Graph Sparsification II: Rank one updates, Interlacing, and Barriers

Nikhil Srivastava

Simons Institute August 26, 2014

Previous Lecture

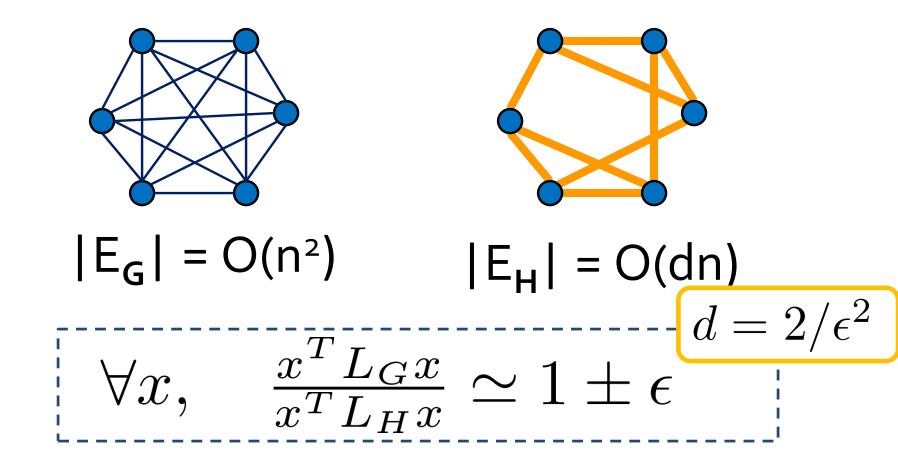
Definition. H = (V, F, u) is a κ –approximation of G = (V, E, w) if:

$$L_H \preccurlyeq L_G \preccurlyeq \kappa \cdot L_H$$

Theorem. Every G has a $(1 + \epsilon)$ –approximation H with $O(n \log n/\epsilon^2)$ edges. There is a nearly linear time algorithm which finds it.

There is no log(n) here...

 $G=K_n$ H = random d-regular x (n/d)



Proof: Approximating the Identity

Given
$$\sum_{i \leq m} v_i v_i^T = I_n$$
 there are $s_i \geq 0$ with:
• $(1 - \epsilon)I \leq \sum_i s_i v_i v_i^T \leq (1 + \epsilon)I$
• $\operatorname{supp}(s) \leq n \log n/\epsilon^2$

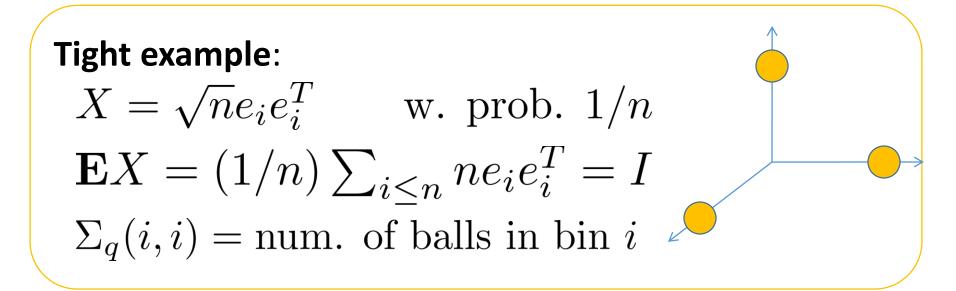
Suppose $X_1, ..., X_k$ are i.i.d. random $n \times n$ matrices with $0 \leq X_i \leq M \cdot I$ and $\mathbb{E}X_i = I$. Then

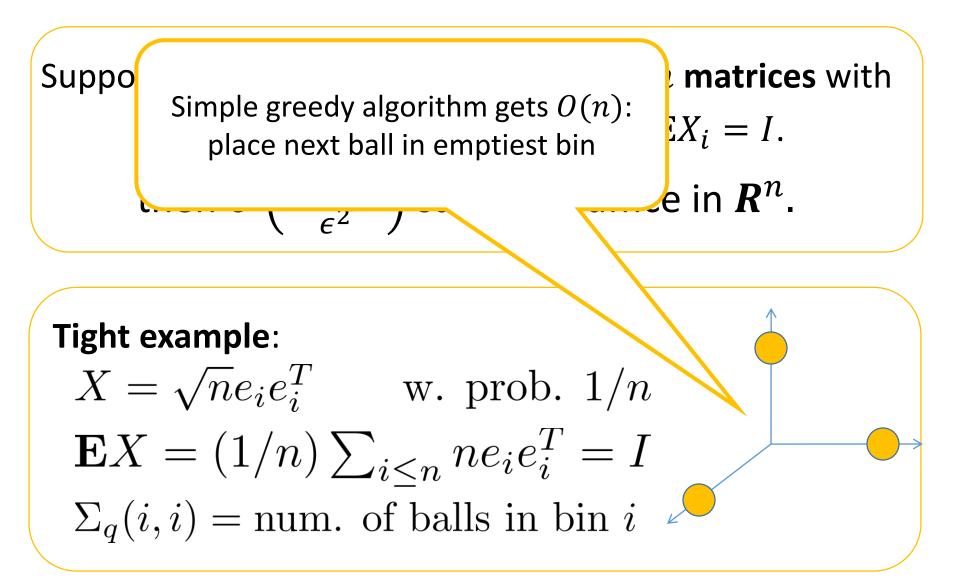
$$\mathbb{P}\left[\left\|\frac{1}{k}\sum_{i}X_{i}-I\right\| \geq \epsilon\right] \leq 2\boldsymbol{n}\exp\left(-\frac{k\epsilon^{2}}{4M}\right)$$

Shows $O\left(\frac{n \log n}{\epsilon^2}\right)$ samples suffice in \mathbb{R}^n .

Suppose $X_1, ..., X_k$ are i.i.d. random $n \times n$ matrices with $0 \leq X_i \leq n \cdot I$ and $\mathbb{E}X_i = I$. then $O\left(\frac{n \log n}{\epsilon^2}\right)$ samples suffice in \mathbb{R}^n .

Suppose $X_1, ..., X_k$ are i.i.d. random $n \times n$ matrices with $0 \leq X_i \leq n \cdot I$ and $\mathbb{E}X_i = I$. then $O\left(\frac{n \log n}{\epsilon^2}\right)$ samples suffice in \mathbb{R}^n .

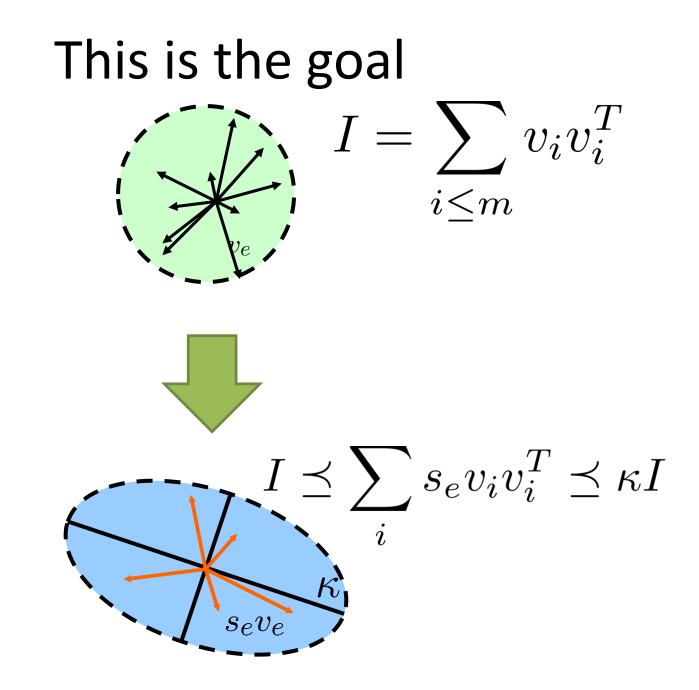


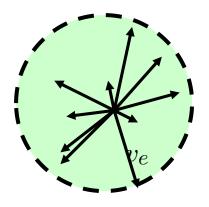


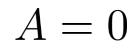
This Lecture [Batson-Spielman-S'09]

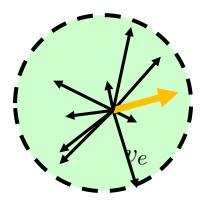
Spectral Sparsification Theorem:

Given
$$\sum_{i \leq m} v_i v_i^T = I_n$$
 there are $s_i \geq 0$ with:
• $(1 - \epsilon)I \preceq \sum_i s_i v_i v_i^T \preceq (1 + \epsilon)I$
• $\operatorname{supp}(s) \leq 4n/\epsilon^2$.
uses greedy approach.



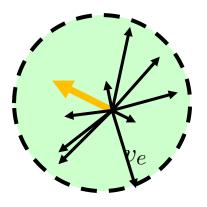




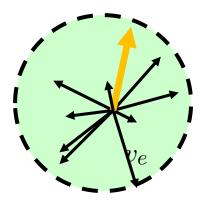


0

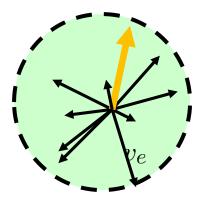
 $A = s_{e_1} v_{e_1} v_{e_1}^T$



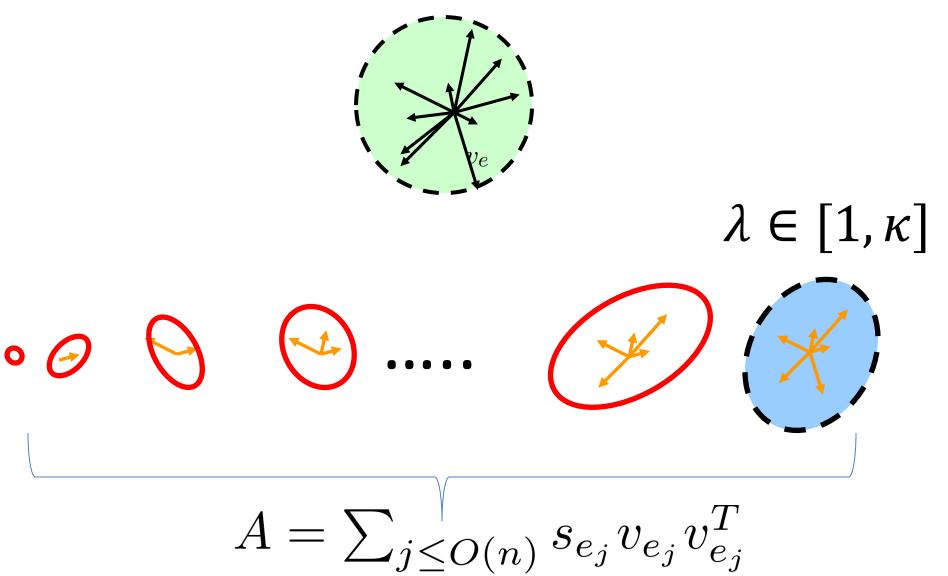
 $A = s_{e_1} v_{e_1} v_{e_1}^T + s_{e_2} v_{e_2} v_{e_2}^T$

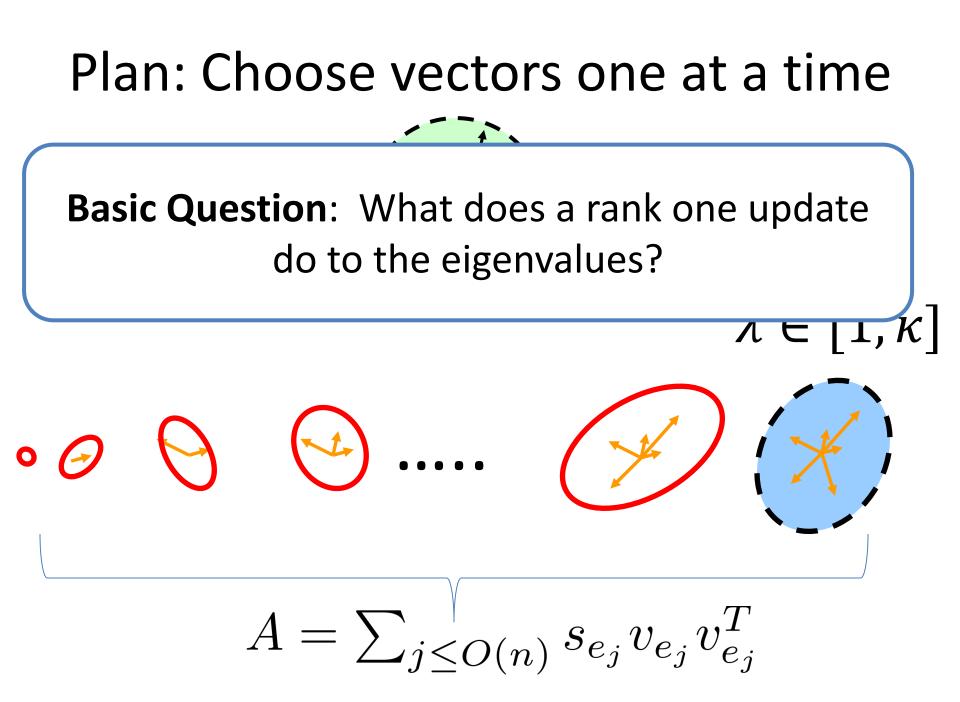


 $A = s_{e_1} v_{e_1} v_{e_1}^T + s_{e_2} v_{e_2} v_{e_2}^T + s_{e_3} v_{e_3} v_{e_3}^T$

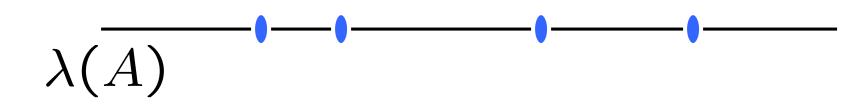


 $A = s_{e_1} v_{e_1} v_{e_1}^T + s_{e_2} v_{e_2} v_{e_2}^T + s_{e_3} v_{e_3} v_{e_3}^T$

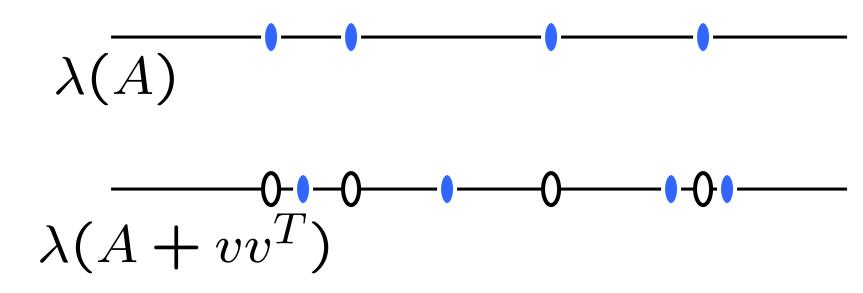




What happens when you add a vector?



Interlacing (Cauchy, 1800s)



The Characteristic Polynomial

Characteristic Polynomial:

$$p_A(x) = \det(xI - A)$$

$$p_A(x) = \prod_i (x - \lambda_i)$$

where $\lambda_1, \dots, \lambda_n = eigs(A)$.

Proof of Interlacing I

Proof of Interlacing II

Proof of Interlacing III

The Characteristic Polynomial

Characteristic Polynomial:

$$p_A(x) = \det(xI - A)$$

Matrix-Determinant Lemma:

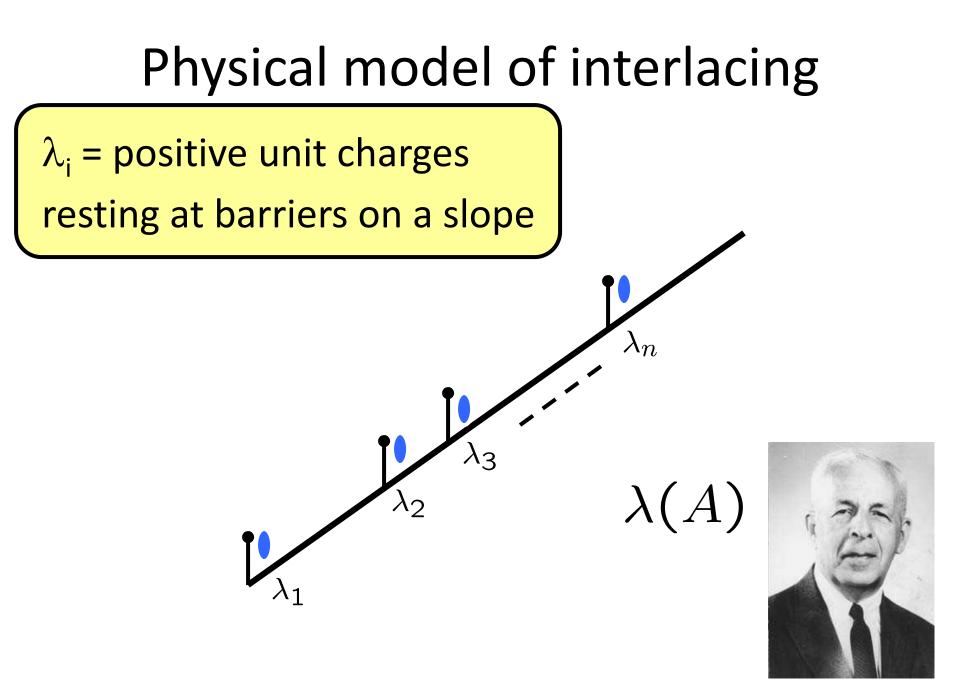
$$p_{A+vv^T} = p_A \left(1 + \sum_i \frac{\langle v, u_i \rangle^2}{\lambda_i - x} \right)$$

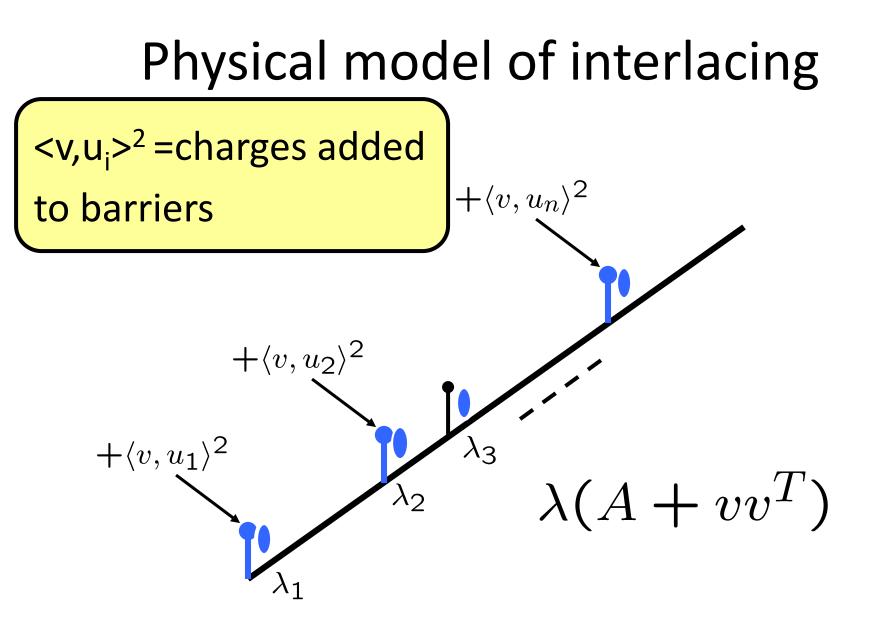
The Characteristic Polynomial

Characteristic Polynomial:

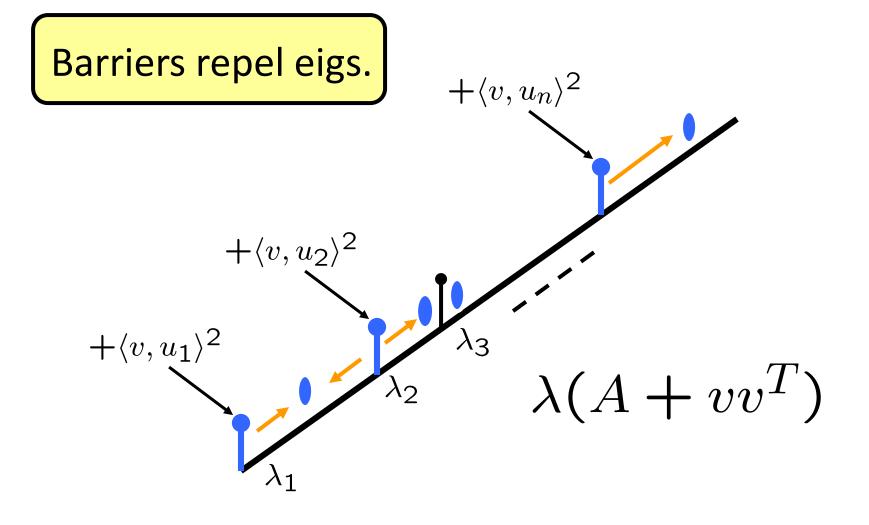
$$p_A(x) = \det(xI - A)$$

$$\lambda(A + vv^T)$$
are zeros of this.
$$p_{A+vv^T} = p_A \left(1 + \sum_i \frac{\langle v, u_i \rangle^2}{\lambda_i - x}\right)$$

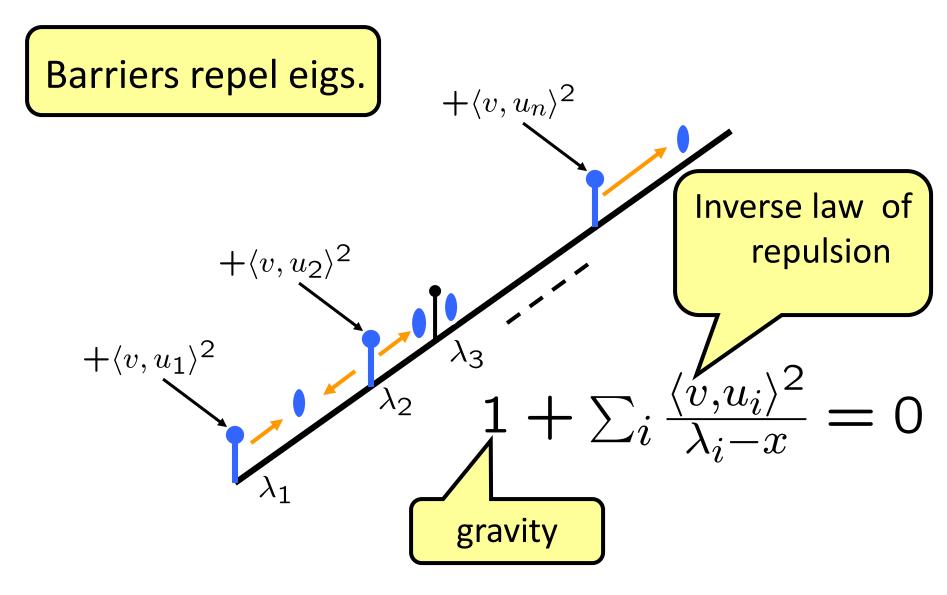




Physical model of interlacing



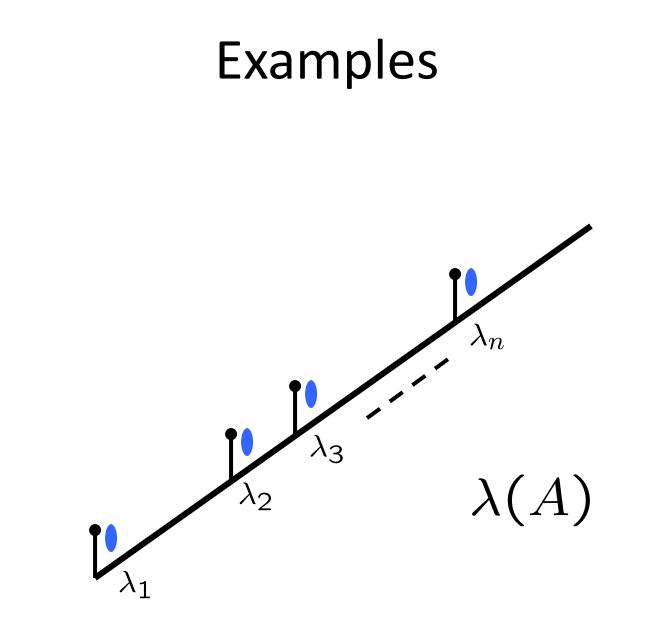
Physical model of interlacing



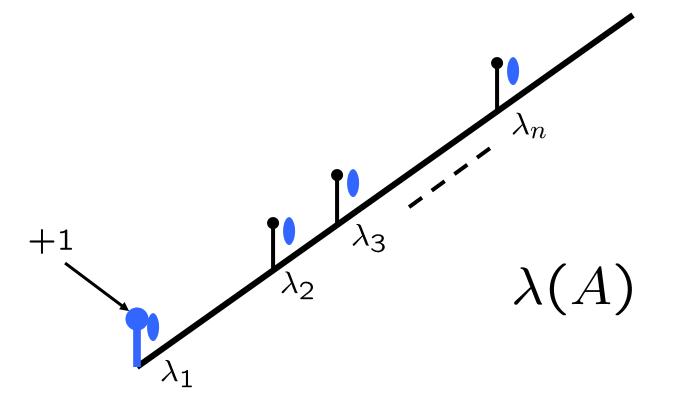
Physical model of interlacing

Barriers repel eigs.

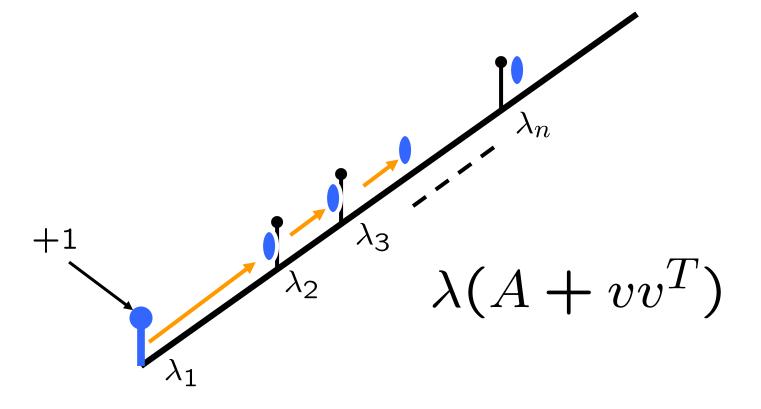
 λ_{3} $\lambda(A + vv^T)$

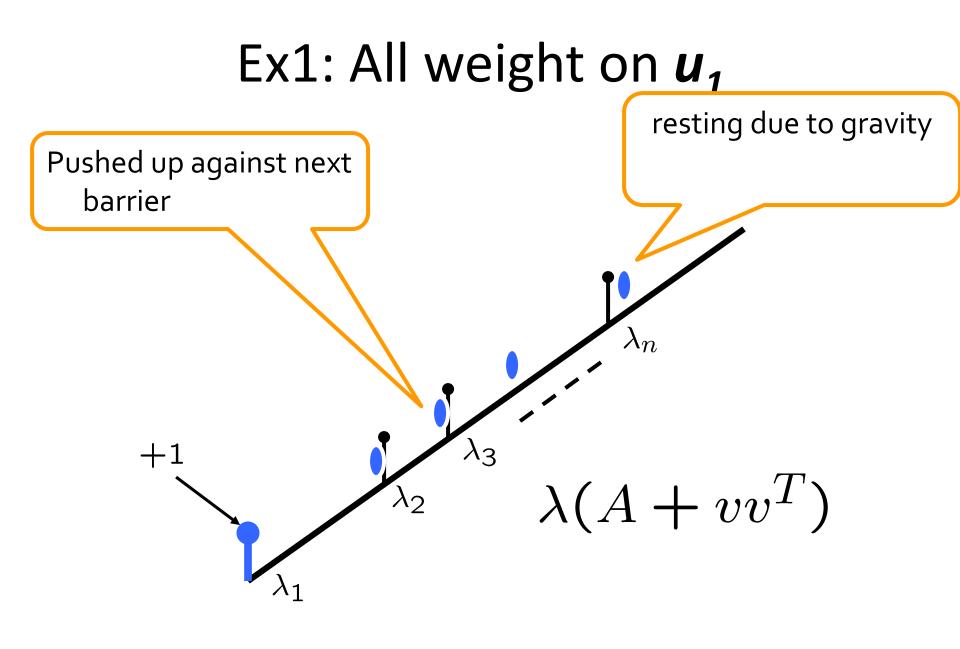


Ex1: All weight on **u**₁



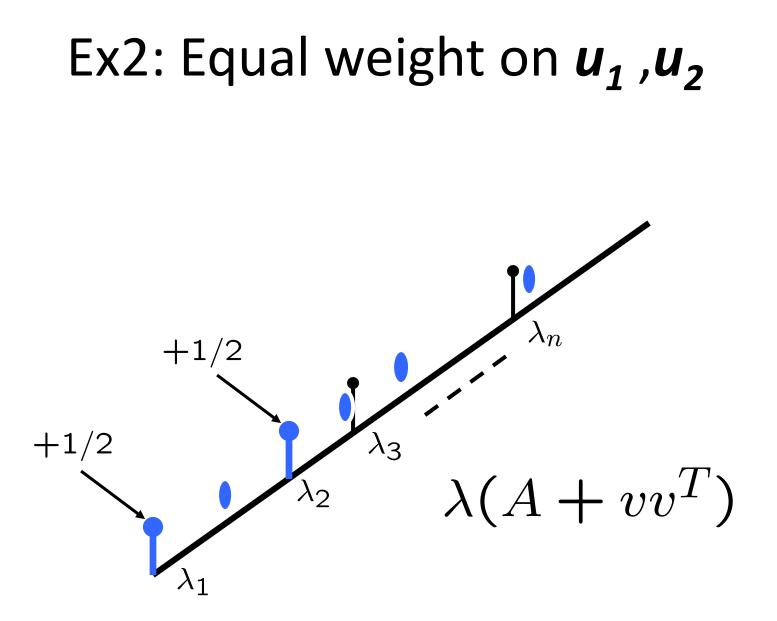
Ex1: All weight on **u**₁



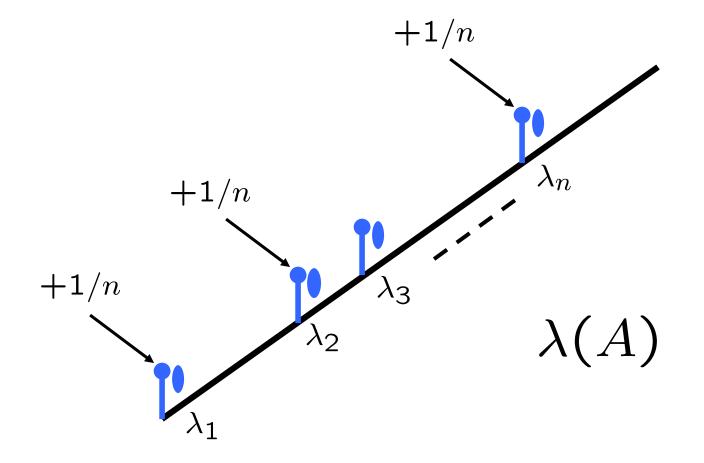


Ex2: Equal weight on u_1 , u_2 λ_n +1/2+1/2 λ_3 $\lambda(A)$ λ_2

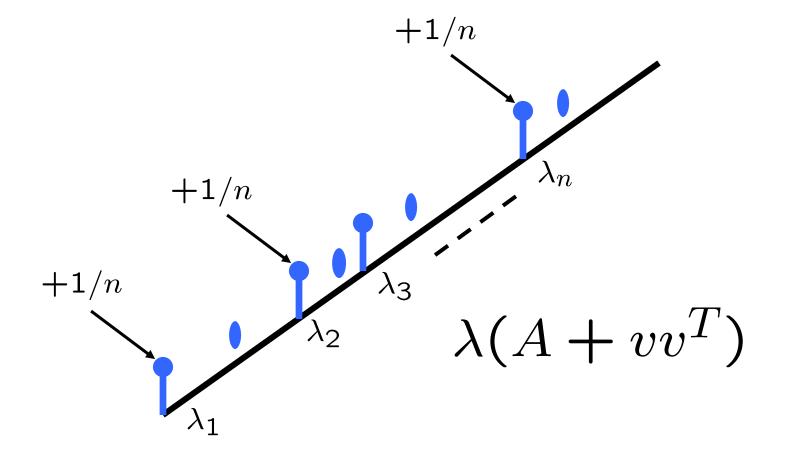
Ex2: Equal weight on u_1 , u_2 λ_n +1/2+1/2 λ_3 $\lambda(A + vv^T)$



Ex3: Equal weight on all **u**₁, **u**₂, ...**u**_n



Ex3: Equal weight on all **u**₁, **u**₂, ...**u**_n

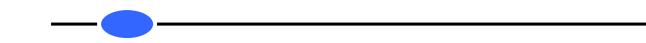


Adding a balanced vector $p_{A+vv^t} = p_A \left(1 + \sum_{i} \frac{\langle v, u_i \rangle^2}{\lambda_i - x} \right)$ $= p_A \left(1 + \sum_i \frac{1}{\lambda_i - x} \right)$ $= p_A - p'_A$

Consider a random vector
If
$$\sum_{e} v_e v_e^T = I$$
 (i) $\sum_{e} \langle v_e, u_i \rangle^2 = 1.$

thus a random vector has the same expected projection in *every* direction *i*:

$$\mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m$$



$$A^{(0)} = 0$$
$$p^{(0)} = x^n$$

$$\mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m$$

$$A^{(0)} = 0$$
$$p^{(0)} = x^n$$

$$\mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m$$

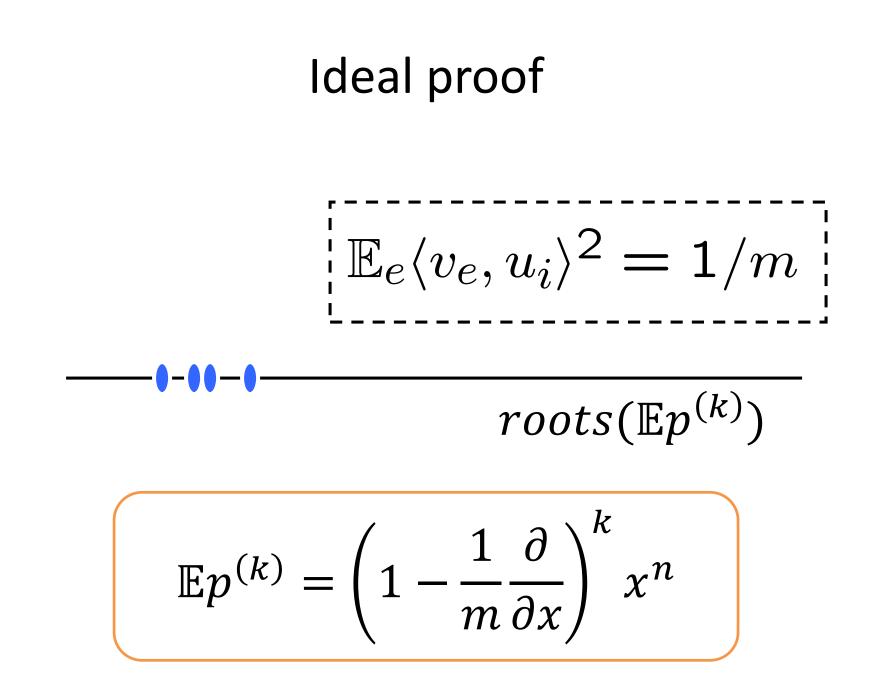
$$A^{(1)} = v v^T$$

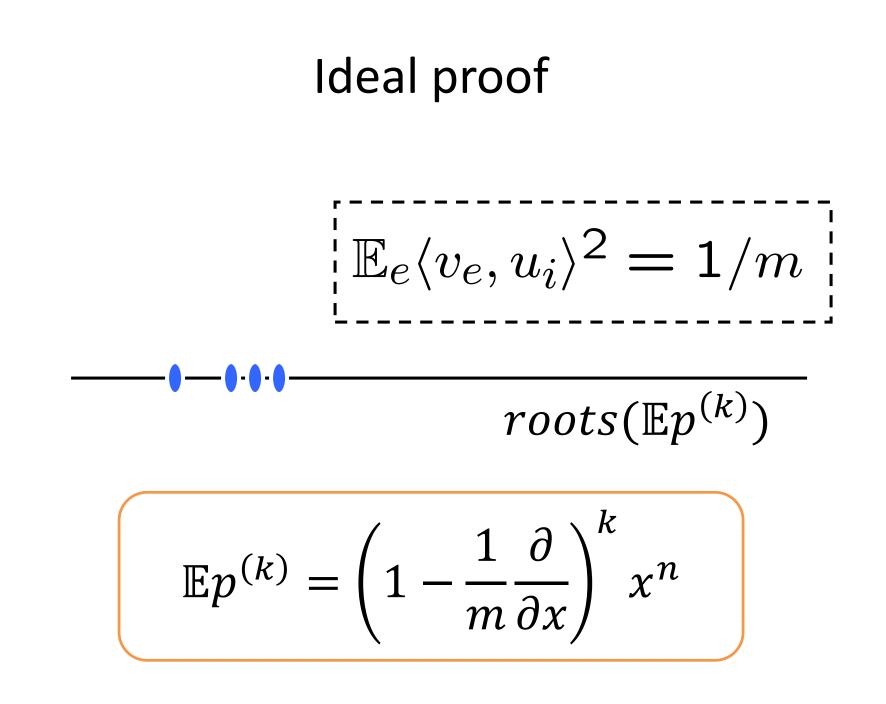
$$\mathbb{E}p^{(1)} = p^{(0)} - \frac{1}{m}\frac{\partial}{\partial x}p^{(0)}$$

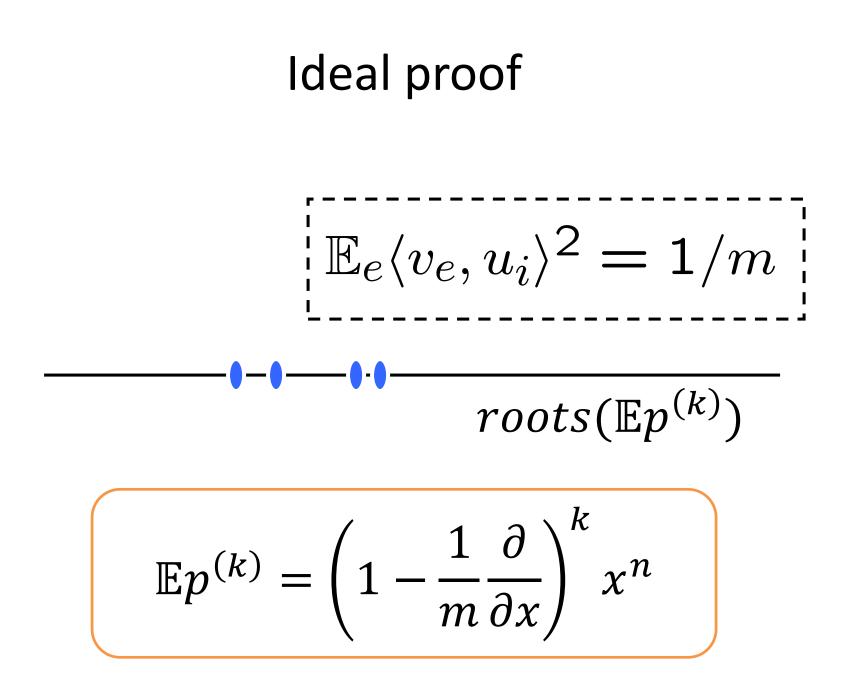
$$\begin{bmatrix} \mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m \end{bmatrix}$$
$$A^{(1)} = vv^T$$
$$\mathbb{E}p^{(1)} = p^{(0)} - \frac{1}{m} \frac{\partial}{\partial x} p^{(0)} = x^n - \frac{n}{m} x^{n-1}$$

$$\begin{bmatrix} \mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m \end{bmatrix}$$
$$A^{(2)} = A^{(1)} + vv^T$$
$$\mathbb{E}p^{(2)} = \left(1 - \frac{1}{m}\frac{\partial}{\partial x}\right)p^{(1)} = \left(1 - \frac{1}{m}\frac{\partial}{\partial x}\right)^2 x^n$$

$$\begin{bmatrix} \mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m \end{bmatrix}$$
$$A^{(3)} = A^{(2)} + vv^T$$
$$\mathbb{E}p^{(3)} = \left(1 - \frac{1}{m}\frac{\partial}{\partial x}\right)^3 x^n$$







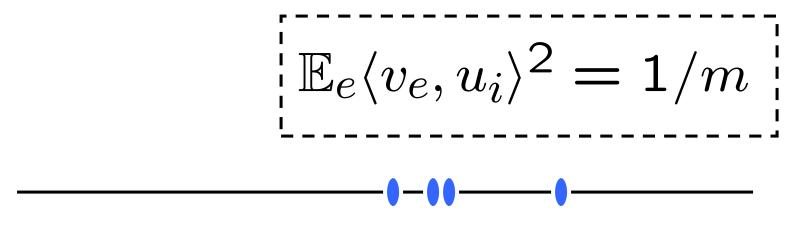
Ideal proof

$$\begin{bmatrix} \mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m \end{bmatrix}$$

$$roots(\mathbb{E}p^{(k)})$$

$$\mathbb{E}p^{(k)} = \left(1 - \frac{1}{m}\frac{\partial}{\partial x}\right)^k x^n$$

Ideal proof



........

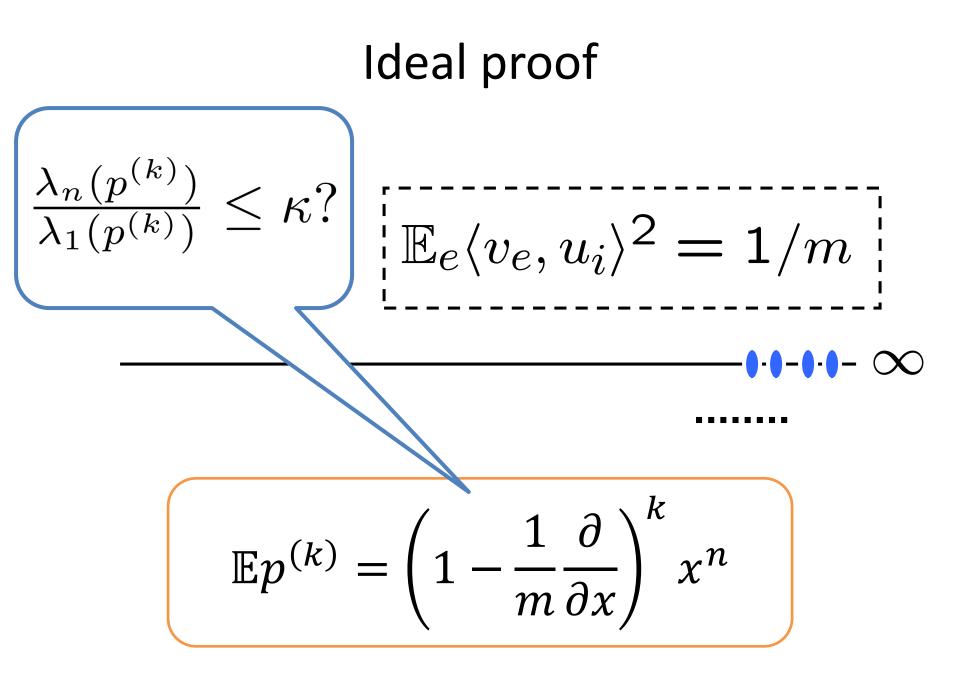
$$\mathbb{E}p^{(k)} = \left(1 - \frac{1}{m}\frac{\partial}{\partial x}\right)^k x^n$$

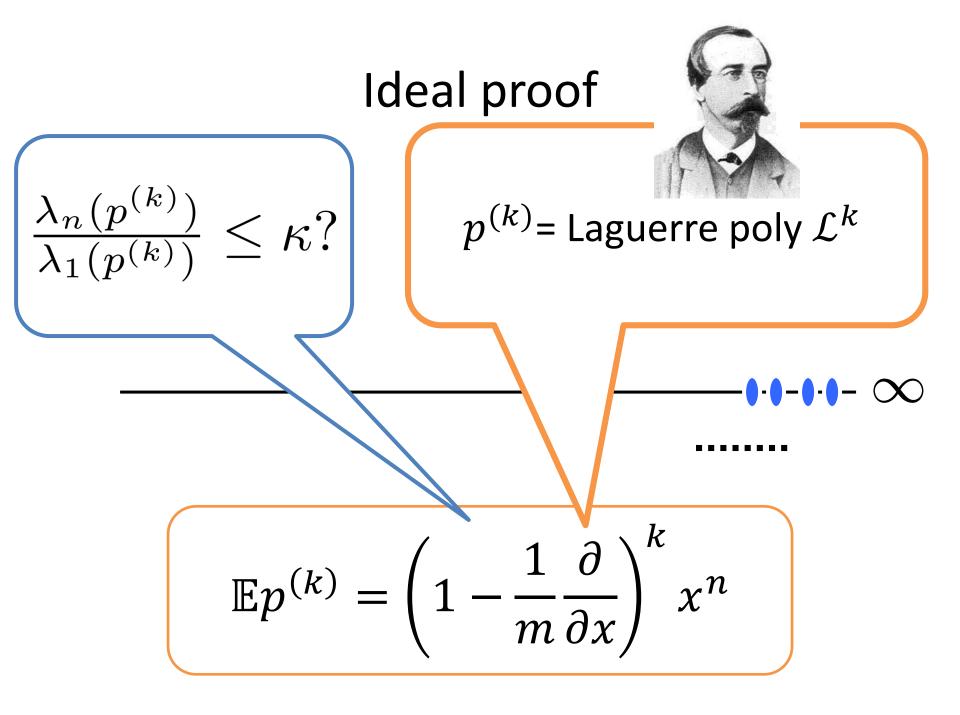
Ideal proof

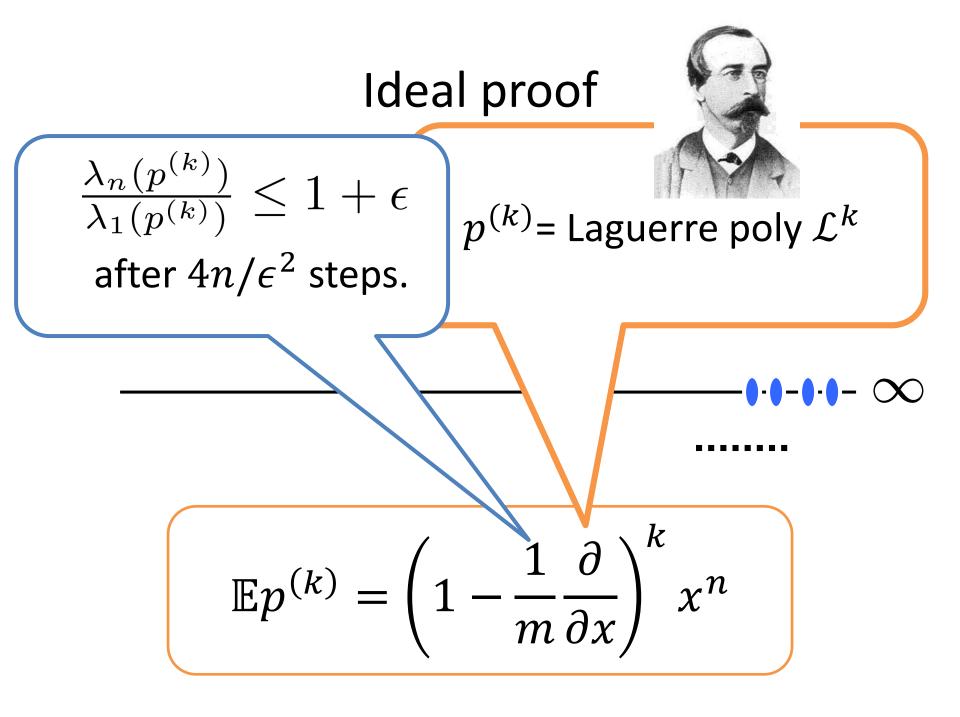
$$\begin{bmatrix} \mathbb{E}_e \langle v_e, u_i \rangle^2 = 1/m \end{bmatrix}$$

.......

$$\mathbb{E}p^{(k)} = \left(1 - \frac{1}{m}\frac{\partial}{\partial x}\right)^k x^n$$







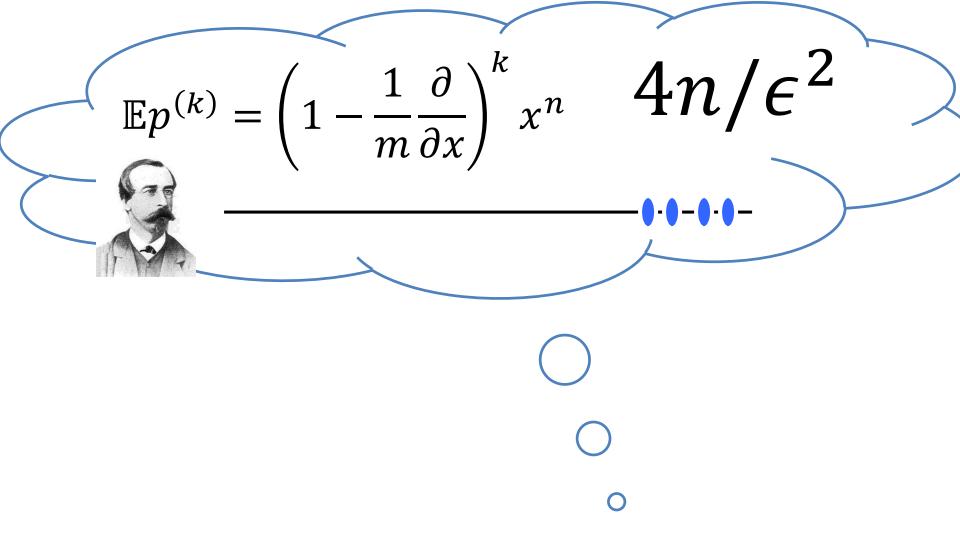
This is not real

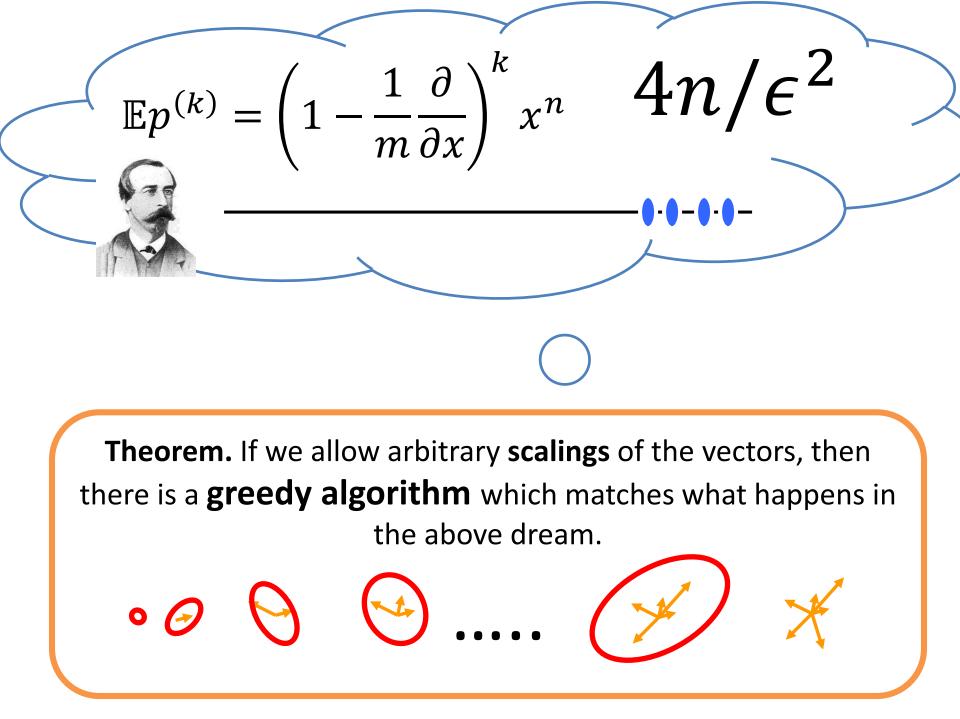
Problem: $roots(\mathbb{E}p^{(k)}) \neq \mathbb{E}roots(p^{(k)})$

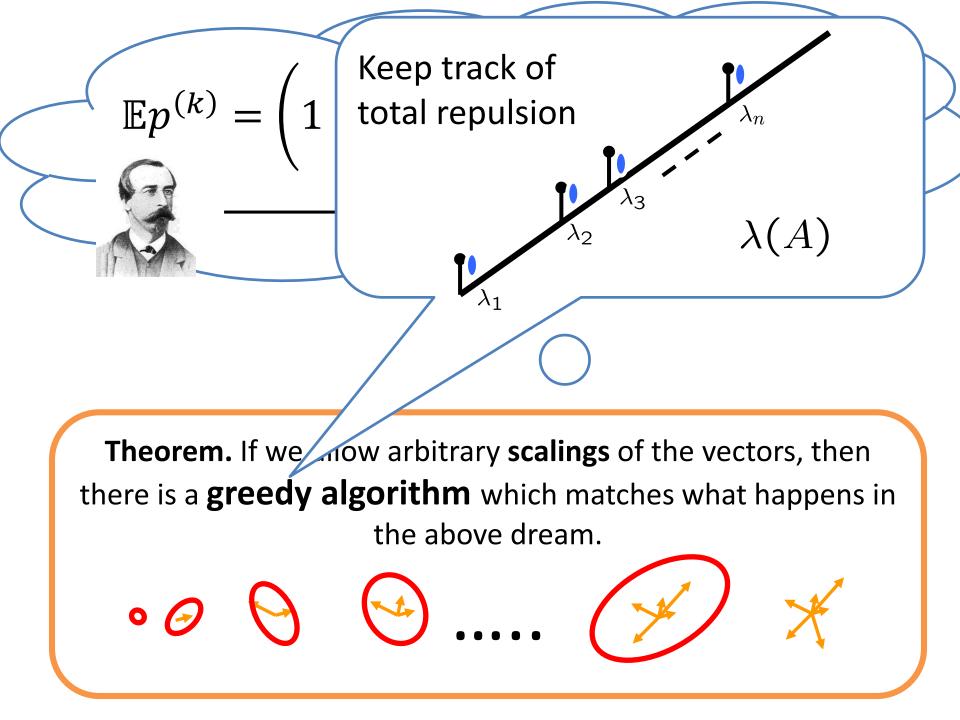
.......

••••=••= 🗙

$$\mathbb{E}p^{(k)} = \left(1 - \frac{1}{m}\frac{\partial}{\partial x}\right)^k x^n$$







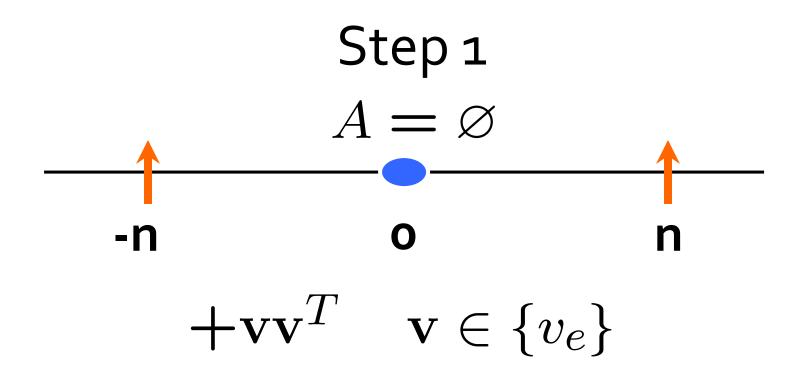
End Result [Batson-Spielman-S'09]

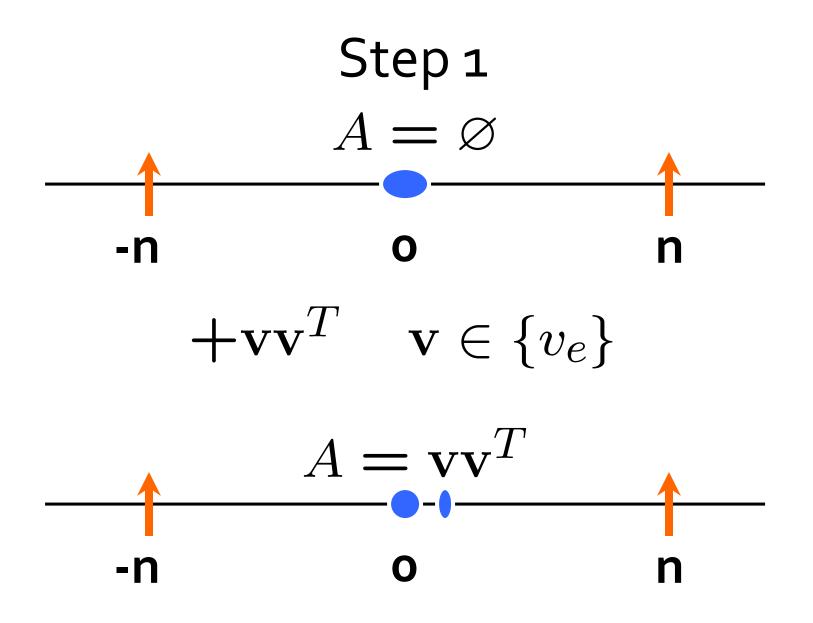
Spectral Sparsification Theorem:

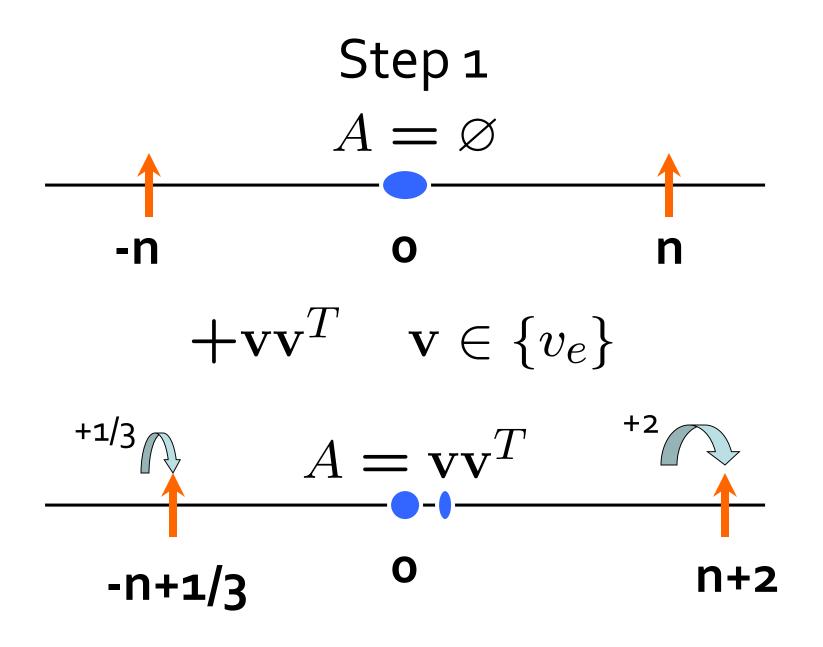
Given
$$\sum_{i \leq m} v_i v_i^T = I_n$$
 there are $s_i \geq 0$ with:
• $(1 - \epsilon)I \preceq \sum_i s_i v_i v_i^T \preceq (1 + \epsilon)I$
• $\operatorname{supp}(s) \leq 4n/\epsilon^2$.

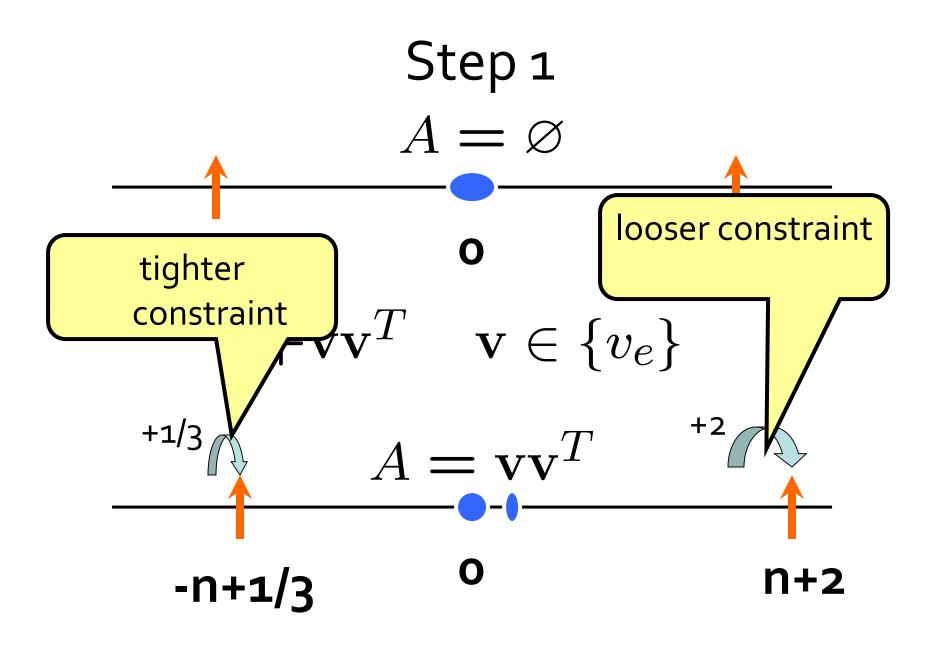
Actual Proof (for 6n vectors, 13-approx)

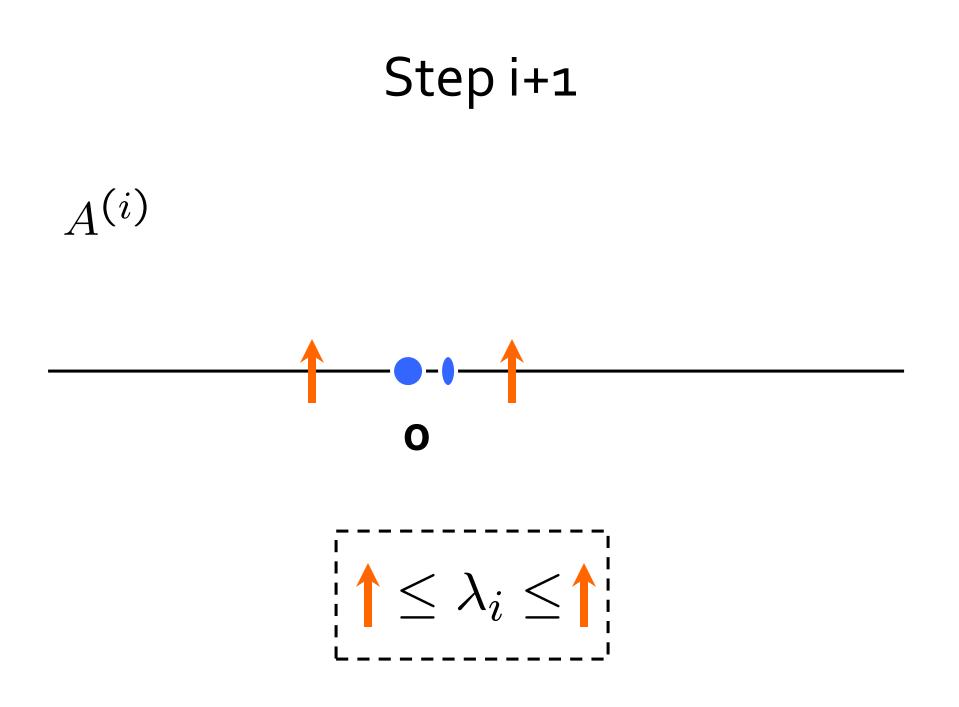
Steady progress by moving barriers $A = \varnothing$ -n o n

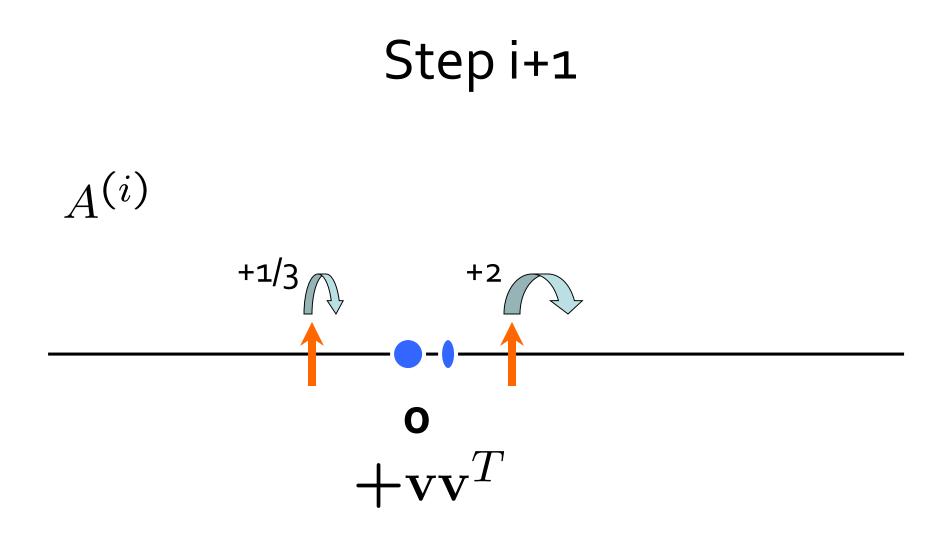






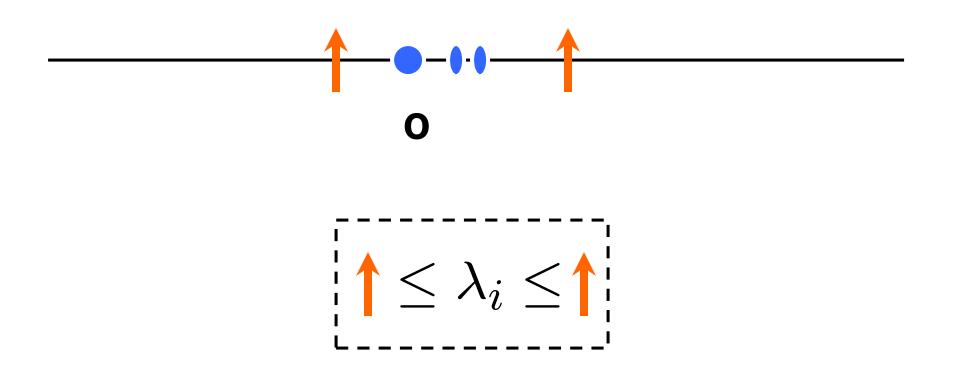


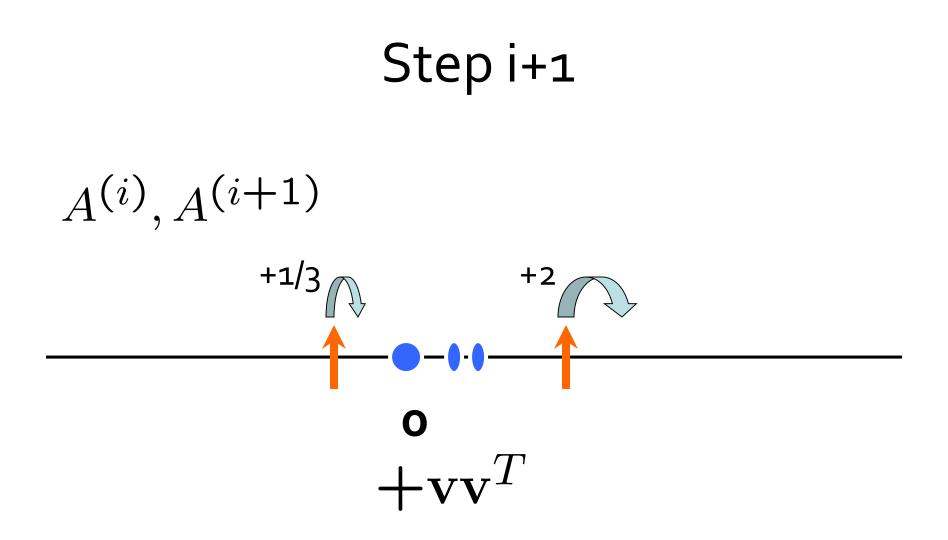




Step i+1

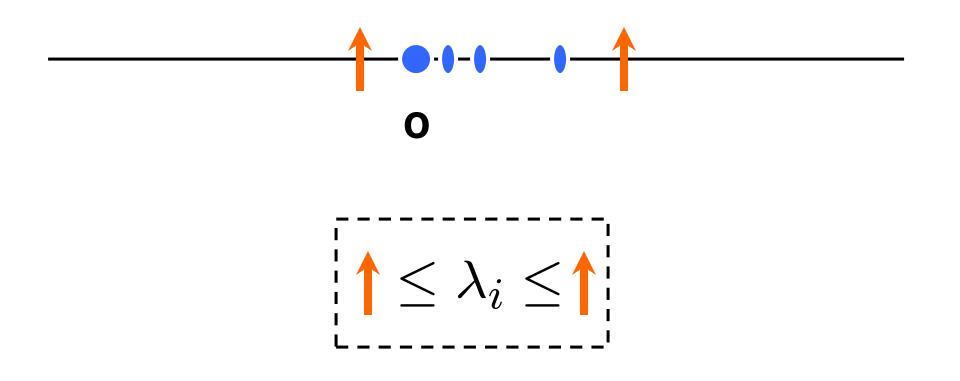
 $A^{(i)}, A^{(i+1)}$

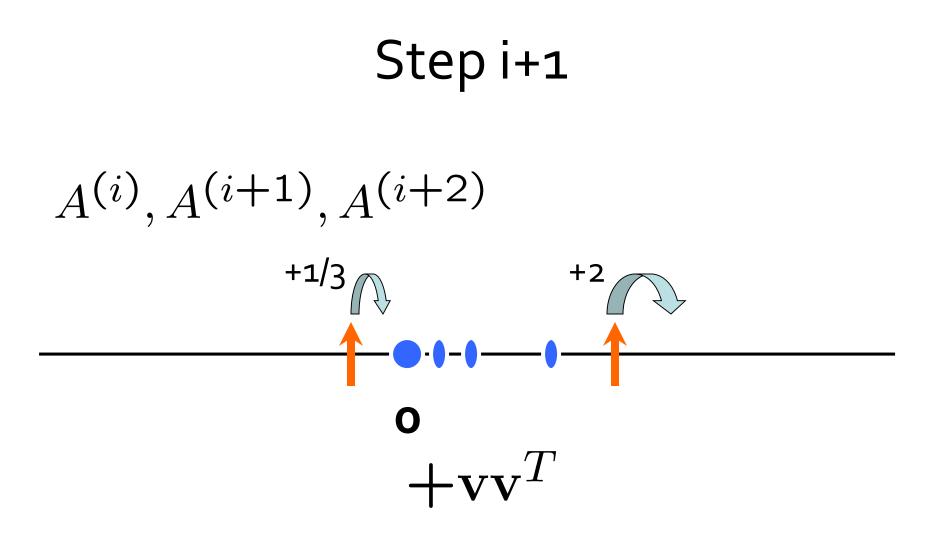




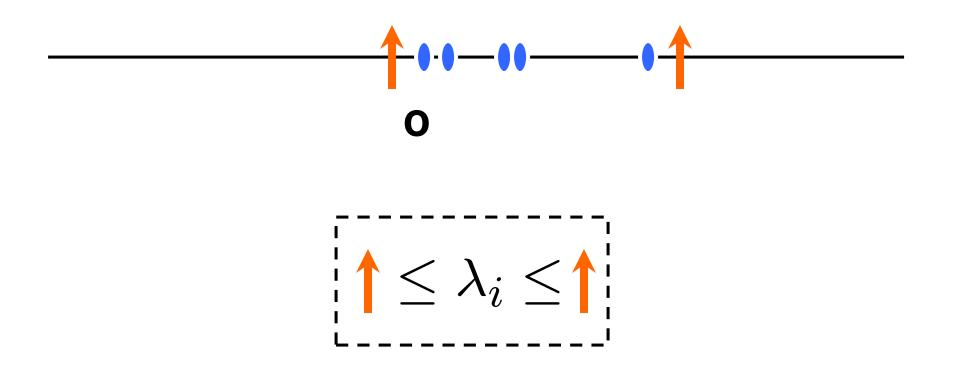
Step i+1

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}$

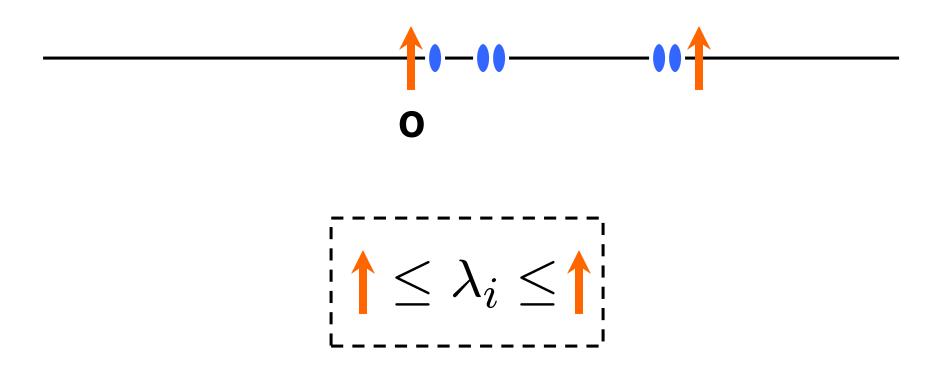




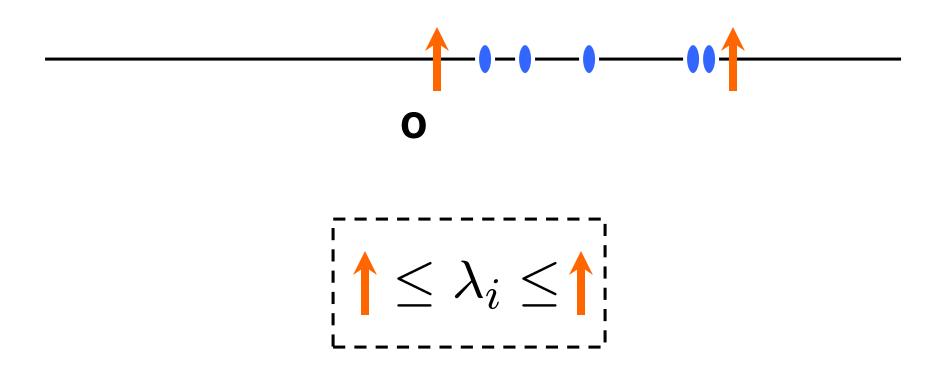
 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}$



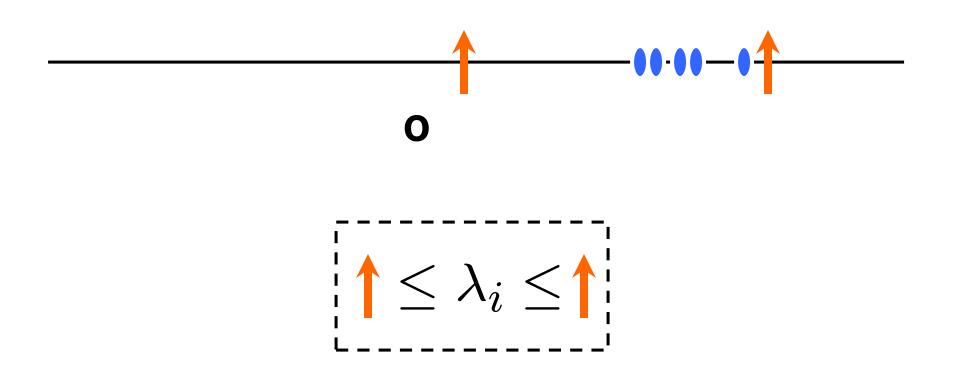
 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \dots$



 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \dots$

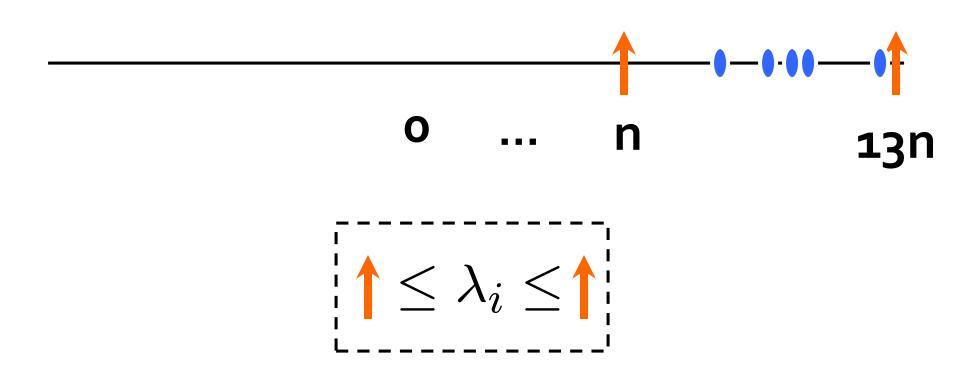


 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \dots$



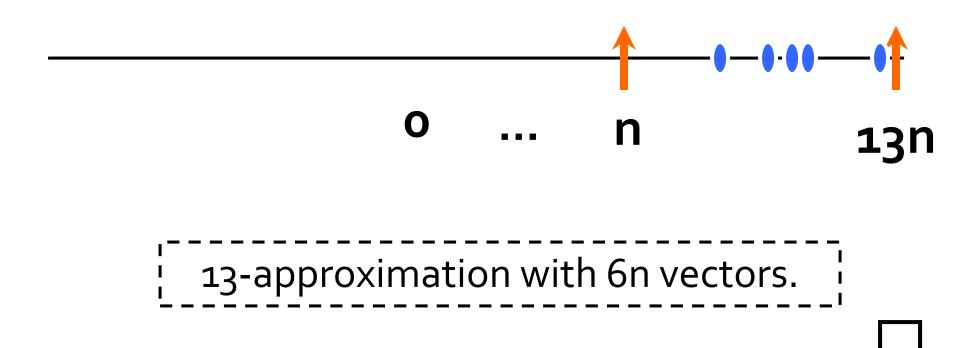
Step 6n

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \dots, A^{(6n)}$



Step 6n

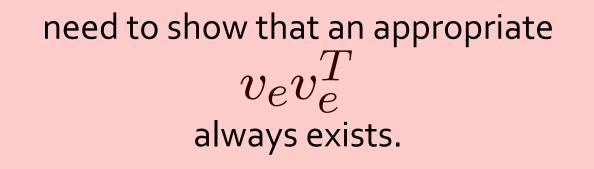
 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \dots, A^{(6n)}$



Problem

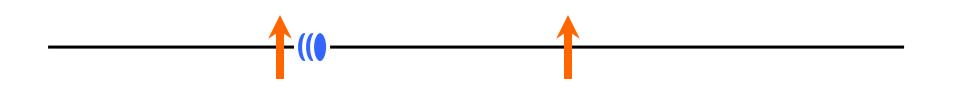
need to show that an appropriate $v_e v_e^T$ always exists.

Problem

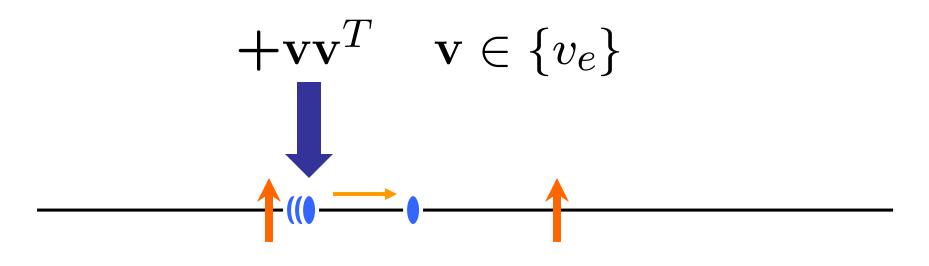


Hope: vectors are well-spread: there must be one which is well-behaved.

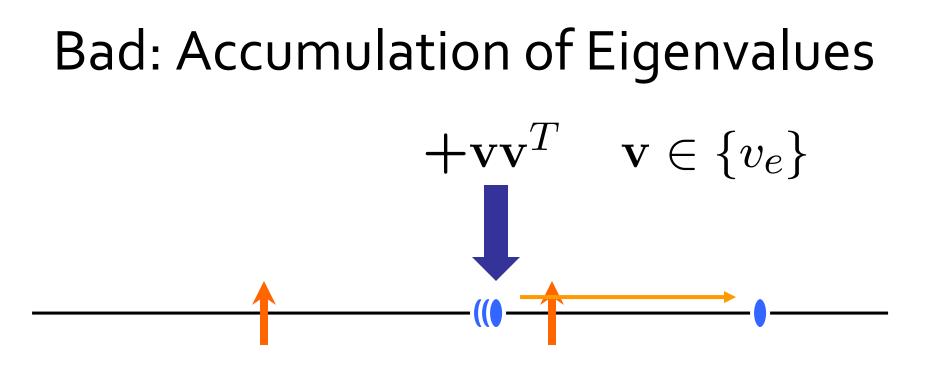
Bad: Accumulation of Eigenvalues

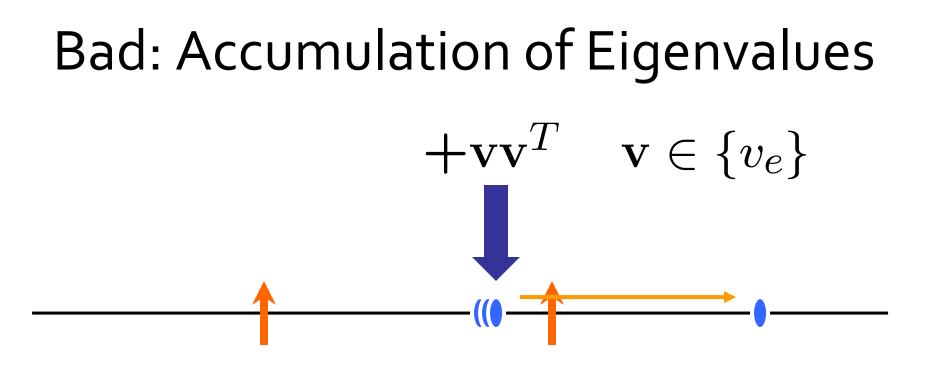


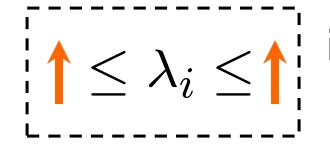
Bad: Accumulation of Eigenvalues



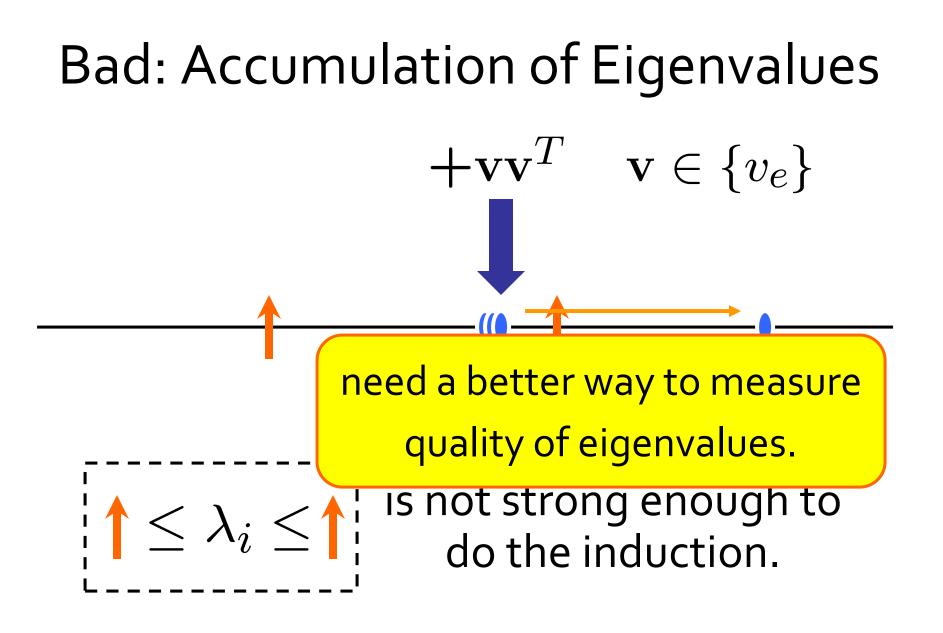
Bad: Accumulation of Eigenvalues



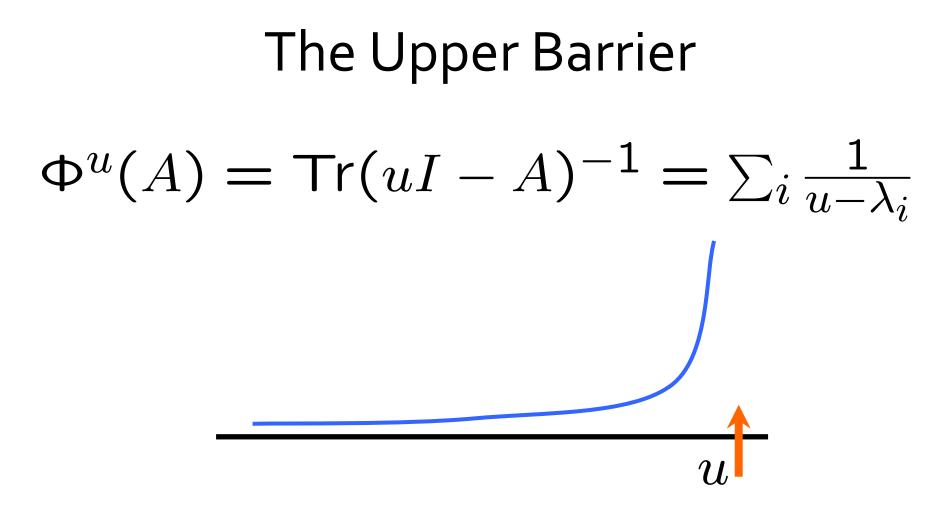




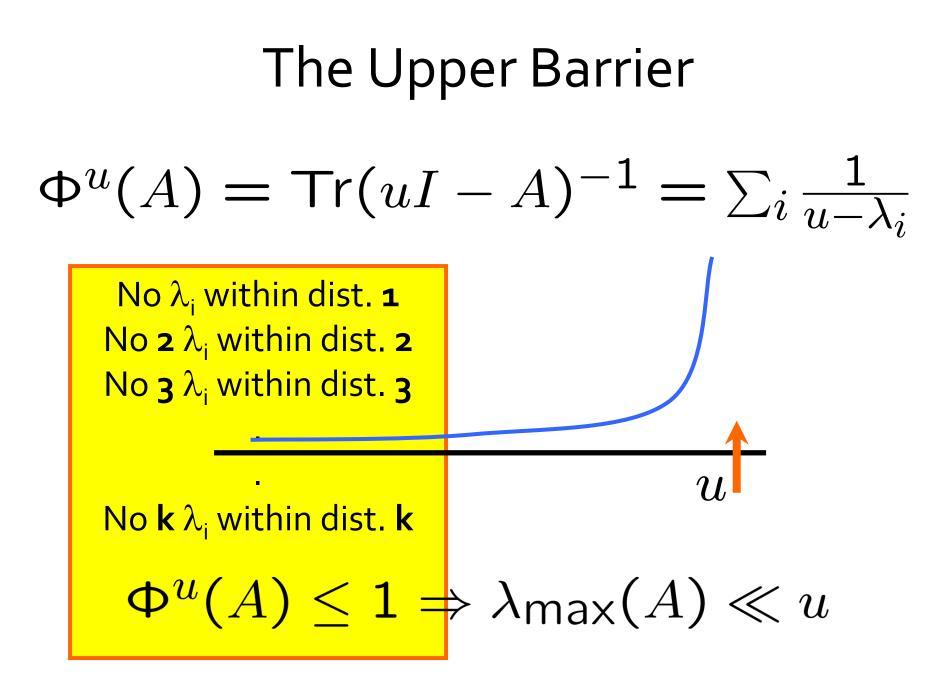
 $1 \leq \lambda_i \leq 1$ is not strong enough to do the induction.

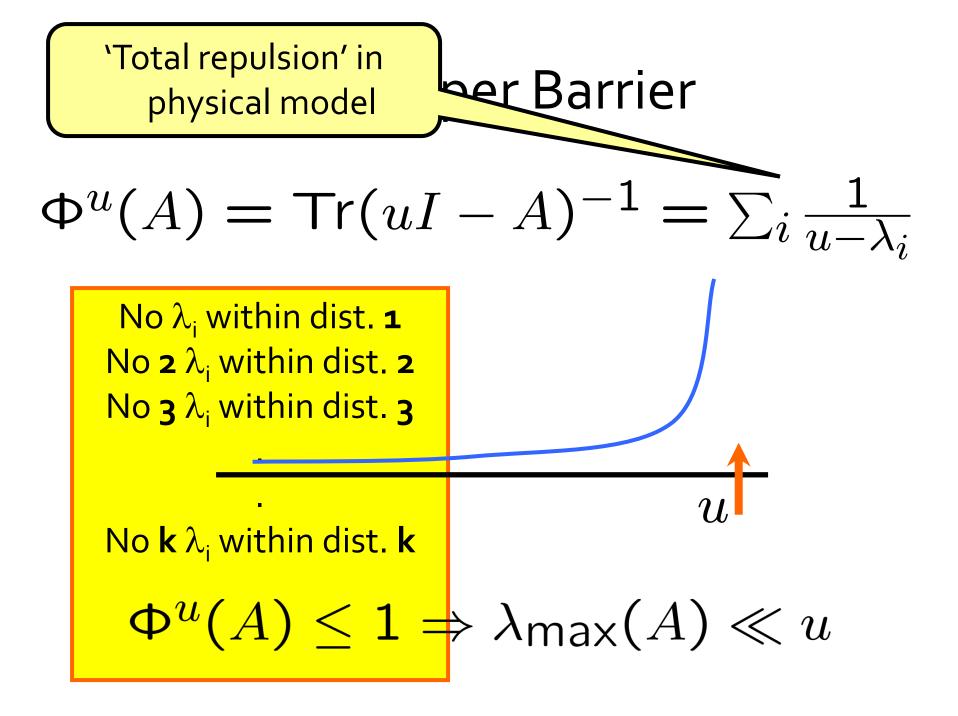


The Upper Barrier $\Phi^u(A) = \operatorname{Tr}(uI - A)^{-1} = \sum_i \frac{1}{u - \lambda_i}$



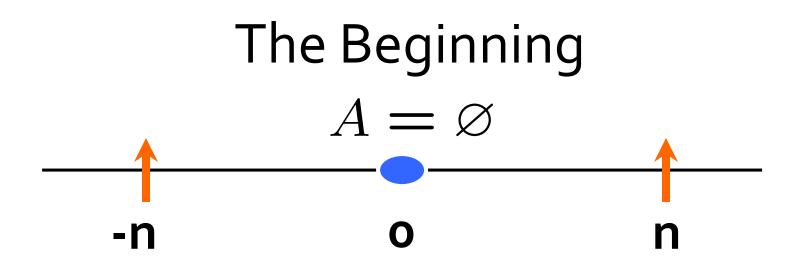
$\Phi^u(A) \leq 1 \Rightarrow \lambda_{\max}(A) \ll u$

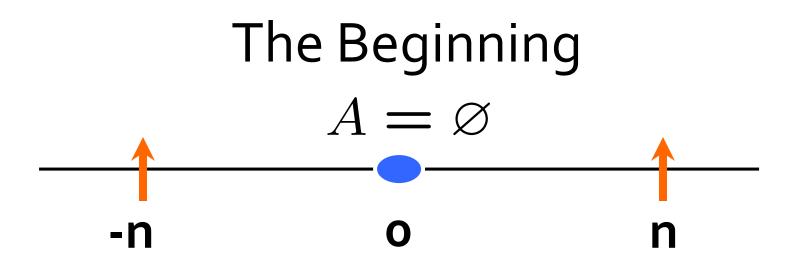




The Lower Barrier $\Phi_{\ell}(A) = \operatorname{Tr}(A - \ell I)^{-1} = \sum_{i \, \overline{\lambda_i - \ell}}$

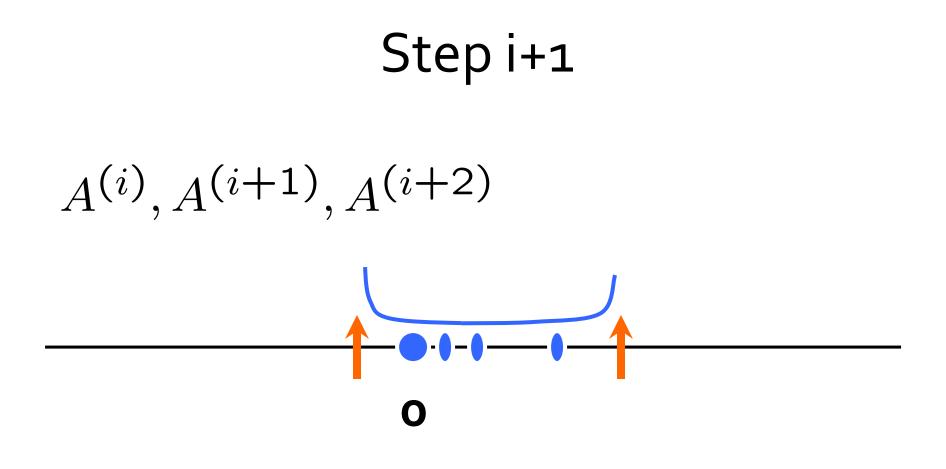
$\Phi_{\ell}(A) \leq 1 \Rightarrow \lambda_{\min}(A) \gg \ell$

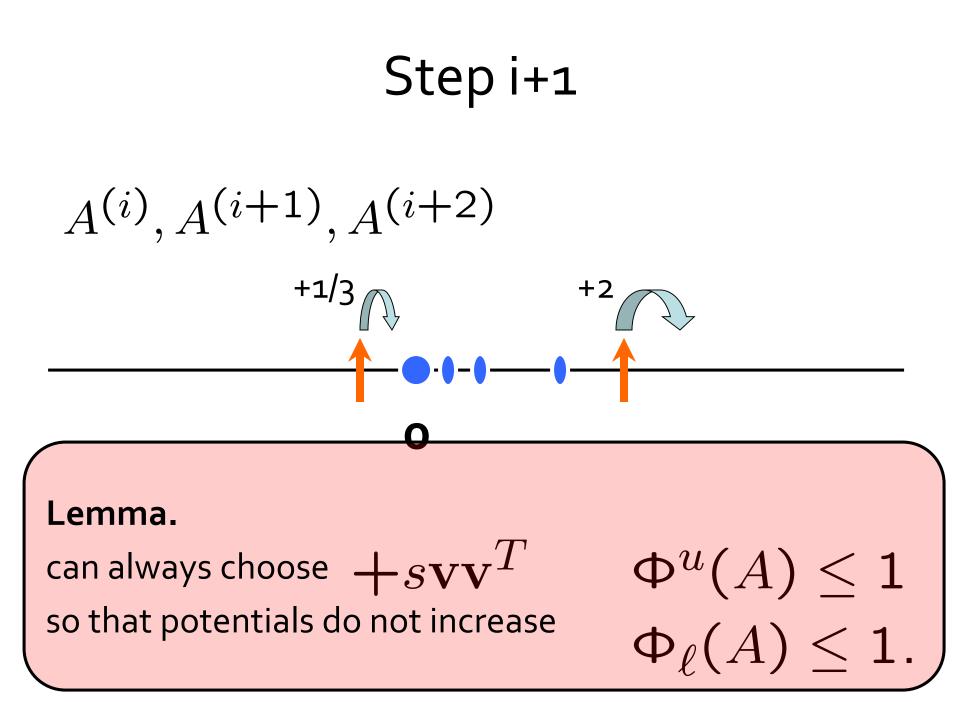


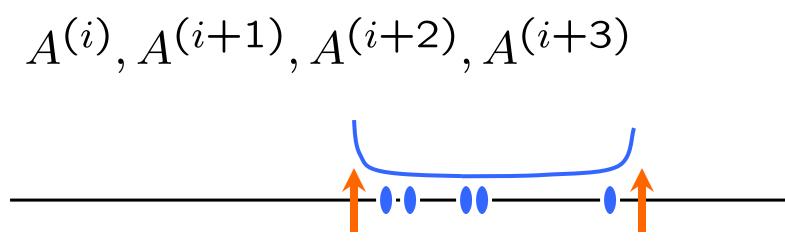


$$\Phi^n(\varnothing) = \mathrm{Tr}(nI)^{-1} = 1$$

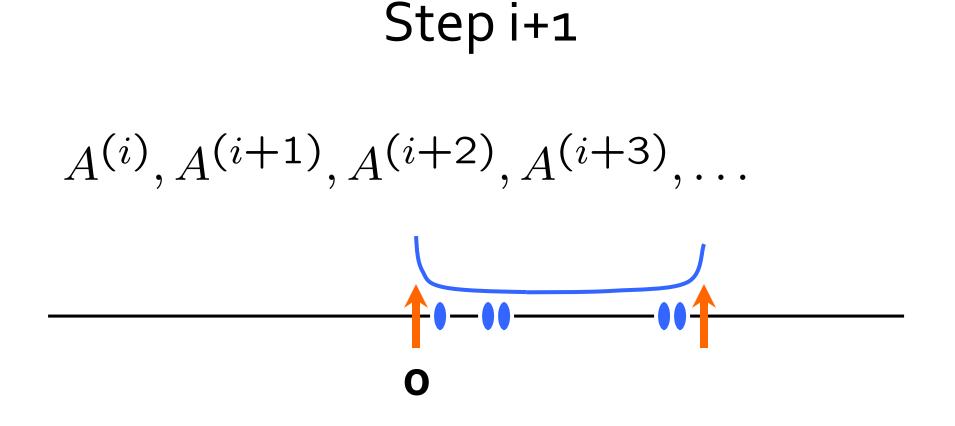
 $\Phi_{-n}(\emptyset) = \operatorname{Tr}(nI)^{-1} = 1.$

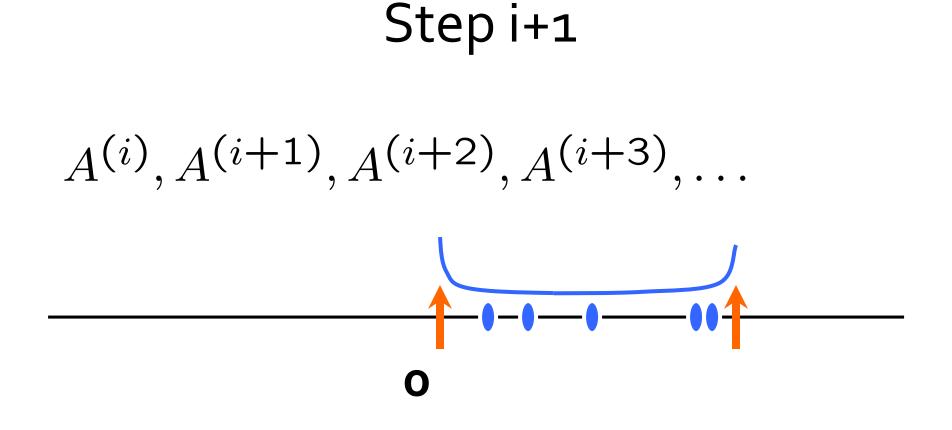


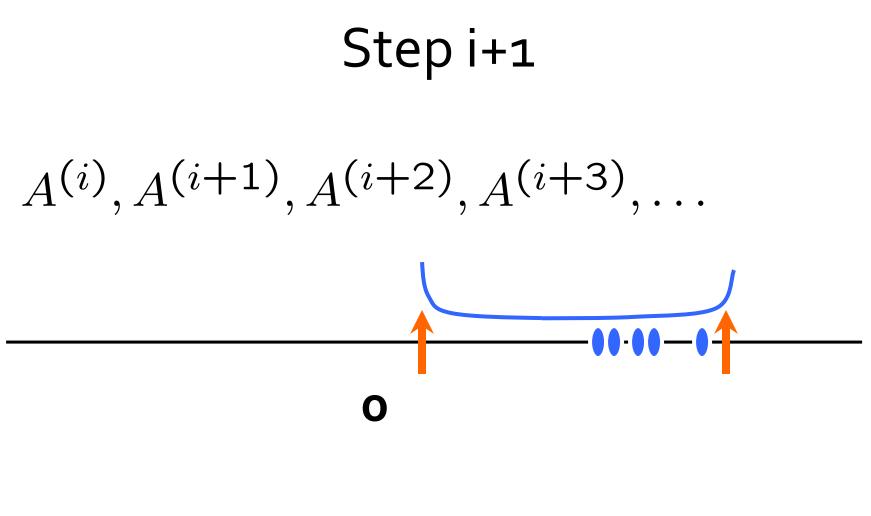




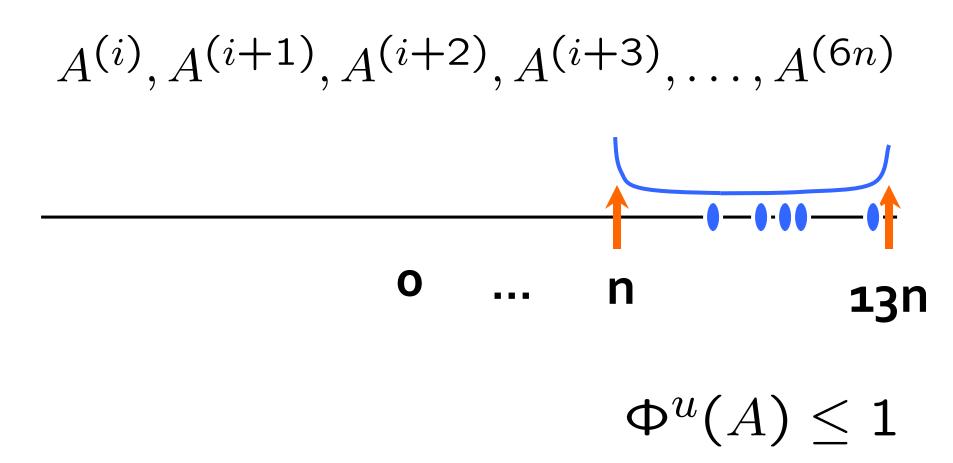
 $\Phi^u(A) \leq 1$ $\Phi_{\ell}(A) \leq 1.$







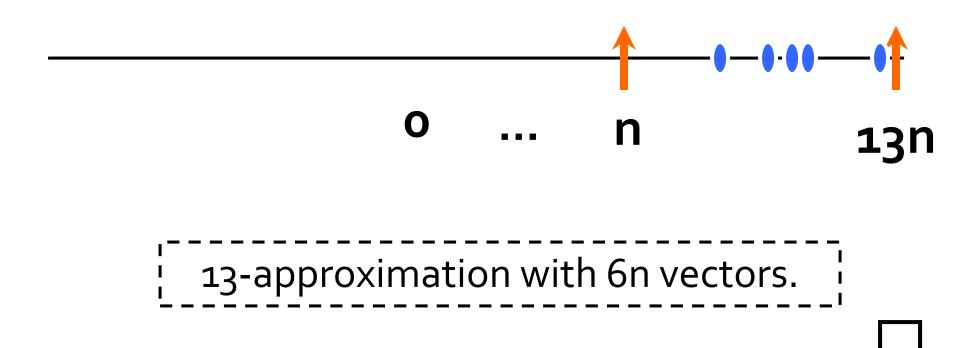
Step 6n



 $\Phi_{\ell}(A) \leq 1.$

Step 6n

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \dots, A^{(6n)}$



Goal

1

Lemma.

can always choose
$$+s\mathbf{v}\mathbf{v}^T$$
 so $\Phi^u(A) \leq$
that *both* potentials do not increase. $\Phi_\ell(A) \leq$

+1/3 +2 +2
+
$$svv^T$$

The Right Question

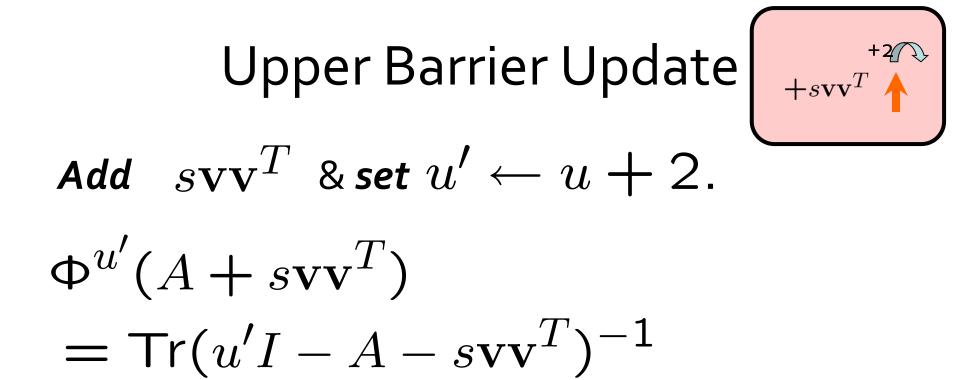
"Which vector should we add?"

The Right Question

"Which vector should we add?"

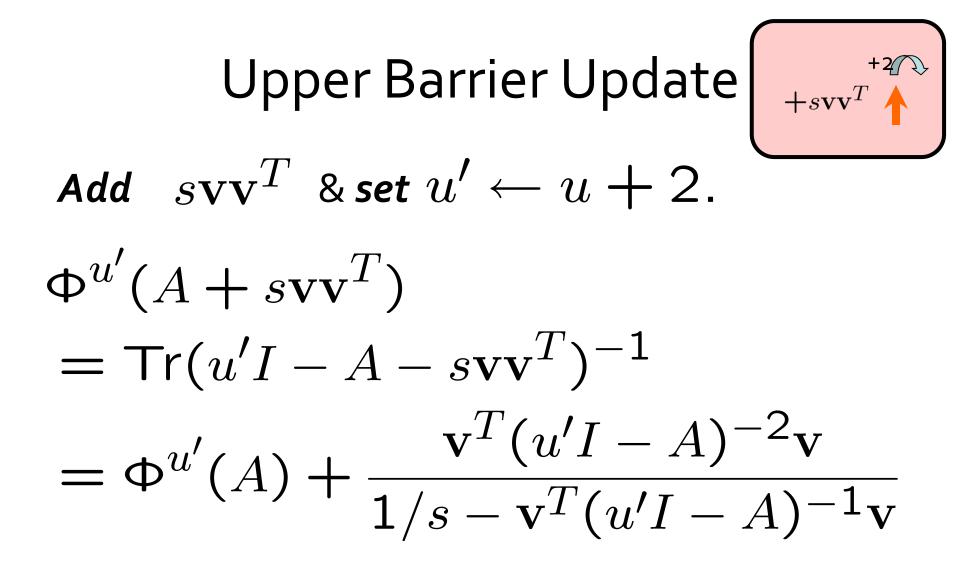
"Given a vector, how much of it can we add?"

Upper Barrier Update Update Add svv^T & set $u' \leftarrow u + 2$.



Upper Barrier Update
Add
$$svv^{T} \& set u' \leftarrow u + 2.$$

 $\Phi^{u'}(A + svv^{T})$
 $= Tr(u'I - A - svv^{T})^{-1}$
 $Tr(A + vv^{T})^{-1} = TrA^{-1} - \frac{v^{T}A^{-2}v}{1 + v^{T}A^{-1}v}$
Sherman-Morrisson



Upper Barrier Update
Add
$$svv^{T} \& set u' \leftarrow u + 2.$$

 $\Phi^{u'}(A + svv^{T})$
 $= Tr(u'I - A - svv^{T})^{-1}$
 $= \Phi^{u'}(A) + \frac{v^{T}(u'I - A)^{-2}v}{1/s - v^{T}(u'I - A)^{-1}v}$
want $\leq \Phi^{u}(A).$

Upper feasibility condition
Rearranging:

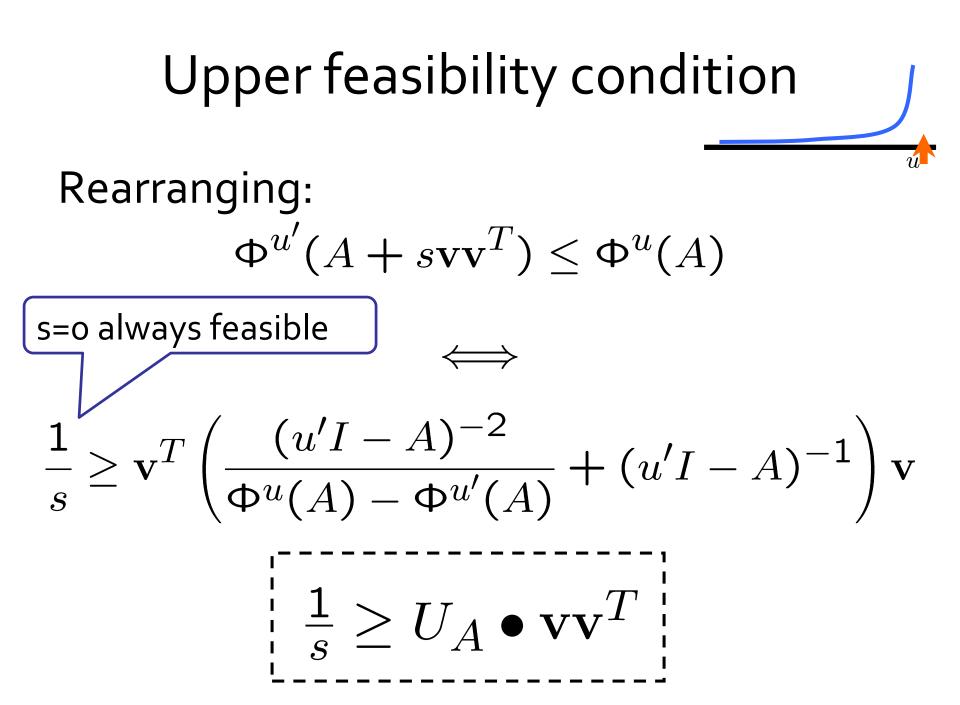
$$\Phi^{u'}(A + s\mathbf{v}\mathbf{v}^T) \leq \Phi^u(A)$$

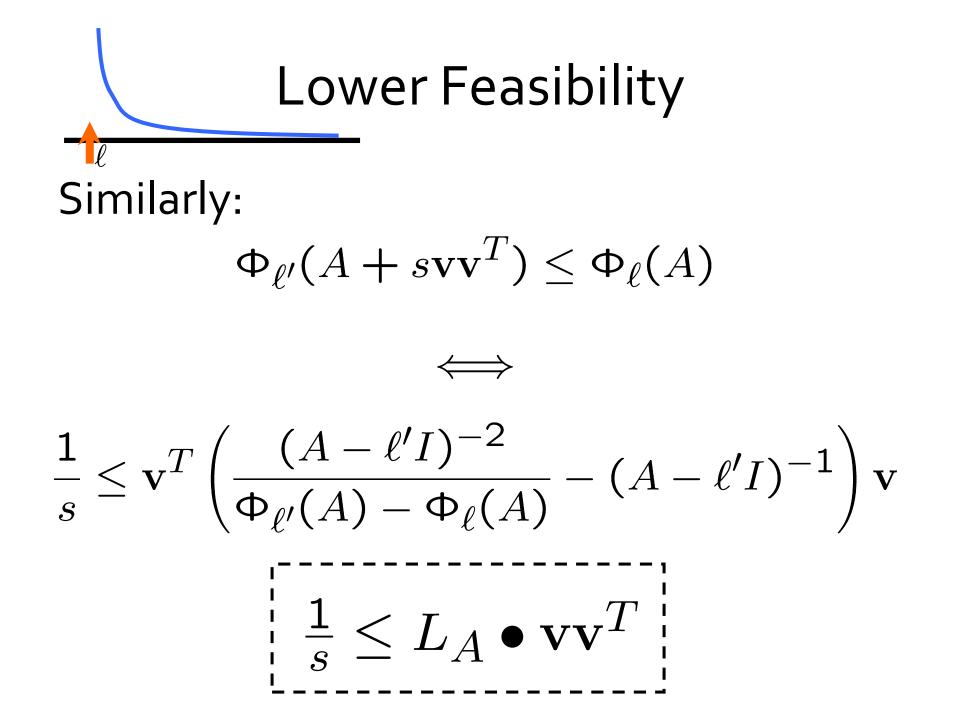
 \Leftrightarrow
 $\frac{1}{s} \geq \mathbf{v}^T \left(\frac{(u'I - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + (u'I - A)^{-1} \right) \mathbf{v}$

Upper feasibility condition
Rearranging:

$$\Phi^{u'}(A + s\mathbf{v}\mathbf{v}^T) \leq \Phi^u(A)$$

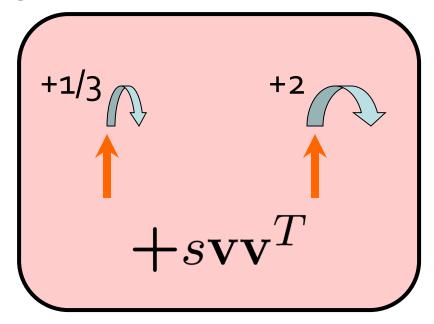
 \Leftrightarrow
 $\frac{1}{s} \geq \mathbf{v}^T \left(\frac{(u'I - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + (u'I - A)^{-1} \right) \mathbf{v}$
 $\left[\frac{1}{s} \geq U_A \bullet \mathbf{v}\mathbf{v}^T \right]$



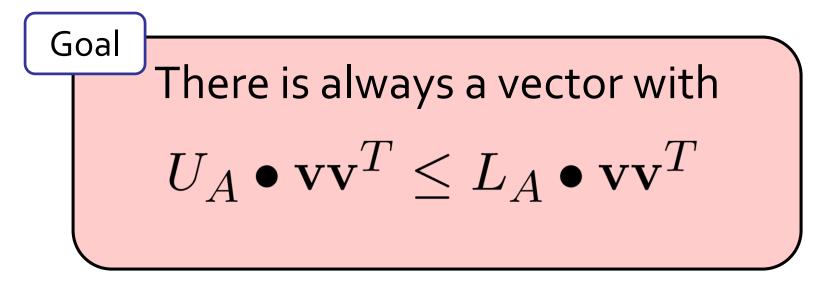


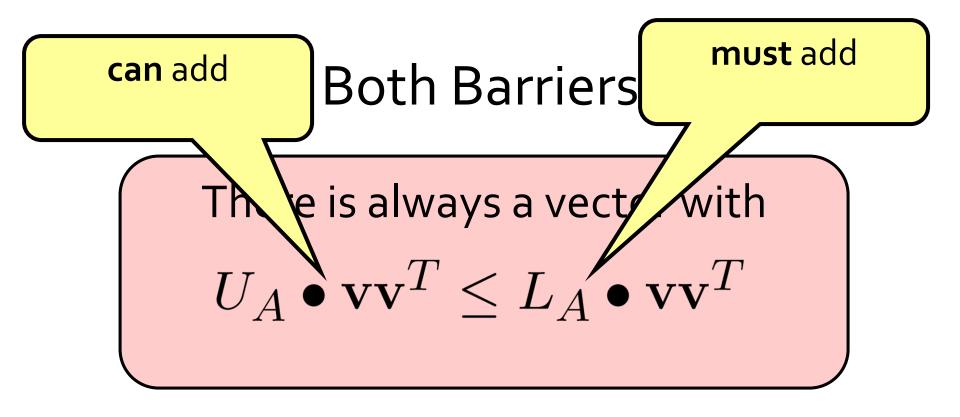
Goal

Show that we can always add some vector while respecting *both* barriers.



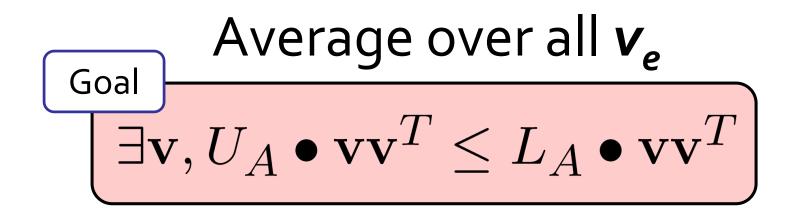
Both Barriers

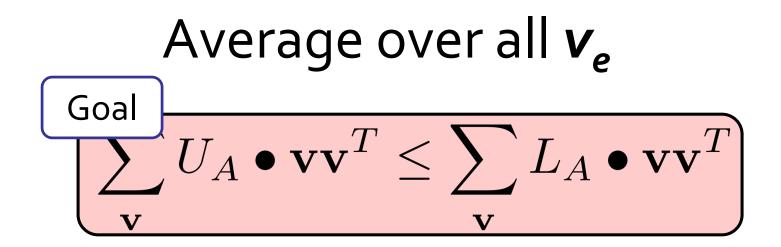


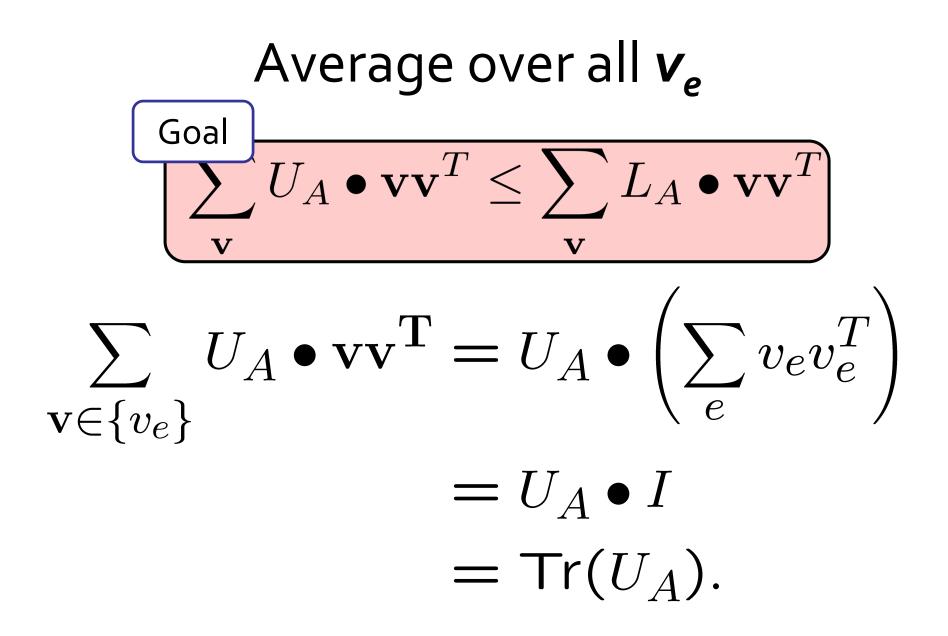


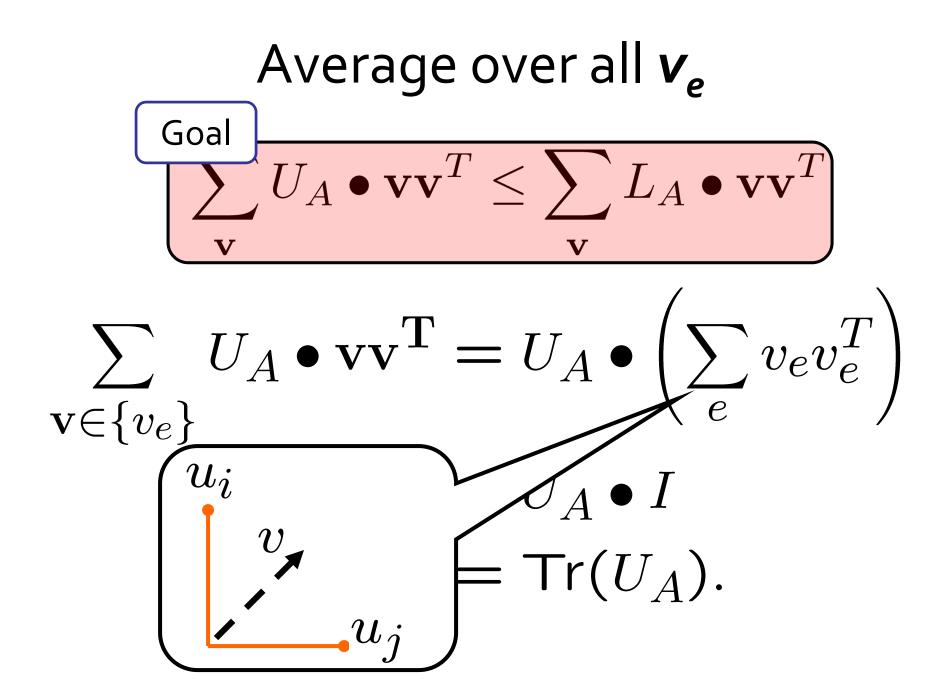
Then, can squeeze scaling factor in between:

$$U_A \bullet \mathbf{v}\mathbf{v}^T \leq \frac{1}{s} \leq L_A \bullet \mathbf{v}\mathbf{v}^T$$









Bounding
$$Tr(U_A)$$

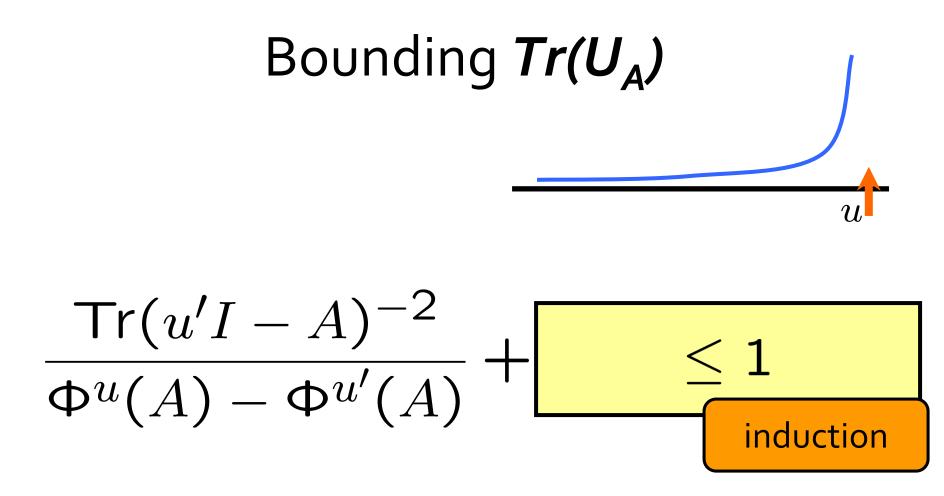
$$\frac{\operatorname{Tr}(u'I - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + \operatorname{Tr}(u'I - A)^{-1}$$

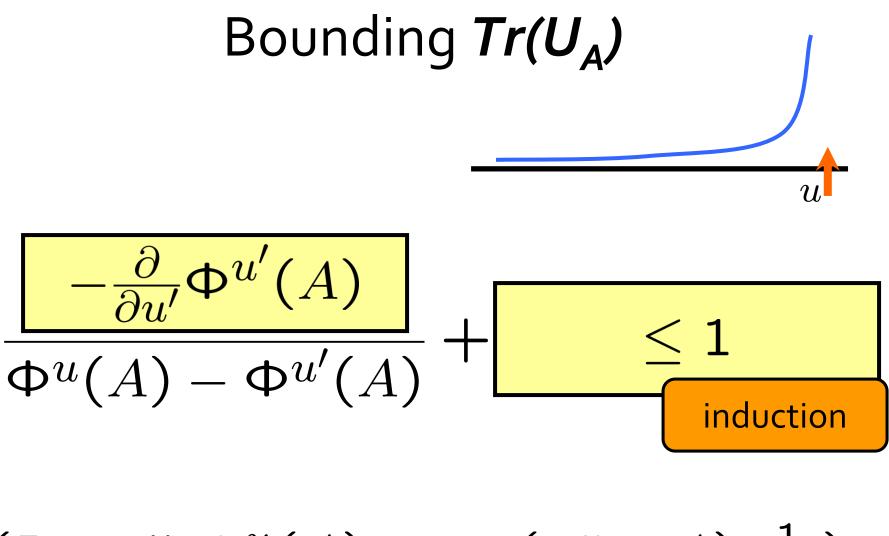
Bounding
$$Tr(U_A)$$

 $\frac{\operatorname{Tr}(u'I - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + \frac{\Phi^{u'}(A)}{\Phi^{u'}(A)}$

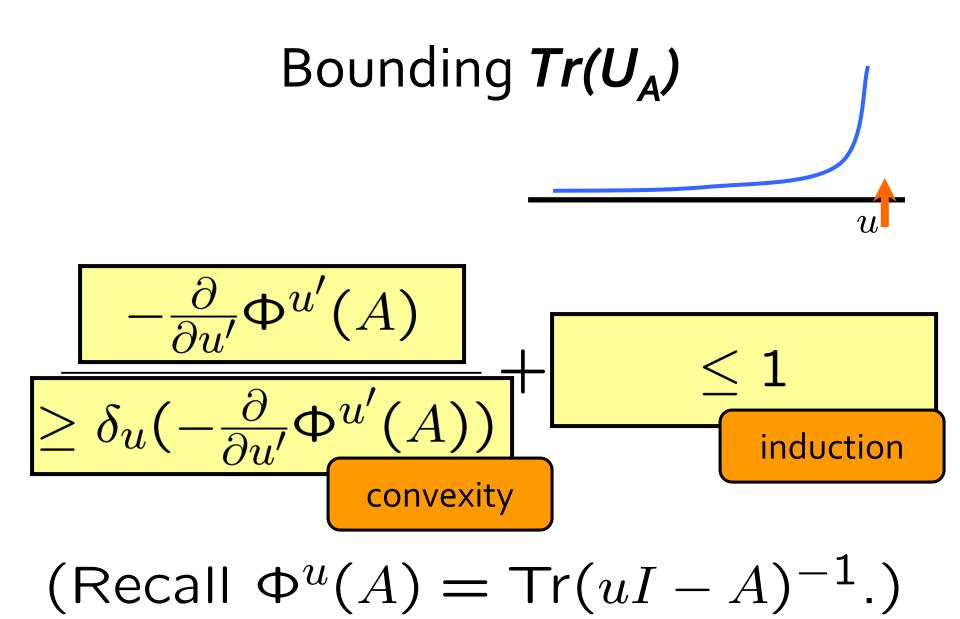
Bounding
$$Tr(U_A)$$

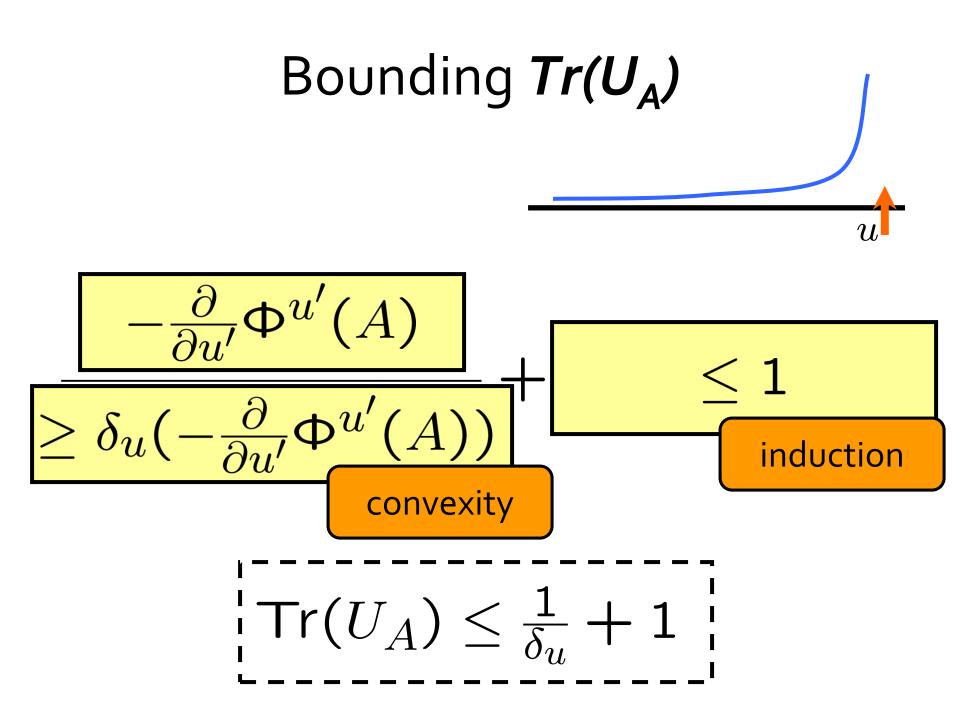
 $\frac{\operatorname{Tr}(u'I - A)^{-2}}{\Phi^u(A) - \Phi^{u'}(A)} + \leq \Phi^u(A)$





(Recall $\Phi^u(A) = \operatorname{Tr}(uI - A)^{-1}$.)





Taking Averages

 Goal

$$\exists \mathbf{v}, U_A \bullet \mathbf{vv}^T \leq L_A \bullet \mathbf{vv}^T$$
 $\begin{bmatrix} \sum_{\mathbf{v} \in \{v_e\}} U_A \bullet \mathbf{vv}^\mathbf{T} \leq \frac{1}{\delta_u} + 1. \end{bmatrix}$

Taking Averages

$$\exists \mathbf{v}, U_A \bullet \mathbf{v} \mathbf{v}^T \leq L_A \bullet \mathbf{v} \mathbf{v}^T$$

$$\sum_{\mathbf{v} \in \{v_e\}} U_A \bullet \mathbf{v} \mathbf{v}^T \leq \frac{1}{\delta_u} + 1.$$

$$\sum_{\mathbf{v} \in \{v_e\}} L_A \bullet \mathbf{v} \mathbf{v}^T \geq \frac{1}{\delta_\ell} - 1.$$

Taking Averages

$$\exists \mathbf{v}, U_A \bullet \mathbf{v} \mathbf{v}^T \leq L_A \bullet \mathbf{v} \mathbf{v}^T$$

$$\sum_{\mathbf{v} \in \{v_e\}} U_A \bullet \mathbf{v} \mathbf{v}^T \leq \frac{1}{2} + 1. = 3/2$$

$$\sum_{\mathbf{v} \in \{v_e\}} L_A \bullet \mathbf{v} \mathbf{v}^T \geq \frac{1}{\delta_\ell} - 1.$$

Taking Averages

$$\exists \mathbf{v}, U_A \bullet \mathbf{v} \mathbf{v}^T \leq L_A \bullet \mathbf{v} \mathbf{v}^T$$

$$\sum_{\mathbf{v} \in \{v_e\}} U_A \bullet \mathbf{v} \mathbf{v}^T \leq \frac{1}{2} + 1 \cdot \boxed{=3/2}$$

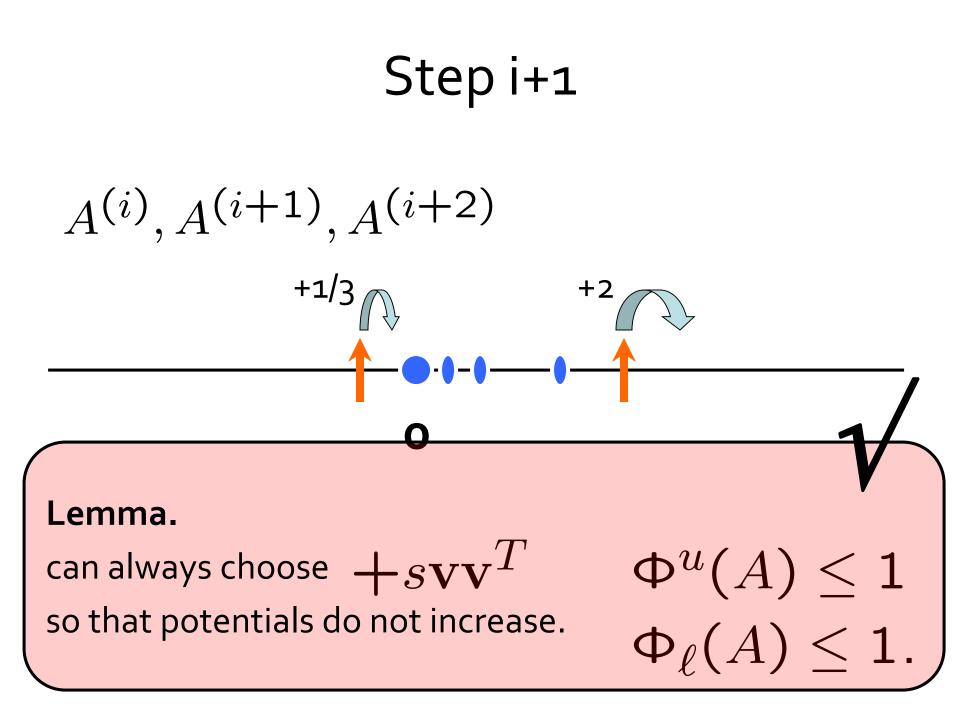
$$\sum_{\mathbf{v} \in \{v_e\}} L_A \bullet \mathbf{v} \mathbf{v}^T \geq \frac{1}{1/3} - 1 \cdot \boxed{=2}$$

Taking Averages

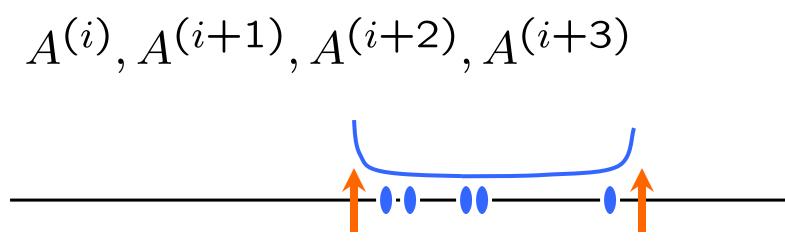
$$\exists \mathbf{v}, U_A \bullet \mathbf{vv}^T \leq L_A \bullet \mathbf{vv}^T$$

$$\sum_{\mathbf{v} \in \{v_e\}} U_A \bullet \mathbf{vv}^T \leq \frac{1}{2} + 1. = \frac{3}{2}$$

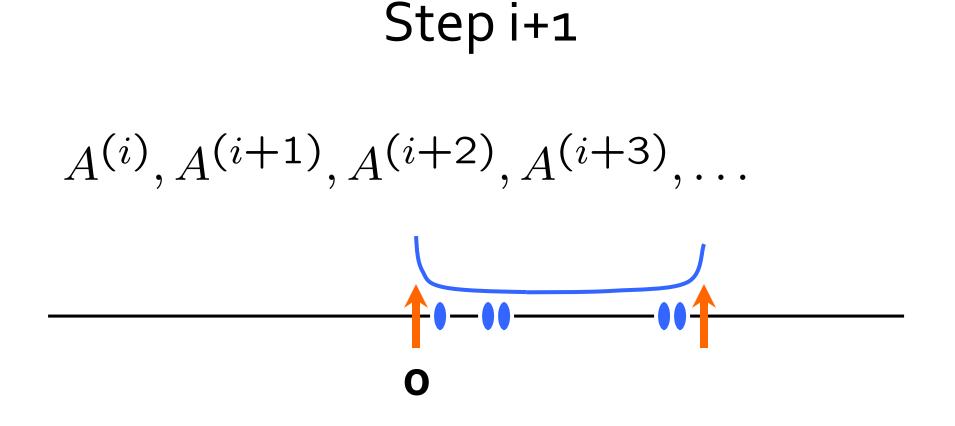
$$\sum_{\mathbf{v} \in \{v_e\}} L_A \bullet \mathbf{vv}^T \geq \frac{1}{1/3} - 1. = \frac{1}{2}$$



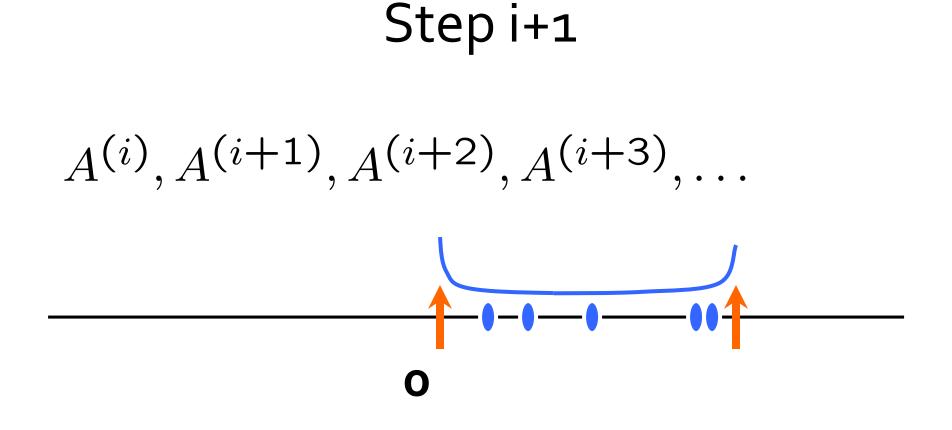
Step i+1



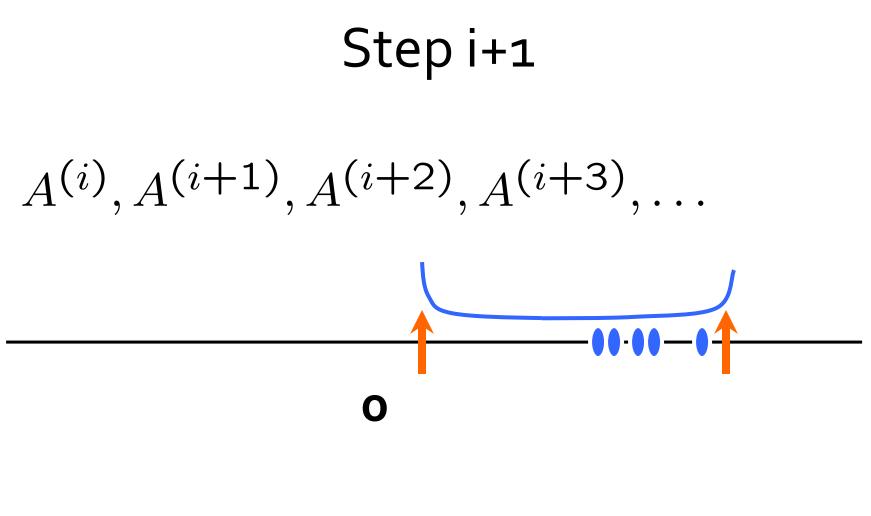
 $\Phi^u(A) \leq 1$ $\Phi_{\ell}(A) \leq 1.$



$\Phi^u(A) \leq 1$ $\Phi_\ell(A) \leq 1.$

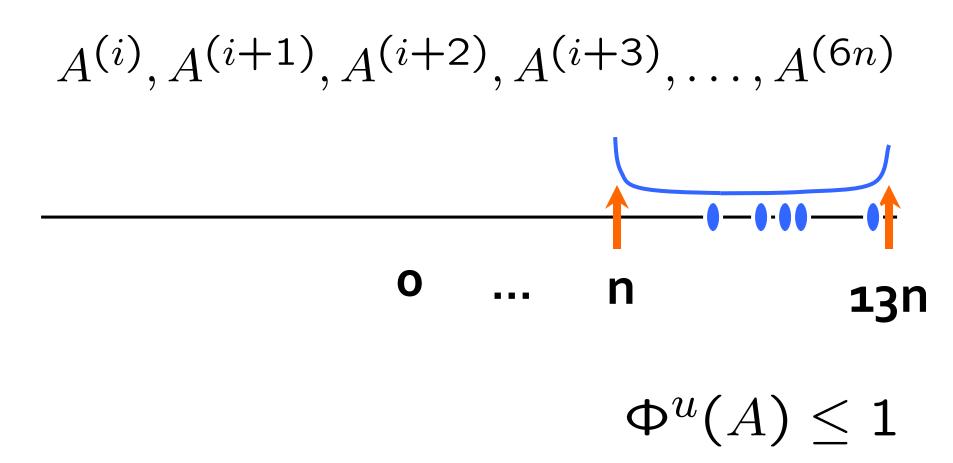


$\Phi^u(A) \leq 1$ $\Phi_\ell(A) \leq 1.$



 $\Phi^u(A) \leq 1$ $\Phi_\ell(A) \leq 1.$

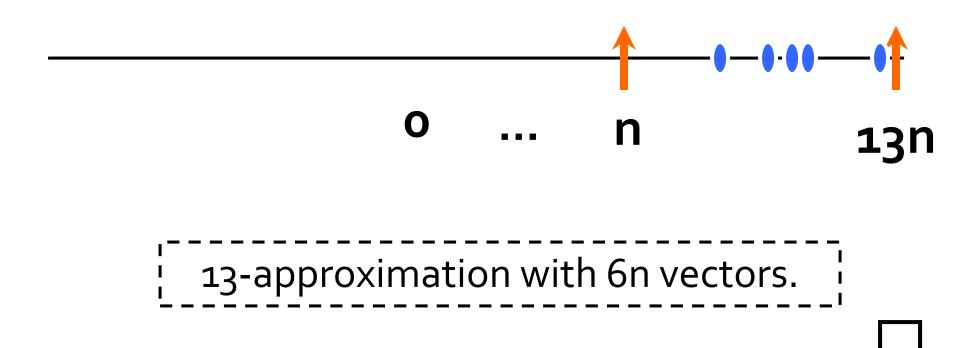
Step 6n



 $\Phi_{\ell}(A) \leq 1.$

Step 6n

 $A^{(i)}, A^{(i+1)}, A^{(i+2)}, A^{(i+3)}, \dots, A^{(6n)}$



Done!

Spectral Sparsification Theorem:

Given
$$\sum_{i \leq m} v_i v_i^T = I_n$$
 there are $s_i \geq 0$ with:
• $I \leq \sum_i s_i v_i v_i^T \leq 13 \cdot I$
• $\operatorname{supp}(s) \leq 6n$.

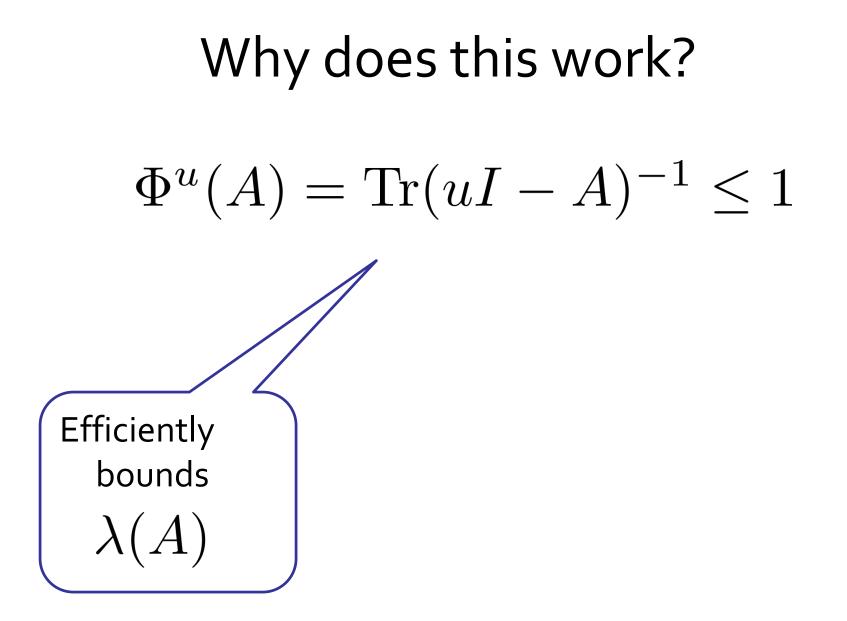
Nearly Optimal bound

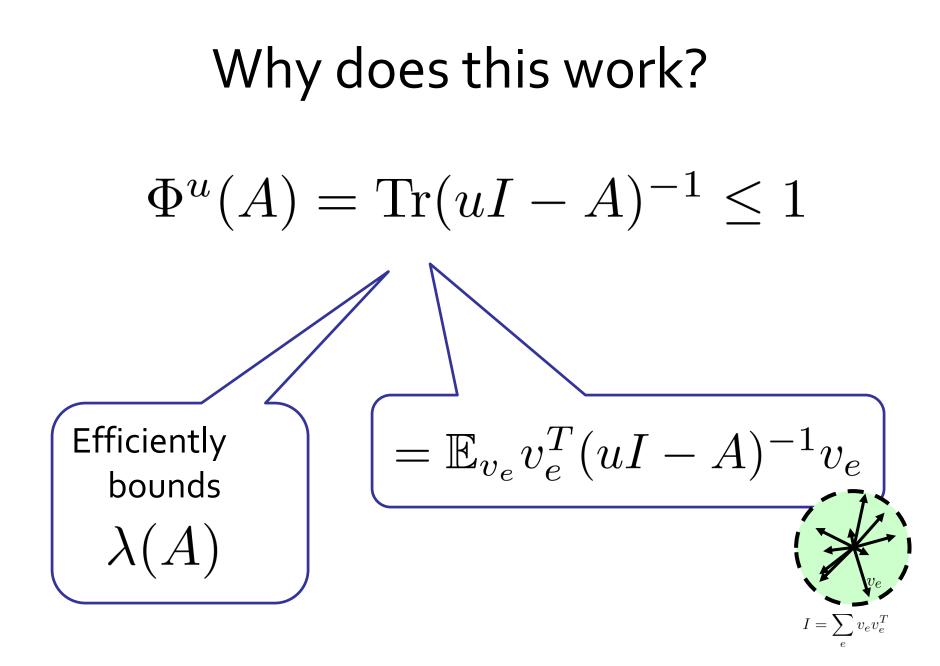
Fixing dn steps and tightening parameters gives $(\sqrt{d+1})^2$

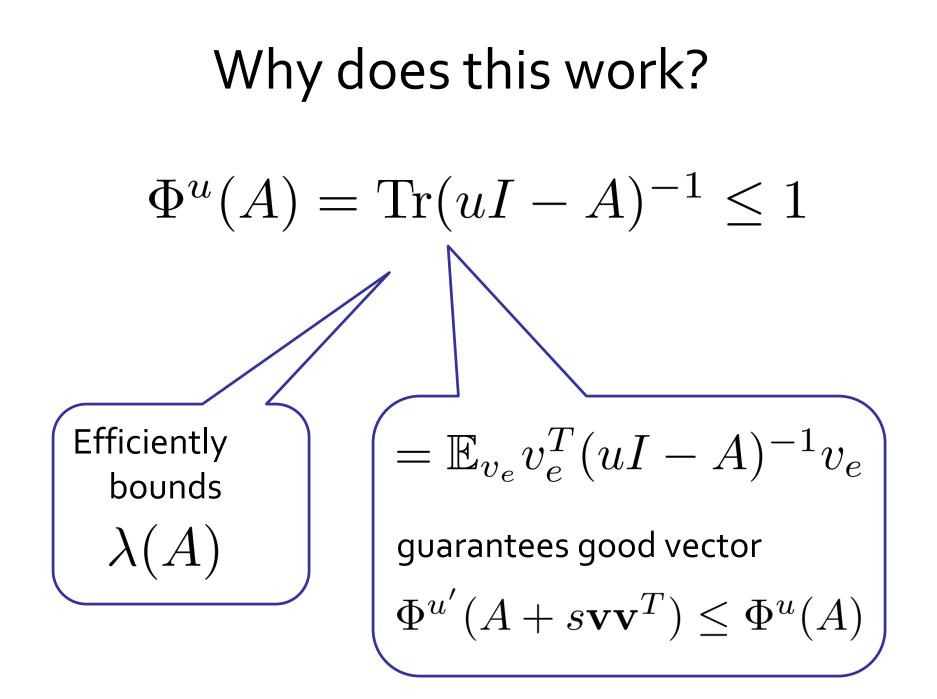
$$\kappa = \frac{(\sqrt{a+1})}{(\sqrt{d}-1)^2}$$

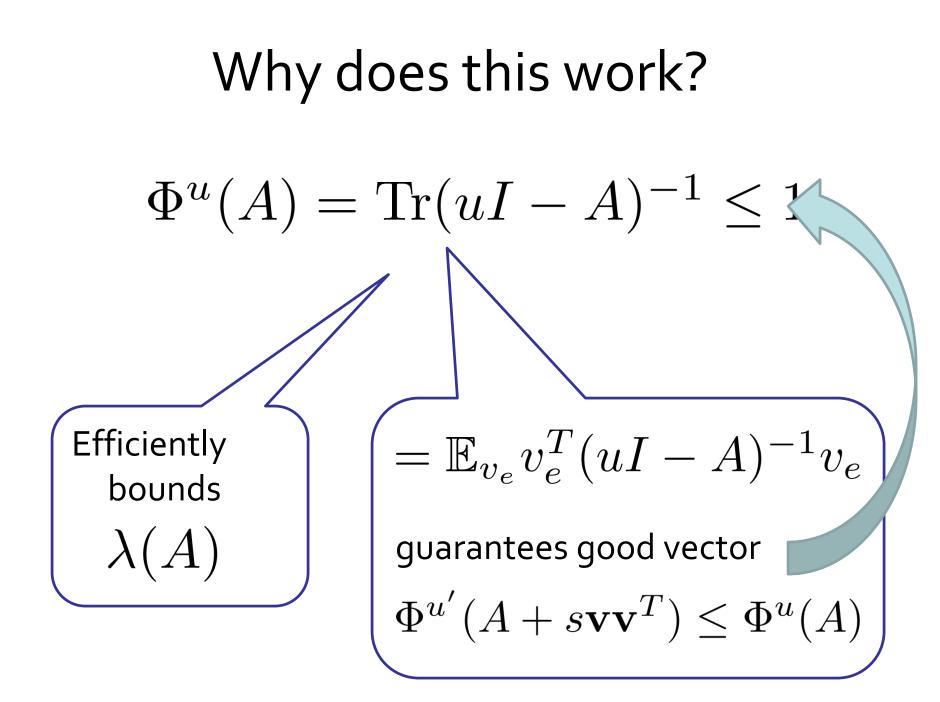
(zeros of Laguerre polynomials).

This is within a factor of 2 of the optimal Ramanujan Bound [LPS, Alon-Boppana].









Major Themes

- Electrical model of interlacing is useful
- Can use barrier potential to **iteratively** construct matrices with desired spectra
- Analysis of progress is greedy / local
- Requires **fractional weights** on vectors

Instead of directly reasoning about $\lambda_i(A)$, reason about $(zI - A)^{-1}$.

Open Questions

Fast algorithm

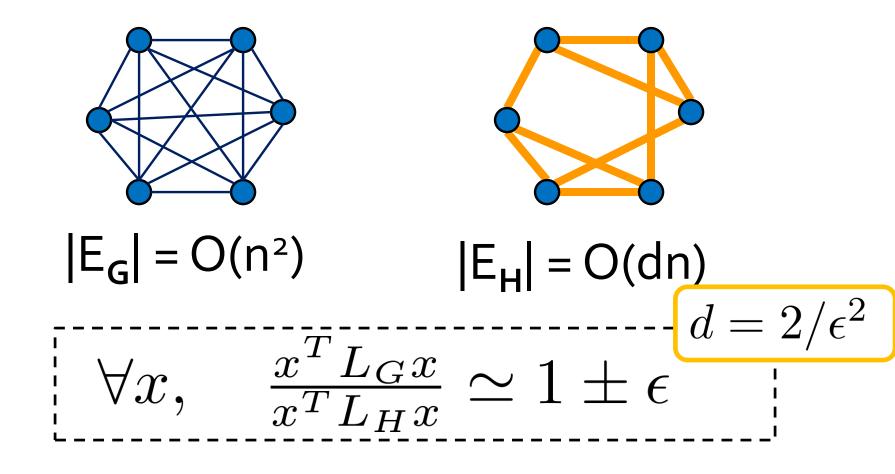
currently O(n^4)

Optimization proof?

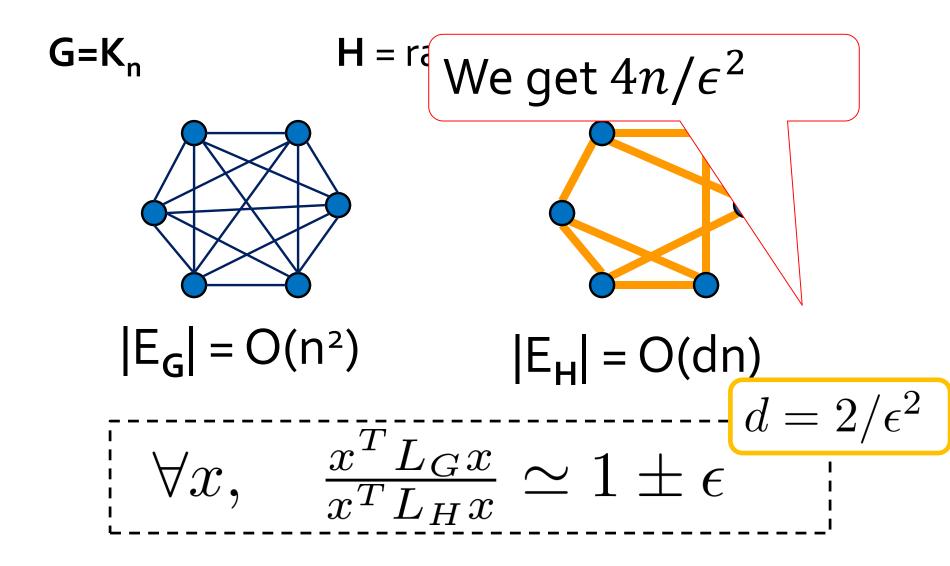
More applications

There are no weights here...

 $G=K_n$ H = random d-regular x (n/d)



And off by a factor of 2



Tomorrow

$2/\epsilon^2$ degree unweighted approximations for K_n "Ramanujan Graphs"

Tomorrow

$2/\epsilon^2$ degree unweighted approximations for K_n "Ramanujan Graphs"

