ $\left(\frac{\log n}{\epsilon^2}\right)$ samples suffice in $\boldsymbol{R^n}.$

Suppose $X_1, ..., X_k$ are i.i.d. random $n \times n$ **matrices** with $0 \leq X_i \leq n \cdot l$ and $EX_i = I$. then O $n \log n$ $\left(\frac{\log n}{\epsilon^2}\right)$ samples suffice in \mathbb{R}^n .

Suppose $X_1, ..., X_k$ are i.i.d. random $n \times n$ matrices with $0 \leq X_i \leq n \cdot l$ and $EX_i = I$. then O $n \log n$ $\left(\frac{\log n}{\epsilon^2}\right)$ samples suffice in \mathbb{R}^n .

This Lecture [Batson-Spielman-S'09]

Spectral Sparsification Theorem:

Given
$$
\sum_{i \le m} v_i v_i^T = I_n
$$
 there are $s_i \ge 0$ with:
\n• $(1 - \epsilon)I \preceq \sum_i s_i v_i v_i^T \preceq (1 + \epsilon)I$
\n• $\text{supp}(s) \le 4n/\epsilon^2$.

 \bullet \rightarrow

 $A = s_{e_1} v_{e_1} v_{e_1}^T$

 $A = s_{e_1} v_{e_1} v_{e_1}^T + s_{e_2} v_{e_2} v_{e_2}^T$

 $A = s_{e_1}v_{e_1}v_{e_1}^T + s_{e_2}v_{e_2}v_{e_2}^T + s_{e_3}v_{e_3}v_{e_3}^T$

 $A = s_{e_1} v_{e_1} v_{e_1}^T + s_{e_2} v_{e_2} v_{e_2}^T + s_{e_3} v_{e_3} v_{e_3}^T$

What happens when you add a vector?

Interlacing (Cauchy, 1800s)

The Characteristic Polynomial

Characteristic Polynomial:

$$
p_A(x) = \det(xI - A)
$$

$$
p_A(x) = \prod_i (x - \lambda_i)
$$

where $\lambda_1, ..., \lambda_n$ = eigs(A).

Proof of Interlacing I

Proof of Interlacing II

Proof of Interlacing III

-
- - -
-
-
-

The Characteristic Polynomial

Characteristic Polynomial:

$$
p_A(x) = \det(xI - A)
$$

Matrix-Determinant Lemma:

$$
p_{A+vv} = p_A \left(1 + \sum_i \frac{\langle v, u_i \rangle^2}{\lambda_i - x} \right)
$$

The Characteristic Polynomial

Characteristic Polynomial:

$$
p_A(x) = \det(xI - A)
$$

Matrix-Determinant L
$$
\underbrace{\left(\frac{\lambda(A + vv^T)}{\text{are zeros of this.}}\right)}_{P_A + vv^T} = p_A \left(1 + \sum_i \frac{\langle v, u_i \rangle^2}{\lambda_i - x}\right)
$$

Physical model of interlacing

Physical model of interlacing Barriers repel eigs. $\langle v, u_n \rangle^2$ Inverse law of repulsion $+\langle v, u_2 \rangle^2$ $+\langle v, u_1 \rangle^2$ λ 3 $+\sum_i\frac{\langle v,u_i\rangle^2}{\lambda_i-x}$ λ_2 \bigcirc gravity

Physical model of interlacing

Barriers repel eigs.

 λ 3 $\lambda(A + vv^T)$

Ex1: All weight on u_1

Ex1: All weight on u_1

Ex2: Equal weight on u_1 , u_2 λ_n $+1/2$ $+1/2$ λ_3 $\lambda(A)$ λ 2

Ex2: Equal weight on u_1 , u_2 λ_n $+1/2$ $+1/2$ λ_3 $\lambda(A + v v^T)$
Ex2: Equal weight on u_1 , u_2 λ_n $+1/2$ $+1/2$ λ_3 $\lambda(A + v v^T)$

Ex3: Equal weight on all $u_1, u_2, ... u_n$

Ex3: Equal weight on all $u_1, u_2, ... u_n$

Adding a balanced vector

Consider a random vector
\nIf
$$
\sum_{e} v_e v_e^T = I \sum_{e} \langle v_e, u_i \rangle^2 = 1.
$$

thus a random vector has the same expected projection in *every* direction *i* **:**

$$
\mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m
$$

$$
A^{(0)} = 0
$$

$$
p^{(0)} = x^n
$$

$$
\mathbb{E}_{e}(v_{e}, u_{i})^{2} = 1/m
$$

$$
\overbrace{\hspace{1.5cm}}
$$

$$
A^{(0)} = 0
$$

$$
p^{(0)} = x^n
$$

$$
\mathbb{E}_{e}(v_{e}, u_{i})^{2} = 1/m
$$

$$
A^{(1)} = \nu \nu^T
$$

$$
\mathbb{E}p^{(1)} = p^{(0)} - \frac{1}{m}\frac{\partial}{\partial x}p^{(0)}
$$

$$
\prod_{i=1}^{n} (v_e, u_i)^2 = 1/m
$$

\n
$$
A^{(1)} = v v^T
$$

\n
$$
E p^{(1)} = p^{(0)} - \frac{1}{m} \frac{\partial}{\partial x} p^{(0)} = x^n - \frac{n}{m} x^{n-1}
$$

$$
\mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m
$$
\n
$$
A^{(2)} = A^{(1)} + vv^T
$$
\n
$$
\mathbb{E}p^{(2)} = \left(1 - \frac{1}{m} \frac{\partial}{\partial x}\right) p^{(1)} = \left(1 - \frac{1}{m} \frac{\partial}{\partial x}\right)^2 x^n
$$

$$
\mathbb{E}_{P}(3) = \left(1 - \frac{1}{m} \frac{\partial}{\partial x}\right)^{3} x^{n}
$$
\n
$$
\mathbb{E}_{P}(3) = \left(1 - \frac{1}{m} \frac{\partial}{\partial x}\right)^{3} x^{n}
$$

Ideal proof

$$
\mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m
$$

-\sqrt{1-\frac{1}{\text{roots}} \cdot \mathbb{E}_p^{(k)}}

$$
\mathbb{E}_p^{(k)} = \left(1 - \frac{1}{m} \frac{\partial}{\partial x}\right)^k x^n
$$

Ideal proof

$$
\mathbb{E}p^{(k)} = \left(1 - \frac{1}{m} \frac{\partial}{\partial x}\right)^k x^n
$$

Ideal proof

$$
\mathbb{E}_{e}\langle v_{e}, u_{i} \rangle^{2} = 1/m
$$
\n
$$
\mathbb{E}_{e} \langle v_{e}, u_{i} \rangle^{2} = 1/m
$$
\n
$$
\mathbb{E}_{e} \langle v_{e}, u_{i} \rangle^{2} = 1/m
$$
\n
$$
\mathbb{E}_{e} \langle v_{e}, u_{i} \rangle^{2} = 1/m
$$

$$
\mathbb{E}p^{(k)} = \left(1 - \frac{1}{m}\frac{\partial}{\partial x}\right)^k x^n
$$

This is not real

Problem: $roots(\mathbb{E}p^{(k)}) \neq \mathbb{E}roots(p^{(k)})$

 \bullet \bullet \bullet \sim

$$
\mathbb{E}p^{(k)} = \left(1 - \frac{1}{m} \frac{\partial}{\partial x}\right)^k x^n
$$

End Result [Batson-Spielman-S'09]

Spectral Sparsification Theorem:

Given
$$
\sum_{i \le m} v_i v_i^T = I_n
$$
 there are $s_i \ge 0$ with:
\n• $(1 - \epsilon)I \preceq \sum_i s_i v_i v_i^T \preceq (1 + \epsilon)I$
\n• $\text{supp}(s) \le 4n/\epsilon^2$.

Actual Proof (for 6n vectors, 13-approx)

Steady progress by moving barriers $A = \varnothing$ - n n

Step i+1

 $A^{(i)}, A^{(i+1)}$

Step i+1

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}$

 $A^{(i)}$, $A^{(i+1)}$, $A^{(i+2)}$, $A^{(i+3)}$

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \ldots$

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \ldots$

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \ldots$

Step 6n

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \ldots, A^{(6n)}$

Step 6n

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \ldots, A^{(6n)}$

Problem

need to show that an appropriate $v_{e}v_{e}^{T}$
always exists.

Problem

Hope: vectors are well-spread: there must be one which is well-behaved.

Bad: Accumulation of Eigenvalues

Bad: Accumulation of Eigenvalues

 $+{\bf v} {\bf v}^T \quad {\bf v} \in \{v_e\}$

 \longrightarrow

Bad: Accumulation of Eigenvalues

is not strong enough to do the induction.

The Upper Barrier $\Phi^u(A) = \text{Tr}(uI - A)^{-1} = \sum_i \frac{1}{u - \lambda_i}$

$\Phi^u(A) \leq 1 \Rightarrow \lambda_{\max}(A) \ll u$

$\Phi_{\ell}(A) \leq 1 \Rightarrow \lambda_{\text{min}}(A) \gg \ell$

$$
\Phi^n(\varnothing) = \text{Tr}(nI)^{-1} = 1
$$

 $\Phi_{-n}(\varnothing) = Tr(nI)^{-1} = 1.$

 $\Phi^u(A) \leq 1$

 $\Phi_{\ell}(A) \leq 1.$

$\Phi^u(A) \leq 1$ $\Phi_{\ell}(A) \leq 1.$

 $\Phi^u(A) \leq 1$ $\Phi_{\ell}(A) \leq 1.$

 $\Phi^u(A) \leq 1$ $\Phi_{\ell}(A) \leq 1.$

 $\Phi^u(A) \leq 1$ $\Phi_{\ell}(A) \leq 1.$

Step 6n

Step 6n

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \ldots, A^{(6n)}$

Goal

Lemma.

can always choose
$$
+svv^T
$$
 so $\Phi^u(A) \le 1$
that *both* potentials do not increase. $\Phi_{\ell}(A) < 1$

The Right Question

"Which vector should we add?"

The Right Question

"Which vector should we add?"

"Given a vector, how much of it can we add?"

Upper Barrier Update *Add* & *set* $+2$

Upper Barrier Update

\n
$$
+ \text{sw}^T \text{ and } \text{sw
$$

Upper Barrier Update\n
$$
\begin{aligned}\n&\text{Add } s\text{vv}^T \&\text{set } u' \leftarrow u + 2. \\
\Phi^{u'}(A + s\text{vv}^T) \\
&= \text{Tr}(u'I - A - s\text{vv}^T)^{-1} \\
&= \Phi^{u'}(A) + \frac{\text{v}^T(u'I - A)^{-2}\text{v}}{1/s - \text{v}^T(u'I - A)^{-1}\text{v}} \\
&\text{want } \leq \Phi^{u}(A).\n\end{aligned}
$$

Upper feasibility condition

\n
$$
\begin{array}{c}\n\text{Rearranging:} \\
\Phi^{u'}(A + s v v^T) \leq \Phi^{u}(A) \\
\iff \\
\frac{1}{s} \geq v^T \left(\frac{(u'I - A)^{-2}}{\Phi^{u}(A) - \Phi^{u'}(A)} + (u'I - A)^{-1} \right) v\n\end{array}
$$

Chapter feasibility condition

\nRearranging:

\n
$$
\Phi^{u'}(A + s\mathbf{v}\mathbf{v}^T) \leq \Phi^u(A)
$$
\n
$$
\Leftrightarrow
$$
\n
$$
\frac{1}{s} \geq \mathbf{v}^T \left(\frac{(u'I - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + (u'I - A)^{-1} \right) \mathbf{v}
$$
\n
$$
\frac{1}{s} \geq UA \bullet \mathbf{v}\mathbf{v}^T
$$
\nExample 1.1

Goal

Show that we can always add some vector while respecting *both* barriers.

Both Barriers

Then, can squeeze scaling factor in between:

$$
U_A \bullet \mathbf{v}\mathbf{v}^T \leq \tfrac{1}{s} \leq L_A \bullet \mathbf{v}\mathbf{v}^T
$$

$$
Bounding Tr(U_A)
$$
\n
$$
Tr(u'I - A)^{-2}
$$
\n
$$
Tr(u'I - A)^{-2}
$$
\n
$$
\Phi^{u}(A) - \Phi^{u'}(A) + Tr(u'I - A)^{-1}
$$

$$
\begin{array}{c}\n\text{Boundary Tr}(U_A) \\
\hline\n\hline\n\text{Tr}(u'I - A)^{-2} \\
\hline\n\varphi^u(A) - \varphi^{u'}(A)\n\end{array}
$$

$$
\begin{array}{c}\n\text{Bounding }\mathsf{Tr}(\mathbf{U}_{\mathbf{A}}) \\
\hline\n-\text{Tr}(u^{\prime}I - A)^{-2} \\
\hline\n\Phi^{u}(A) - \Phi^{u^{\prime}}(A)\n\end{array}
$$

$(Recall \Phi^u(A) = Tr(uI - A)^{-1}.)$

Taking Averages\n
$$
\boxed{\frac{Goal}{d\mathbf{v}, U_A \bullet \mathbf{v}\mathbf{v}^T \leq L_A \bullet \mathbf{v}\mathbf{v}^T}}
$$
\n
$$
\boxed{\frac{1}{d\mathbf{v}, U_A \bullet \mathbf{v}\mathbf{v}^T \leq L_A \bullet \mathbf{v}\mathbf{v}^T}}
$$
\n
$$
\boxed{\frac{1}{d\mathbf{v}\in \{v_e\}}} \quad U_A \bullet \mathbf{v}\mathbf{v}^T \leq \frac{1}{\delta_u} + 1. \quad \boxed{\frac{1}{d\mathbf{v}\in \{v_e\}}}
$$

Taking Averages

Taking Averages\n
$$
\boxed{\exists \mathbf{v}, U_A \bullet \mathbf{v}\mathbf{v}^T \leq L_A \bullet \mathbf{v}\mathbf{v}^T}
$$
\n
$$
\begin{array}{c}\n\boxed{\exists \mathbf{v}, U_A \bullet \mathbf{v}\mathbf{v}^T \leq L_A \bullet \mathbf{v}\mathbf{v}^T} \\
\boxed{\vdots \\
\boxed{\vdots} \\
$$

Taking Averages\n
$$
\boxed{\exists \mathbf{v}, U_A \bullet \mathbf{v} \mathbf{v}^T \leq L_A \bullet \mathbf{v} \mathbf{v}^T}
$$
\n
$$
\begin{array}{c}\n\vdots \\
\downarrow \quad \searrow \\
\down
$$

Taking Averages =3/2 2 2 1/3

Step i+1

$\Phi^u(A) \leq 1$ $\Phi_{\ell}(A) \leq 1.$

 $\Phi^u(A) \leq 1$ $\Phi_{\ell}(A) \leq 1.$

 $\Phi^u(A) \leq 1$ $\Phi_{\ell}(A) \leq 1.$

 $\Phi^u(A) \leq 1$ $\Phi_{\ell}(A) \leq 1.$

Step 6n

Step 6n

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \ldots, A^{(6n)}$

Done!

Spectral Sparsification Theorem:

Given
$$
\sum_{i \le m} v_i v_i^T = I_n
$$
 there are $s_i \ge 0$ with:
\n• $I \preceq \sum_i s_i v_i v_i^T \preceq 13 \cdot I$
\n• $\text{supp}(s) \le 6n$.

Nearly Optimal bound

Fixing dn steps and tightening parameters gives $\sqrt{d} + 1$

$$
\kappa = \frac{(\sqrt{a+1})}{(\sqrt{d-1})^2}
$$

(zeros of Laguerre polynomials).

This is within a factor of 2 of the optimal Ramanujan Bound [LPS, Alon-Boppana].

Major Themes

- Electrical model of **interlacing** is useful
- Can use barrier potential to **iteratively** construct matrices with desired spectra
- Analysis of progress is **greedy / local**
- Requires **fractional weights** on vectors

Instead of directly reasoning about $\lambda_i(A)$, reason about $(zI - A)^{-1}$.

Open Questions

Fast algorithm currently $O(n^4)$

Optimization proof?

More applications

There are no weights here…

 $G=K_n$ **H** = random d-regular x (n/d)

And off by a factor of 2

Tomorrow

$2/\epsilon^2$ degree unweighted approximations for K_n "Ramanujan Graphs"

Tomorrow

$2/\epsilon^2$ degree unweighted approximations for K_n "Ramanujan Graphs"

