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Three multilinear polynomials . . .

The following three polynomials in the variables Xi ,Xij over a field F are
each given by a sum with exponentially many summands in n:

esymk :=
X

i1<i2<···<ik

Xi1Xi2 · · ·Xik (1)

detn :=
X

⇡2Sn

sgn(⇡)X1⇡(1) · · ·Xn⇡(n) (2)

pern :=
X

⇡2Sn

X1⇡(1) · · ·Xn⇡(n) (3)

We want to compute them from the variables and field elements with as
few arithmetic operations +,�, ⇤ (possibly also /)!
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Motivation

. . . and their e�cient computation

(1): Note that

F (T ,X ) := (T + X1) · · · (T + Xn) =
nX

k=0

esymk(X )T n�k

can be computed with O(n) operations.
Evaluate F (t0,X ), . . . ,F (tn,X ) for di↵erent values ti and compute
esymk(X ) by interpolation. Total of O(n3 + n2) operations.

(2): The determinant detn can be computed with O(n3) operations using
Gaussian elimination.

(3): A trick due to Ryser gives a computation of the permanent pern
with O(n 2n) operations.
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Motivation

Optimality: elementary symmetric polynomials

I The complexity L(f ) denotes the minimal number of arithmetic
operations su�cient to compute f (from variables and field
elements).

I (1): By divide and conquer and FFT: L(esymk) = O(n log2 n).

I This is essentially optimal: we know the lower bound

L(esymk) = ⌦(n log n)

(Strassen ’73, Baur and Strassen ’83).

The argument is based on algebraic geometry (degree of varieties).
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Motivation

Optimality: determinant

I (2): L(detn) = O(n2.81): “Gaussian elimination is not optimal”,
Strassen 1969.

I
detn has the same “asymptotic complexity” as n ⇥ n matrix
multiplication.

I It is known that
L(detn) = O(n!),

where the exponent ! of matrix multiplication is known to satisfy

2  ! < 2.373

(Coppersmith & Winograd 1987, Vassilevska-Williams 2011).

I It is a fundamental problem to determine !. The experts on this are
involved in this Simons program.

I It is conjectured that ! can be chosen arbitrarily close to 2.
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Motivation

The permanent

I The importance of the permanent is due to a universality property
explained later.

I We don’t know of any computation of the permanent pern that
takes a number of arithmetic operations subexponential in n.

I Les Valiant conjectured in 1979 that L(pern) grows superpolynomial
in n.

I But as of today, we cannot even prove a superlinear lower bound on
L(pern)!

I sincerely hope that this Simons program will help to improve the
state of a↵airs!
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Specific polynomials which are hard to compute

Lower bounds for specific polynomials

I Dimension counting argument (à la Shannon):
For almost all coe�cient systems a = (a⇡) 2 Cn!,

f =
X

⇡2Sn

a⇡ X1⇡(1) · · ·Xn⇡(n)

has complexity at least n! = #coe�cients.

I Can this bound be extended to specific choices of a⇡?

Strassen 1974
Assume the coe�cient vector a equals

(
p
1,
p
2, . . . ,

p
n!).

Then L(f ) = ⌦( n!
log n! ).
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Specific polynomials which are hard to compute

Basic idea of proof
I We identify a polynomial f 2 C[X ] of degree n in m = n2 variables

with its coe�cient sequence, interpreted as a point in CN , where
N =

�m+n
n

�
.

I Observation: the set of polynomials f with L(f ) < r equals the
image of an explicit polynomial“computation map”

� : Cq ! CN ,

with q := r2 + 2mr “degrees of freedom”.
I Reason: in all possible computations combine the linear operations

and only count the multiplication steps. They have the form

gk+1 := (
kX

i=�m

aigi ) ⇤ (
kX

j=�m

bjgj), ai , bi 2 C,

where g�m, . . . , gk are the previously computed intermediate results,
assuming (g�m, . . . , g0) = (1,X1, . . . ,Xm).
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Specific polynomials which are hard to compute

Connection to algebraic geometry

I The (Zariski) closure of the image of � : Cq ! CN is an a�ne
algebraic variety Xn,r ✓ CN with dimXn,r  q.

I So Xn,r consist of all polynomials f of complexity< r and their limits.

Basic strategy

Look for a nonzero polynomial function R : CN ! C that vanishes
on Xn,r . We shall call such R a “resultant”.

R(f ) 6= 0 implies that f 62 Xn,r , hence L(f ) � r .
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Specific polynomials which are hard to compute

Existence of resultants

Basic strategy

Look for a nonzero polynomial function R : CN ! C that vanishes
on Xn,r . We shall call such R a “resultant”.

R(f ) 6= 0 implies that f 62 Xn,r , hence L(f ) � r .

I The components of � : Cq ! CN are integer polynomials of
degree rn (and bitsize  2r log(mr)).

I From this one can deduce the existence of a resultant R of
degree (rn)r

2

(with integer coe�cients of absolute value 3).

I This information is su�cient to prove that R(f ) 6= 0 for the
specific f , since the degree of the field extension Q(

p
2, . . . ,

p
n!)

over Q is exponential in n!.
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Specific polynomials which are hard to compute

Lower bounds for p-definable polynomials?

I In the previous example, the coe�cients of f were algebraic
numbers, producing a field extension of high degree.

I The challenge is to prove lower bounds for specific polynomials f
with integer coe�cients.

I We call a family (fn) of multivariate polynomials p-definable if the
coe�cient function ⇡ 7! a⇡ can be computed in polynomial time.

Valiant 1979
A superpolynomial bound for any family of p-definable polynomials
implies a superpolynomial lower bound for the permanents.

This is a consequence of the VNP-completeness of (pern).
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Specific polynomials which are hard to compute

A curious observation

pn(X ) :=
nY

j=1

(X 2 � j) =
nY

j=1

(X �
p
j)

| {z }
fn(X )

·
nY

j=1

(X +
p

j)

| {z }
f̃n(X )

.

I Both fn(X ) and f̃n(X ) have complexity at least ⌦(n/ log n): proof
with the same techniques as before.

I It seems plausible that the product fn(X ) · f̃n(X ) is hard as well!

I However, proving this turns out to be hard!

B 2009

A lower bound of the form n✏ on pn(X ), for any ✏ > 0, implies
superpolynomial lower bounds for the complexity of the permanent.
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Permanent versus determinant

Arithmetic complexity classes

I Valiant defined complexity classes VP und VNP, whose objects are
sequences (fn) of multivariate polynomials over some fixed field F .

I
VP:“Problems” of linear algebra

I
VNP: “Problems” from graph theory, combinatorics, statistical
physics, quantum mechanics

I A notion of reduction allows to talk about complete (or universal)
objects in these classes.
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Permanent versus determinant

Completeness of det and per

Valiant 1979-81

(detn) is complete for VP.
(pern) is complete for VNP if charF 6= 2.

I Valiant’s Hypothesis

VP 6= VNP

can be seen as an arithmetic version of P 6= NP.

I It means that the complexity of pern grows superpolynomial in n.

I
P 6= NP implies VP 6= VNP over C.

I Conclusion: The arithmetic version VP 6= VNP has to be proven
first. It is close to algebra and geometry and appears more amenable
to the known mathematical techniques.
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Permanent versus determinant

An algorithm-free characterization of VP 6= VNP

Non-obvious fact: Let n = 2m. There a�ne linear function aij = aij(X ) in
X11, . . . ,Xmm such that

perm(X ) = det

2

64
a11 . . . a1n
...

...
an1 . . . ann

3

75 (*)

Can the size n of the determinant be taken substantially smaller?

VP 6= VNP is equivalent to the statement that in (*), the size n of the
determinant has to grow faster than any polynomial in m.

Unfortunately, the best known lower bound on n only states n � 1
2m

2

(Mignon & Ressayre 2004).
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Orbit closure problems

Refining the basic strategy

I Goal: attack the algorithm-free characterization of VP 6= VNP by
refining the previous proof of the lower bound for specific
polynomials.

I Recall basic strategy: Xn,r denoted the closure of the set of easy
polynomials (n variables, complexity< r).
We look for a “resultant”, i.e., nonzero polynomial function
R : CN ! C vanishing on Xn,r . Note R(f ) 6= 0 ) f 62 Xn,r .

I We need to have more information on the resultants R! Previously,
we only used their existence in certain degrees.

I We shall replace Xnr by an algebraic variety Detn, having lots of
symmetries.

I These symmetries allow us to restrict our search to resultants having
certain invariant properties, called “highest weight vectors” in
represention theory.
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Orbit closure problems

The orbit of the determinant

I In mathematics, symmetries are described by groups.

I The determinant has lot of symmetries, coming from
det(A · B) = det(A) · det(B).

I
Polyn(Cn2) denotes the vector space of homogeneous polynomials of

degree n in n2 variables. So detn 2 Polyn(Cn2).

I The group G := GLn2 acts on Polyn(Cn2) by variable substitution.

I The orbit G detn of detn is defined as the set of polynomials that
can be obtained from detn by applying all possible group elements:
“determinants in disguise”.

I One can e�ciently decide whether f 2 G detn (Kayal ’11).
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Orbit closure problems

The orbit closure Detn
I Detn is defined as the closure of the orbit G detn: we add all “limit

polynomials”.
I The previous relation (*) can be rewritten as

Z n�m
perm(X ) = det

2

64
a11 . . . a1n
...

...
an1 . . . ann

3

75 (*’)

where aij = aij(X ,Z ) are now linear in Xij , 1  i , j  m, and a
homogenizing variable Z .

I Observation: If (*’) holds, then Z n�m
perm(X ) is in Detn.

Mulmuley & Sohoni 2001

We should prove that Z n�m
perm(X ) 62 Detn for n  mO(1).

The orbit closure problem of deciding f 2 Detn is much more di�cult
than the orbit problem f 2 G detn: geometric invariant theory.
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Decomposing function spaces via symmetries

Representations

I Resultants are polynomial functions

R : Polyn(Cn2) ! C

that vanish on Detn. They form the vanishing ideal I (Detn) of Detn.

I Let Poly(Polyn(Cn2)) denote the vector space of polynomial

functions on Polyn(Cn2).

I We have an induced linear action of G on Poly(Polyn(Cn2)) that
preserves the vanishing ideal I (Detn).

I Representation theory is the study of linear actions of groups on
vector spaces. It is also of great relevance in quantum mechanics.

I Each representation splits into a direct sum of irreducible
subrepresentations (simultaneous block decomposition for all g 2 G ).

I The isomorphy types V� of irreducible representations of G = GLn2

are labeled by integer vectors � 2 Zn2 , where �1 � · · · � �n2 .
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Decomposing function spaces via symmetries

Plethysms

I Our search for resultants is based on the decomposition

Polyd(Polyn(Cn2)) =
M

�

pleth�V�

into irreducible G -invariant linear subspaces V�. The plethysm
coe�cient pleth� 2 N is the multiplicity of V�.

I The discrete labels � are partitions �1 � · · · � �n2 such thatP
i �i = dn, �i 2 N.

I In the special case Polyd(Polyn(C2)), the decomposition describes
invariants and covariants of degree n binary forms. Intense study in
19th century: (Cayley, Sylvester, Clebsch, Gordan, Hilbert, ...).

I Plethysm coe�cients are not well understood.
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Decomposing function spaces via symmetries

Kronecker coe�cients

I In the analysis of tensors (or trilinear forms), the following
decomposition into irreducible GLn ⇥GLn ⇥GLn-invariant
subspaces is crucial:

Polyd(Cn ⌦ Cn ⌦ Cn) =
M

�,µ,⌫

kron(�, µ, ⌫)V� ⌦ Vµ ⌦ V⌫ .

I The multiplicities kron(�, µ, ⌫) are called Kronecker coe�cients.

Kronecker coe�cients prominently show up in the resultant based
analysis of VP 6= VNP as well as in the analysis of the tensor rank
problem (complexity of matrix multiplication).

No combinatorial description of Kronecker coe�cients is known!
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Decomposing function spaces via symmetries

Resultants in tensor setting

I Specific resultants already have been successfully used for lower
bounds on tensor rank.

I In a pioneering work, Strassen (1983) found a resultant (invariant)
Cn ⌦ Cn ⌦ C3 ! C of type � = (3⇥ n, 3⇥ n, n ⇥ 3) vanishing on
tensors of border rank 3n/2.

I Bläser’s lower bound for the rank of matrix multiplication (1999) is
based on Strassen’s resultant.

I Landsberg and Ottaviani recently improved Bläser’s bound by
extending Strassen’s construction (based on representation theory).

I Ikenmeyer, Hauenstein, Landsberg (2013): Resultant based proof
that border rank of 2⇥ 2 matrix multiplication equals 7. (Using a
highest weight vector of degree 20.)



Geometry, Invariants, and the Elusive Search for Complexity Lower Bounds

Decomposing function spaces via symmetries

On the vanishing ideal of Detn

I The vanishing ideal I (Detn) consists of the resultants.

I Decompositions into G -invariant linear subspaces:

Polyd(Polyn(Cn2)) =
M

�

pleth�V�

I (Detn)d =
M

�

multdet�V�.

I There are multdet� many linearly independent resultants of type �.

Mulmuley-Sohoni ’08, B-Landsberg-Manivel-Weyman ’11

pleth� � kron�  multdet�  pleth�

where kron� := kron(�, n ⇥ d , n ⇥ d) denotes the Kronecker coe�cient
of � and twice the rectangular partition n ⇥ d := (d , . . . , d).
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Decomposing function spaces via symmetries

A “small” example: n = 3

I Extensive computer computations by C. Ikenmeyer. Let n = 3.

I
Poly3(C9) = {cubic forms in 9 variables} ' C165

I For degree d = 12 there are many � with kron� < pleth�. The one
of shortest length `(�) is

� = (13, 13, 2, 2, 2, 2, 2) ` 36, `(�) = 7.

I Here: pleth� = 1 and kron� = 0. Therefore multdet� = 1.

I Hence there is, up to scaling, a unique homogenous polynomial
R : Poly3(C9) ! C of degree 12 of type �.
R is a resultant: it vanishes on Det3.

I Note: R was found as an element of Poly12(C165), which has
dimension ⇡ 1.3 · 1019.
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Occurrence obstructions

Occurrence obstructions (Mulmuley & Sohoni, 2001)

I A candidate for occurrence obstructions for detn is a type � such
that multdet� = pleth�. This means that all polynomials R of type
� vanish on Detn.

I � is an occurrence obstruction to Z n�m
perm in detn if, additionally,

R(Z n�m
perm) 6= 0 for some candidate R .

I If there is an occurrence obstruction, then Z n�m
perm 62 Detn.

I By the previous insight:

kron� = 0 =) � is candidate for occurrence obstructions.

I The converse is false.



Geometry, Invariants, and the Elusive Search for Complexity Lower Bounds

Occurrence obstructions

State of the art regarding occurrence obstructions

I So far, we don’t have any examples of occurrence obstructions in the
determinant setting!!! ///

I Due to huge dimensions, experiments are extremely hard to perform!

I However, good news in the tensor setting Cn ⌦ Cn ⌦ Cn. ,
I B & Ikenmeyer (’13) found an explicit family of occurrence

obstructions in this setting. We used this to prove (modest) lower
bounds on the border rank of the matrix multiplication tensor.
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Occurrence obstructions

Occurrence obstructions are hard to describe /
I Consider the set

S(Detn) := {� | multdet� < pleth�}

of types that are not candidates for occurrence obstructions.

I General principles: S(Detn) is a finitely generated monoid w.r.t.
addition.

I The saturation of S(Detn) consists of all � such that k� 2 S(Detn)
for some k 2 N>0.

B, Christandl, Ikenmeyer ’11, Kumar ’12

The saturation of the monoid S(Detn) contains all types � of length n.

I This proves that only the “holes” � 2 S(detn)sat \ S(detn) can be
occurrence obstructions! Those are hard to analyze.
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Occurrence obstructions

Ongoing work: search for vanishing Kronecker coe�cients
B-Ikenmeyer 2013 found an explicit combinatorial counting function t
such that

I
kron(�, µ, ⌫)  t(�, µ, ⌫),

I testing t(�, µ, ⌫) > 0 is NP-complete.

I This makes it unlikely, that kron(�, µ, ⌫) > 0 can be tested in
polynomial time!

I While this sounds like bad news, Ketan Mulmuley pointed out the
following positive consequence:

I There are superpolynomially many (�, µ, ⌫) of length n with
kron(�, µ, ⌫) = 0 (and they can be explicitely constructed).

I Unfortunately, it turns out that always t(�, µ, ⌫) > 0 if
µ = ⌫ = n ⇥ d are rectangular partitions (Ikenmeyer).

I So this argument breakes down in the case of interest!

I Hopefully, a refinement of the upper bound function t can lead to
success!
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Occurrence obstructions

Thank you!
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