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System models

Some characteristics:
• Hard constraints (on input and states)
• Infinite horizon specifications
• Hybrid (either the system or the controller or both)
• Robust/reactive
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x(k + 1) = f(x(k), uc(k), ud(k), ✏c(k), e(k))

ẋ = f(x, uc, ud, ✏c, e)

x 2 X : state

uc 2 Uc : continuous control input

ud 2 Ud : discrete control input

✏c 2 Dc : disturbance input

e 2 Dd : discrete uncontrollable input

Differential equations (continuous-time):

Or, difference equations (discrete-time):

X ⇢ RN



Landscape of current methods*
Many factors affecting scalability:
• State-space dimension
• Complexity of the dynamics
• Complexity of the specifications
• Strength of conclusions (complete vs. sound)
• Accuracy of the results (correct vs. approximate)
• Ability to handle uncertainty, non-determinism, 

(open-loop vs. closed-loop)
• etc.

* disclaimer: as any categorization, this is incomplete and inaccurate 
when done wrt few factors…
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• Hard state/input constraints, hybrid dynamics, complex 
specifications (e.g., temporal logics)
– Belta, Dimarogonas, Fainekos, Girard, Liu, Pappas, Tabuada, Tumova, 

Wongpironsarn, Zamani…
• Applications (with “small” state-space dim.)

– Robotics, building thermal management, adaptive cruise control, 
aircraft subsystems, traffic control
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Introduction
Solution via Joint Abstraction

Numerical Examples

Scalability
Counting problems

Scalability in Correct-by-Construction Synthesis

⇤ ⇤/⌃ LTL fragment Full LTL
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Many more important aspects!

This work: Exploit symmetries in particular problem class to
enable synthesis for 10,000-dimensional examples and beyond

2 / 21
Gilbert et al., CDC’94, 2Korda et al., SIAM C&O’14, 3Fisac et al., HSCC’15, 4Raman et al., CDC’14,
5Tools such as Pessoa, Tulip, SCOTS
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1 - Reference governors: Gilbert et 
al., CDC’94
2 - Korda et al., SIAM C&O’14
3 - Hamilton Jacobi Bellman: Tomlin 
et al., HSCCC’98
4 - (Mixed) integer linear programs, 
Wolff et al., ICRA’14
5 - Tools such as Pessoa, Tulip, 
SCOTS
6 - Polytopic controlled invariance: 
Bertsekas TAC’72
7 - Satisfiability modulo convex 
optimization: Shoukry et al., 
HSCC’17 

State-of-the-art in formal methods in 
control (incomplete list!)



State-of-the-art in formal methods in 
control (incomplete list!)

• Hard state/input constraints, hybrid dynamics, complex 
specifications (e.g., temporal logics)
– Belta, Dimarogonas, Fainekos, Girard, Liu, Pappas, Tabuada, Tumova, 

Wongpironsarn, Zamani…
• Applications (with “small” state-space dim.)

– Robotics, building thermal management, adaptive cruise control, 
aircraft subsystems, traffic control

• “Medium”-scale systems 
– Monotonicity (Hafner & Del Vecchio 11, Coogan & Arcak 15)
– Multi-scale abstractions for safety (Girard et al. 13)
– Compositional synthesis (Nilsson & Ozay 16, Chen et al. 16, Kim et al. 

15), incremental abstractions (Nilsson & Ozay 15)

5



State-of-the-art in formal methods in 
control (incomplete list!)

• Hard state/input constraints, hybrid dynamics, complex 
specifications (e.g., temporal logics)
– Belta, Dimarogonas, Fainekos, Girard, Liu, Pappas, Tabuada, Tumova, 

Wongpironsarn, Zamani…
• Applications (with “small” state-space dim.)

– Robotics, building thermal management, adaptive cruise control, 
aircraft subsystems, traffic control

• “Medium”-scale systems 
– Monotonicity (Hafner & Del Vecchio 11, Coogan & Arcak 15)
– Multi-scale abstractions for safety (Girard et al. 13)
– Compositional synthesis (Nilsson & Ozay 16, Chen et al. 16, Kim et al. 

15), incremental abstractions (Nilsson & Ozay 15)
• “Large”-scale (but not synthesis)

– Parametric verification of rectangular hybrid automata (Johnson & 
Mitra 12)

– Abstractions of large collections of stochastic systems (Soudjani & 
Abate 15)
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Recurring theme: 
structural properties 



Large collections of systems
Example 1: Emergency response with a robotic 

swarm
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• Deploy a large collection of robots (e.g., 
quadrotors, ground vehicles) for search 
and rescue mission

• Plan trajectories by taking dynamic 
constraints into account

• Requirements:
• Sufficiently many robots in certain 

areas at any given time
• Not too many robots in certain regions 

(danger zones)
• Collision avoidance
• Charging/reporting constraints

Creative commons public license



Large collections of systems
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Example 2: Coordination of thermostatically 
controlled loads (TCLs)Thermosta-cally$Controlled$Loads$(TCLs)$

•  Refrigerators,$water$heaters,$air$
condi-oners,$electric$space$
heaters,$etc.$

•  Hystere-c$ON/OFF$$ $ $
$control$(dead,band)$

•  Store$thermal$energy$ $ $ $
$like$ba`eries$store$ $
$chemical$energy$

TCLs"

3/13/12$ Mathieu$&$Callaway,$UC$Berkeley$ 3$
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11/10/11% 10%J.%Mathieu,%UC%Berkeley%

The$value$of$real,-me$data$in$
controlling$electric$loads$for$
demand$response$

Johanna$Mathieu,$Mechanical$Engineering$
Duncan$Callaway,$Energy$&$Resources$Group$
University$of$California,$Berkeley$

Carnegie$Mellon$Conference$on$the$Electricity$Industry:$March$12,14,$2012$

• Thermostatically controlled loads (e.g., 
refrigerators, air conditioners, water 
heaters) for demand response

• Thermal dynamics can be controlled via 
ON/OFF switches

• Requirements:
• Not too many TCLs ON at the same time 

(to avoid line overload)
• Sufficiently many ON all the time (to 

utilize renewable energy)
• Local temperature constraints (never out 

of desired temperature range)
Mathieu, Koch, Callaway, IEEE Trans. on Power Systems



Common structural properties

• Large number of systems, small number of classes
• Counting constraints: “how many in each mode?”, “how 

many in what region?”
• Identity of individual systems is not important
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robotic swarm

For simplicity, assume:
• dynamics are identical within each class
• (wlog) there is only one class



Motivating example: TCLs

The temperature ✓ in a room with a TCL has dynamics

✓̇i =

(
fon(✓i), if TCL is on

foff (✓i), if TCL is o↵

Suppose we have a collection of rooms with TCL’s {✓i}i2[N ].

• Customers: Want room temperature to be close to a desired

temperature ✓desi , but small deviations are allowed.

k✓i � ✓desi k  � (1)

• Utility company: Wants to control aggregate demand, i.e. the

number of TCLs that are on

NX

i=1

1{TCL i is on} (2)

Goal: Find a switching (i.e., on/o↵) strategy that exploits the

flexibility in (1) so that (2) can be controlled. 2 / 17

Mathematical formulation: TCLs
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condi-oners,$electric$space$
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Mathematical formulation: General
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General problem statement

• N identical switched system with M modes:

ẋi(t) = f�i(t)(xi(t)), �i : R 7! [M ],

• Mode-specific unsafe sets: Um, m 2 [M ]
• Equivalent to forced mode switches.

• Mode-counting bounds:

Km 
NX

i=1

1m(�i(t))  Km (3)

Want to synthesize a switching strategy �i such that (3) satisfied

over time.

3 / 16

Structural property: both the dynamics and the specification 
(counting constraints) are permutation invariant!



Solution overview

• Construct symbolic abstractions and aggregate 
dynamics and define “equivalent” problems 
on these structures

• (Analyze abstractions to understand 
fundamental limitations if any)

• An optimization-based solution approach
• Analysis of the solution approach

12



Solution overview
• Construct symbolic abstractions (i.e., a finite 

transition system) 
– ε-approximate bisimilar abstraction

– for each path on the finite transition system, there is a 
piecewise constant input that generates a trajectory such 
that time-sampled trajectory remains ε-close to the 
discrete states
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Illustration: abstraction

• Mode 1 abstraction
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Illustration: abstraction

• Mode 2 abstraction
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ẋ = f(x, u2)

ẋ = f(x, u1)

Pappas, Girard, Tabuada



Abstraction of individual dynamics
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Approach

Approach: abstraction

• Assume dynamics are �-GAS with KL functions �m

k�m
t (x)� �m

t (y)k1  �m (kx� yk1, t) . (4)

• With discretization in time (⌧) and space (⌘), an ✏-approxi-
mate bisimilar model is obtained if �m(✏, ⌧) + ⌘

2  ✏.

• Transition graphs are deterministic

4 / 18
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Abstraction of individual dynamics
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Abstraction of individual dynamics
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Illustration: abstraction

• Mode 2 abstraction
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mode-transition graph G = (V,E)

Approach
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Observations

• For a homogeneous collection, each system will have an

identical mode-transition graph

• Transition graphs are deterministic

• Consider mild heterogeneity

ẋi(t) = f�i(t)(xi(t), di(t)), �i : R 7! [M ],

where di 2 D (bounded parametric uncertainty or

disturbance). If fm(x, d) is Lm-Lipschitz in x, and

||fm(x, d)� fm(x, 0)||  �m for all di 2 D,

then, with discretization in time (⌧) and space (⌘), an
✏-approximate bisimilar model is obtained if

�m(✏, ⌧) + �m
Lm

(eLm⌧ � 1) + ⌘
2  ✏.

5 / 18

Some observations
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mode-transition graph G = (V,E)
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mode-transition graph G = (V,E)



Aggregate dynamics on graph

Let V = {v1, . . . vK} denote the nodes of mode-transition graph

G = (V,E). Introduce the states wm1
k and rm1,m2

k .

• wm
i represents number of systems in mode m at vk.

• rm1,m2
k represents number of systems at vk that switch
from m1 to m2.

• The dynamics become

�
wm1
k

�+
=

X

j2Nm1
k

 
wm1
j +

X

m2

rm2,m1
j � rm1,m2

j

!
,

• Constrained control actions:

0 
X

m2

rm1,m2
k  wm1

k ,

• Compact description: w+ = Aw +Br

6 / 17

Aggregate dynamics on graph
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Graph $ aggregate dynamics

Consider aggregate dynamics ⌃G : w+ = Aw +Br with safety

and mode-counting constraints:

wm
k (t) = 0 8k 2 Um, (5)

Km 
X

i2[N ]

wm
i (t)  Km. (6)

Then,

• if 9 sequence of control inputs r! for ⌃G that enforce (5) and

(6) with Um +B✏, then 9 a solution to the original problem.

• if @ a sequence of control input r! for ⌃G that enforces (5)

and (6) with Um �B✏, then no solution to the original

problem.

8 / 17

Equivalent problem on aggregate 
dynamics
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Theorem 1: 

We will focus on aggregate dynamics. We need infinite horizon strategies! 

Solution strategy: from a given initial state, steer the system, while respecting the 
constraints, to a nice state from which a periodic input suffices. 
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Controllability-like conditions

22

Solution strategy: from a given initial state, steer the system, while 
respecting the constraints, to a nice state from which a periodic input 
suffices.
• Let’s put the mode-counting constraints aside.
• Are there any fundamental limitations on what states can be 

reached from an initial condition?

with local safety and
input constraints
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Controllability-like conditions
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Solution strategy: from a given initial state, steer the system, while 
respecting the constraints, to a nice state from which a periodic input 
suffices.
• Let’s put the mode-counting constraints aside.
• Are there any fundamental limitations on what states can be 

reached from an initial condition?

Definition: The period n of a strongly connected graph is the greatest 
common divisor of the lengths of its cycles. 

Theorem 2: If the connected components of mode-transition graph 
has period n=1, any state is reachable from any other state (within the 
connected component). If n>1, then the reachable states live on a 
affine subspace arrangement with n affine subspaces.

with local safety and
input constraints



Solution strategy

24

Solution strategy: from a given initial state, steer the system, while 
respecting the constraints, to a nice state from which a periodic input 
suffices.
• Prefix: for a fixed horizon T, given initial state, we will steer the 

state at time T to “nice” cycles
• Suffix: let individual systems circulate in the cycles
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Solution strategy
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Solution strategy: from a given initial state, steer the system, while 
respecting the constraints, to a nice state from which a periodic input 
suffices.
• Prefix: for a fixed horizon T, given initial state, we will steer the 

state at time T to “nice” cycles
• Suffix: let individual systems circulate in the cyclesIllustration: cycles
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• Big cycle C1, assignment ↵1 = [1, 2, 0, 2, 3], gives red counts

 (C1,↵1) = 2,  (C1,↵1) = 5

• Small cycle C2, assignment ↵2 = [3, 0, 2], gives red counts

 (C2,↵2) = 0,  (C2,↵2) = 3

10 / 16

Mode-counting constraints

can be represented as linear 
constraints

Ycm is a circulant matrix.

3 2 3

44

2 2

1
1

1
circulate
�!

4 3 2

34

2 2

1
1

1

Figure 1: Illustration of the assignment ↵ = [3, 2, 3, 4, 4] on a
cycle C of length 5, with two modes 1 (blue) and 2 (red). On the
left, the mode-1-count is 3+4+4 = 11, while the mode-2-count is
3+2=5. After circulating the assignment one step, as displayed to
the right, the mode-1-count is 2+3+4 = 9 and the mode-2-count
is 4+3 = 7. Over all possible circulations, the minimal mode-1-

count is 8, and the maximal mode-1-count is 11, so  
1
(C,↵) = 11

and  1(C,↵) = 8. Similarly,  
2
(C,↵) = 8 and  2(C,↵) = 5.

Definition 5. An integer assignment to a cycle C is
an assignment to C such that ↵(j) is an integer for j 2 [|C|].

Definition 6. The maximal mode-m-count for a cycle
C with assignment ↵ is

 
m

(C,↵) = max
k2[|C|]

X

i: ⌅C(vi)=m

↵ ((k + i) mod |C|) .

For a given assignment, the maximal mode-m-count denotes
the maximal number of systems that are simultaneously in
mode m when the assignment ↵ circulates around C.

Definition 7. The minimal mode-m-count for a cycle
C with assignment ↵ is

 m(C,↵) = min
k2[|C|]

X

i: ⌅C(vi)=m

↵ ((k + i) mod |C|) .

These functions are illustrated in Figure 1 for an example
cycle-assignment pair. Finally, we define a function �C :
R|C|

! R|V | that for a cycle C maps the values of a cycle
assignment ↵ to the corresponding nodes in the graph.

�C(↵)k =

(
↵(j) if ⌫j in C corresponds to ⌫k in V ,

0 otherwise.

4.3 Prefix-suffix strategies as a linear program
We restrict our search to control strategies r(s) for Prob-

lem 2 that are of a particular form.

Definition 8. A control strategy for a condensed initial
state �0 is of prefix-su�x type if it consists of an initial
mode assignment w(0) s.t. ⇤(w(0)) = �0, a finite number
of inputs r(0), . . . , r(T �1), and a set of cycles {Cj}j2J with
assignments {↵j}j2J such that the cycles are populated with
their respective cycle assignments at time T .

For given initial positions �0 2 NK , mode-counting bounds
{K

m
,Km}m2[M ], a given set of cycles {Cj}j2J , and a hori-

zon T , the following linear feasibility program searches for
a prefix-su�x control strategy.

find ↵1, . . . ,↵J cycle assignments,

r(0), . . . , r(T � 1),

w(0), . . . ,w(T ),

s.t. K
m



X

k2[K]

w
m

k (t)  Km, 0  t  T � 1, (12a)

K
m



X

j

 m(Cj ,↵j), (12b)

X

j

 
m

(Cj ,↵j)  K
m

, (12c)

⇤(w(T )) =
X

j

�Cj (↵j), (12d)

w(t+ 1) = Aw(t) +Br(t), t = 0, . . . , T � 1, (12e)

⇤(w(0)) = �0, (12f)
X

m2

r
m1,m2
j

= w
m1
j

for all j 2

[

i2Um1

N
m1
i

, (12g)

r
m2,m1
j

= 0 for all m2 2 [M ], j 2 Um1 , (12h)

control constraints (8) . (12i)

We briefly describe the purpose of each constraint. Firstly,
(12a) assures that mode-counting constraints are satisfied
in the prefix phase, i.e., up to time T � 1. Similarly, (12b)-
(12c) restrict mode-counting in the cyclic phase by ensuring
that the sums of maximal and minimal mode-counts over all
cycles are within the bounds. Eq. (12d) connects the prefix
phase to the su�x phase by ensuring that the condensed
state at time T agrees with the sum of all cycle assignments,
while (12e) propagates the dynamics up to time T , and (12f)
implies that the initial statew(0) must condense to the given
initial condition �0. The mode-safety constraints are taken
care of through (12g)-(12h).
The maximal and minimal mode-counts for a given as-

signment ↵ can be represented by the maximal and minimal
entries of the product Y

m

C ↵, where Y
m

C is the (0, 1)-matrix
s.t.

[Y m

C ]ij =

(
1, if ⌅C(⌫j�(i�1) mod |C|) = m,

0, otherwise .

To illustrate, the cycle C in Figure 1 has matrices

Y
1
C =

"
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0

#
, Y

2
C =

"
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

#
.

Thus, the constraints  m(C,↵) � K
m
,  

m

(C,↵)  Km,
can be enforced by the linear vector inequalities

K
m
1  Y

m

C ↵  Km1.

The feasibility program (12) can be solved either as a nor-
mal linear program (LP) feasibility problem or as an integer
linear program (ILP) feasibility problem. Since the size of
it can be large in practice (for instance due to a fine-grained
abstraction, see paragraph on complexity below), the ILP
version may be impractical. Furthermore, the number of
individual systems N may a↵ect the di�culty of the ILP,
since a larger N increases the number of possible integer
points. In the next section we discuss how feasible solutions
to the ILP are related to feasible solutions of the LP. By
construction, the following result holds.
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Figure 1: Illustration of the assignment ↵ = [3, 2, 3, 4, 4] on a
cycle C of length 5, with two modes 1 (blue) and 2 (red). On the
left, the mode-1-count is 3+4+4 = 11, while the mode-2-count is
3+2=5. After circulating the assignment one step, as displayed to
the right, the mode-1-count is 2+3+4 = 9 and the mode-2-count
is 4+3 = 7. Over all possible circulations, the minimal mode-1-

count is 8, and the maximal mode-1-count is 11, so  
1
(C,↵) = 11

and  1(C,↵) = 8. Similarly,  
2
(C,↵) = 8 and  2(C,↵) = 5.

Definition 5. An integer assignment to a cycle C is
an assignment to C such that ↵(j) is an integer for j 2 [|C|].

Definition 6. The maximal mode-m-count for a cycle
C with assignment ↵ is

 
m

(C,↵) = max
k2[|C|]

X

i: ⌅C(vi)=m

↵ ((k + i) mod |C|) .

For a given assignment, the maximal mode-m-count denotes
the maximal number of systems that are simultaneously in
mode m when the assignment ↵ circulates around C.

Definition 7. The minimal mode-m-count for a cycle
C with assignment ↵ is

 m(C,↵) = min
k2[|C|]

X

i: ⌅C(vi)=m

↵ ((k + i) mod |C|) .

These functions are illustrated in Figure 1 for an example
cycle-assignment pair. Finally, we define a function �C :
R|C|

! R|V | that for a cycle C maps the values of a cycle
assignment ↵ to the corresponding nodes in the graph.

�C(↵)k =

(
↵(j) if ⌫j in C corresponds to ⌫k in V ,

0 otherwise.

4.3 Prefix-suffix strategies as a linear program
We restrict our search to control strategies r(s) for Prob-

lem 2 that are of a particular form.

Definition 8. A control strategy for a condensed initial
state �0 is of prefix-su�x type if it consists of an initial
mode assignment w(0) s.t. ⇤(w(0)) = �0, a finite number
of inputs r(0), . . . , r(T �1), and a set of cycles {Cj}j2J with
assignments {↵j}j2J such that the cycles are populated with
their respective cycle assignments at time T .

For given initial positions �0 2 NK , mode-counting bounds
{K

m
,Km}m2[M ], a given set of cycles {Cj}j2J , and a hori-

zon T , the following linear feasibility program searches for
a prefix-su�x control strategy.

find ↵1, . . . ,↵J cycle assignments,

r(0), . . . , r(T � 1),

w(0), . . . ,w(T ),

s.t. K
m



X

k2[K]

w
m

k (t)  Km, 0  t  T � 1, (12a)

K
m



X

j

 m(Cj ,↵j), (12b)

X

j

 
m

(Cj ,↵j)  K
m

, (12c)

⇤(w(T )) =
X

j

�Cj (↵j), (12d)

w(t+ 1) = Aw(t) +Br(t), t = 0, . . . , T � 1, (12e)

⇤(w(0)) = �0, (12f)
X

m2

r
m1,m2
j

= w
m1
j

for all j 2

[

i2Um1

N
m1
i

, (12g)

r
m2,m1
j

= 0 for all m2 2 [M ], j 2 Um1 , (12h)

control constraints (8) . (12i)

We briefly describe the purpose of each constraint. Firstly,
(12a) assures that mode-counting constraints are satisfied
in the prefix phase, i.e., up to time T � 1. Similarly, (12b)-
(12c) restrict mode-counting in the cyclic phase by ensuring
that the sums of maximal and minimal mode-counts over all
cycles are within the bounds. Eq. (12d) connects the prefix
phase to the su�x phase by ensuring that the condensed
state at time T agrees with the sum of all cycle assignments,
while (12e) propagates the dynamics up to time T , and (12f)
implies that the initial statew(0) must condense to the given
initial condition �0. The mode-safety constraints are taken
care of through (12g)-(12h).
The maximal and minimal mode-counts for a given as-

signment ↵ can be represented by the maximal and minimal
entries of the product Y

m

C ↵, where Y
m

C is the (0, 1)-matrix
s.t.

[Y m

C ]ij =

(
1, if ⌅C(⌫j�(i�1) mod |C|) = m,

0, otherwise .

To illustrate, the cycle C in Figure 1 has matrices

Y
1
C =

"
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0

#
, Y

2
C =

"
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

#
.

Thus, the constraints  m(C,↵) � K
m
,  

m

(C,↵)  Km,
can be enforced by the linear vector inequalities

K
m
1  Y

m

C ↵  Km1.

The feasibility program (12) can be solved either as a nor-
mal linear program (LP) feasibility problem or as an integer
linear program (ILP) feasibility problem. Since the size of
it can be large in practice (for instance due to a fine-grained
abstraction, see paragraph on complexity below), the ILP
version may be impractical. Furthermore, the number of
individual systems N may a↵ect the di�culty of the ILP,
since a larger N increases the number of possible integer
points. In the next section we discuss how feasible solutions
to the ILP are related to feasible solutions of the LP. By
construction, the following result holds.



Linear program

For cycles C1, . . . , CJ , required mode-counts Km, horizon T

find ↵1, . . . ,↵J cycle assignments,

r(0), . . . , r(T � 1),

w(0), . . . ,w(T ),

s.t. Km 
X

k2[K]

wm
k (t)  Km, 0  t  T � 1,

Km 
X

j

 m(Cj ,↵j),

X

j

 
m
(Cj ,↵j)  K

m
,

⇤(w(T )) =
X

j

�Cj (↵j),

w(t+ 1) = Aw(t) +Br(t), t = 0, . . . , T � 1,

⇤(w(0)) = �0,
X

m2

rm1,m2
j = wm1

j for all j 2
[

i2Um1

Nm1
i ,

rm2,m1
j = 0 for all m2 2 [M ], j 2 Um1 ,

control constraints.
12 / 17

Solution via linear programming

26

mode-counting during prefix

mode-counting during suffix

boundary conditions between 
prefix and suffix 

system dynamics 

local safety constraints 

Feasibility problem with linear constraints:
• integrality constraints on the inputs 

(ILP)
• relaxing integrality (LP)

Number of constraints and variables are 
independent of the number of systems N!



Analysis
• Integer solutions (ILP)

– Completeness of prefix-suffix solutions: There exists a finite T and 
some maximal cycle length L such that ILP with all cycles with length 
less than L provides a complete solution to the original problem

– From any feasible ILP solution, we can extract a solution to the original 
problem

• Non-integer solutions (LP):
– Enough to consider simple cycles
– Gives certificates for non-existence of solutions

• Rounding a non-integer solution:
– A non-integer solution over the cycles can be rounded to an integer 

feasible solution with mode counting loss at most

27
Nilsson, Ozay, HSCC 2016

 m(C,↵int)   m(C,↵avg) +
|C|
4



Intuition behind cycles: TCLs
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✓̇i = �a(✓i � ✓a)� bPm

✓ :room temperature

✓a :ambient temperature

Parameters from Mathieu, Koch, Callaway, IEEE Trans. on Power Systems, 2013

local safety
✓i 2 [21.5, 23.5]

Pm = 5.6 when ON

Pm = 0 when OFF

For an individual system if only local ON/OFF control 
is used (no demand response for extra switching), the 
temperature evolves as follows:
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✓̇i = �a(✓i � ✓a)� bPm

✓ :room temperature

✓a :ambient temperature

Parameters from Mathieu, Koch, Callaway, IEEE Trans. on Power Systems, 2013

local safety
✓i 2 [21.5, 23.5]

Pm = 5.6 when ON

Pm = 0 when OFF

For an individual system if only local ON/OFF control 
is used (no demand response for extra switching), the 
temperature evolves as follows:

Roughly, cycles are defining new “bands” within the 
dead-band allowed by the local safety constraints. 
That is, we are changing the duty cycle.



Results on TCLs
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Example 2: TCL’s

Allowed more flexibility in prefix part

0 2 4 6 8 10
t

2500
3000
3500
4000
4500

m
od

e-
on

-c
ou

nt

Lower mode-count:

0 2 4 6 8 10
t

21.0
21.5
22.0
22.5
23.0
23.5
24.0

�

Higher mode-count:

0 2 4 6 8 10
t

21.0
21.5
22.0
22.5
23.0
23.5
24.0

�
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✓̇i = �a(✓i � ✓a)� bPm

N = 10000 units 

10000-D state-space with 
210000 modes!

✓ :room temperature

✓a :ambient temperature

local safety
✓i 2 [21.5, 23.5]

Pm = 5.6 when ON

Pm = 0 when OFF

Two different runs with different mode-counting
constraints (also stricter constraints at the suffix)

Parameters from Mathieu, Koch, Callaway, IEEE Trans. on Power Systems, 2013



Beyond mode counting
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• Counting the agents in 
a region of state-space

• Time-evolution of 
counting constraints 
(counting LTL) 

• Possible to encode 
asynchrony as well

With Yunus Emre Sahin & Petter Nilsson ICCPS17, CDC17, TRO20

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation and definitions

This section introduces notation and necessary background
information. We follow the exposition in [17] for the basic
notions related to transition systems and extend them to
collections.

In the rest of the paper, N denotes the set of non-negative
integers and [N ] = {1, . . . , N} denotes the set of positive
integers up to N . The indicator function of a set A is denoted
1A(x) and is equal to 1 if x 2 A and to 0 otherwise. The
vector 1n represents the n-dimensional vector consisting of
all 1’s.

We use transition systems to model the dynamics of a
single agent.

Definition 1: A transition system is a tuple T = (S,!
, AP, L) where S is a finite set of states, !✓ S ⇥ S is a
transition relation, AP is a finite set of atomic propositions
and L : S ! 2AP is a labeling function.

We say that a state s 2 S satisfies an atomic proposition
a 2 AP if a 2 L(s). We assume that the transition systems
considered do not have any blocking states. That is, for all
s 2 S, there exists a state s

0 such that (s, s0) 2!. This
is without loss of generality since the transition system can
always be amended with a dummy sink state with a self-
transition to obtain a non-blocking transition system that is
equivalent for synthesis purposes.

Definition 2: A path of a transition system T = (S,!
, AP, L) is an infinite sequence ⇡ : s0s1s2 . . . of states such
that (sk, sk+1) 2!. A trace of T corresponding to a path ⇡

is defined as trace(⇡) = L(s0)L(s1)L(s2) . . . 2 (2AP )! .
We are interested in controlling the collective behavior of

N homogeneous agents, dynamics of which are represented
by identical transition systems T . We assume that all the
transitions in a transition system are controllable (or, action
deterministic), that is, if an agent is in state s and a transition
exists from state s to s

0, then the controller can choose to
take this transition and enforce the agent to transition to
state s

0. In the context of robotics it is common to directly
model the motion of a robot using such an action determin-
istic transition system on some grid world; this approach
is based on the assumption that the underlying dynamics
allow steering the robot arbitrarily. Another alternative is to
design low-level motion primitives (see, for instance, [18])
to enable deterministic transitions among different regions
of the workspace. For more complex and general dynamics,
abstraction methods proposed in [19], [20], [21] can be used,
where each node in the transition corresponds to a subset of
the original state-space.

Definition 3: Let ⇧ = {⇡n}n2[N ] be the collection of
paths followed simultaneously by N agents, where each
agent n has the dynamics T

n = (S,!, AP, L) and path
⇡
n : s

n
0 s

n
1 s

n
2 . . .. The collective trace corresponding to ⇧

is a sequence ctrace(⇧) = � = �0�1�2 . . . of functions
�k : AP ! [N ] such that for all a 2 AP , �k(a) =P

n2[N ] 1L(snk )
(a).

In words, a collective trace is a sequence of functions �k

that, at step k, maps each atomic proposition to the number
of agents that are in a state satisfying that atomic proposition.

B. Counting LTL
We introduce a temporal logic that is useful to specify and

reason about the collective behavior of multiple agents. We
call this logic counting linear temporal logic, or, for short,
counting LTL.

The syntax of a counting LTL formula over a set of atomic
propositions AP is given by the following grammar:

' ::= True | cp | '1 ^ '2 | ¬' | �' | '1 U '2, (1)

where cp 2 AP ⇥ N is a counting proposition and ', '1

and '2 are counting LTL formulas. The symbols ¬, ^, �,
U are logical operators negation, conjunction and temporal
operators next and until, respectively. These operators can be
used to define additional operators such as disjunction ('1_
'2

.
= ¬(¬'1 ^ ¬'2)), false (False .

= ¬True), eventually
(⌃' .

= True U '), and always (⇤'
.
= ¬⌃¬').

Next, we present the semantics of counting LTL. Given a
collective trace �, satisfaction of a counting LTL formula '

by � at step k, denoted as �, k |= ', is inductively defined
as follows:

• �, k |= True ,
• for any counting proposition cp = [a,m] 2 AP ⇥ N,

�, k |= [a,m] if and only if �k(a) � m,
• �, k |= '1^'2 if and only if �, k |= '1 and �, k |= '2,
• �, k |= ¬' if and only if �, k 6|= ',
• �, k |= �' if and only if �, k + 1 |= ', and
• �, k |= '1 U '2 if and only if there exists l � 0 such

that �, k+ l |= '2 and �, k+ l
0 |= '1 for all 0  l

0
< l.

We say that a collective trace � satisfies a counting LTL
formula ', and write � |= ', if �, 0 |= '.

To exemplify, assume that a collective trace � is generated
by N agents. Then � satisfies the property ⌃[a, 3] if there
exists a time k � 0 when the states of at least three agents
satisfy a. Similarly, � satisfies ⇤¬[b, 4] if at all times k � 0,
the state of at most three agents satisfy b. We also point out
the tautologies [c, 0] = True , [c,m] = False for m > N ,
and that the negation of a counting proposition is ¬[c, k] =
[¬c,N � k + 1].

Remark 1: It is also possible to consider a metric version
of counting LTL, i.e. similar to metric temporal logic (MTL).
Since we only deal with systems that evolve in discrete-time
steps, MTL would just be syntactic sugar in this case, not
adding to the expressivity of the logic.

C. Problem statement
Now, we are ready to formally state the multi-agent

coordination problem with counting LTL constraints.
Problem 1: Given a counting LTL formula ' over a set

of atomic propositions AP , and a collection of N agents
with identical dynamics Tn = T

.
= (S,!, AP, L) and (non-

identical) initial conditions s
n
0 for n 2 [N ], synthesize, for

each agent n, a path ⇡
n starting at sn0 such that the collective

trace corresponding to ⇧ = {⇡n}n2[N ] satisfies '. That is,

cLTL : cp = [atom prop., count]
cLTL+ : tcp = [ LTL formula, count]



Summary: structure for scalability

• A control synthesis method for large collections of 
systems with counting constraints
– exploits the symmetry (permutation invariance) in the 

dynamics and in specifications
– works across scales (10 to 10K or more systems)
– with potential applications in different domains
– extensions to asynchrony, counting temporal logic
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5Tools such as Pessoa, Tulip, SCOTS[PN, N. Ozay, arXiv 2017][PN, N. Ozay, HSCC 2016][PN, N. Ozay, HSCC 2016][Y. E. Sahin, PN, N. Ozay, ICCPS 2017][Y. E. Sahin, PN, N. Ozay, ICCPS 2017]

Scalability for specific problem type
Future work: explore backwards reachability on abstraction
Future work: exploit other symmetries
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Summary: structure for scalability

• A control synthesis method for large collections of 
systems with counting constraints
– exploits the symmetry (permutation invariance) in the 

dynamics and in specifications
– works across scales (10 to 10K or more systems)
– with potential applications in different domains
– extensions to asynchrony, counting temporal logic

• Current work
– partial information
– non-deterministic abstractions (for not incrementally stable 

systems), asynchronous switching
– other types of symmetries that can be exploited
– other approaches for scalability: decomposition, contracts

33Preprints and more information available @ http://web.eecs.umich.edu/~necmiye/
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