Counterexample-Guided Repair in Boolean

Functional Synthesis

Supratik Chakraborty

Indian Institute of Technology Bombay

Joint work with S. Akshay, Ajith John, Shetal Shah

Workshop on Synthesis of Models & Systems, April 5, 2021
Simons Institute for the Theory of Computing

Synthesis: A Generic View

Specification

N System 4
~ (to be designed) g

Synthesis: A Generic View

Specification

N System 4
~ (to be designed) g

@ Goal: Automatically synthesize system s.t. it satisfies
@(Xlu --va)/I: "7ym)
e Xx; input variables (vector X)
e yj output variables (vector Y)

Synthesis: A Generic View

Specification

N System 4
~ (to be designed) g

@ Goal: Automatically synthesize system s.t. it satisfies
o(X1, .oy Xny Y1, .-, Ym) wWhenever possible.
e Xx; input variables (vector X)
e yj output variables (vector Y)

Synthesis: A Generic View

Specification

N System 4
~ (to be designed)

@ Goal: Automatically synthesize system s.t. it satisfies
o(X1, .oy Xny Y1, .-, Ym) wWhenever possible.

e Xx; input variables (vector X)
e yj output variables (vector Y)

@ Need Y as functions F of
e "History” of X and Y, “State” of system, ...

such that (X, F) is satisfied.

Synthesis: Some Examples

Temporal Spec
G(x1 = Fy1) AG(xo = Fy2) AG(—y1 V —ys)

N System .
~ (to be designed) ’
2 — —)2

@ Synthesize Y as function of
o State (summarizing “history” of X and Y)

Synthesis: Some Examples

Temporal Spec
G(x1 = Fy1) AG(xo = Fy2) AG(—y1 V —ys)

N System .
~ (to be designed) ’
2 — —)2

@ Synthesize Y as function of
o State (summarizing “history” of X and Y)

Winning Region

Synthesis: Some Examples

Temporal Spec
G = Fy1) AG(xe = Fya) AG(—y1 V —y)

N System ’
~ (to be designed) ’
2 ——> —)2

@ Synthesize Y as function of
o State (summarizing “history” of X and Y)

@ Synthesize winning strategy to stay
within winning region

Winning Region

Synthesis: Some Examples

Temporal Spec
G = Fy1) AG(xe = Fya) AG(—y1 V —y)

N System ’
~ (to be designed) ’
2 ——> —)2

@ Synthesize Y as function of
o State (summarizing “history” of X and Y)

@ Synthesize winning strategy to stay
within winning region

@ WinRgn(NxtSt(state, Y)) =1

Winning Region

Synthesis: Some Examples

Temporal Spec
G = Fy1) AG(xe = Fya) AG(—y1 V —y)

N System ’
~ (to be designed) ’
2 ——> —)2

@ Synthesize Y as function of
o State (summarizing “history” of X and Y)

@ Synthesize winning strategy to stay
within winning region
@ WinRgn(NxtSt(state, Y)) =1
@ No temporal operators

Winning Region

Synthesis: Some Examples

Temporal Spec
G = Fy1) AG(xe = Fya) AG(—y1 V —y)

N System ’
~ (to be designed) ’
2 ——> —)2

@ Synthesize Y as function of
o State (summarizing “history” of X and Y)

@ Synthesize winning strategy to stay
within winning region
@ WinRgn(NxtSt(state, Y)) =1
@ No temporal operators

@ Not always satisfiable

Winning Region

Synthesis: Some Examples

Bit-vector Spec
(X =Y XE,] Yg) A —\(Y1 = 1[,,]) A —\(Yg = 1[,,])

. System ’
- X >1 (to be designed) g

@ Synthesize Y1, Y, as functions of X

Synthesis: Some Examples

Bit-vector Spec
(X =Y XE,] Yg) A —\(Y1 = 1[,,]) A —\(Yg = 1[,,])

. System ’
- X >1 (to be designed) g

@ Synthesize Y1, Y, as functions of X
e Spec has no temporal operators

Synthesis: Some Examples

Bit-vector Spec
(X =Y XE,] Yg) A —\(Y1 = 1[,,]) A —\(Yg = 1[,,])

. System ’
- X >1 (to be designed) g

@ Synthesize Y1, Y, as functions of X

e Spec has no temporal operators
e Y1,Y> must be non-trivial factors of X

Synthesis: Some Examples

Bit-vector Spec
(X =Y X[.,,] Yz) A —\(Y1 = 1[,,]) A —\(Yg = 1[,,])

. System .
- X >1 (to be designed) g

@ Synthesize Y1, Y, as functions of X
e Spec has no temporal operators
e Y1,Y> must be non-trivial factors of X
o Not always satisfiable (if X is prime)

Synthesis: Some Examples

Bit-vector Spec
(X =Y X[.,,] Yz) A —\(Y1 = 1[,,]) A —\(Yg = 1[,,])

\ System ,
(to be designed) g

@ Synthesize Y1, Y, as functions of X

Spec has no temporal operators

Y1, Y5> must be non-trivial factors of X

Not always satisfiable (if X is prime)
Efficient solution would break crypto systems

Boolean Functional Synthesis

Formal definition

Given Boolean relation o(xi, .., Xn, V1, -+, Ym)

@ x; input variables (vector X)

@ y; output variables (vector Y)

Boolean Functional Synthesis

Formal definition

Given Boolean relation o(xi, .., Xn, V1, -+, Ym)

@ x; input variables (vector X)
@ y; output variables (vector Y)

Synthesize Boolean functions F;(X) for each y; s.t.

VX(i oym e(Koyi o oym) < (X, Fi(X), ... Fn(X)))

Boolean Functional Synthesis

Formal definition

Given Boolean relation o(xi, .., Xn, V1, -+, Ym)

@ x; input variables (vector X)
@ y; output variables (vector Y)

Synthesize Boolean functions F;(X) for each y; s.t.

VX(i oym e(Koyi o oym) < (X, Fi(X), ... Fn(X)))

F;(X) is also called a Skolem function for y; in .

Boolean Functional Synthesis

Formal definition

Given Boolean relation o(xi, .., Xn, V1, -+, Ym)
@ x; input variables (vector X)
@ y; output variables (vector Y)

Synthesize Boolean functions F;(X) for each y; s.t.

VX(i oym e(Koyi o oym) < (X, Fi(X), ... Fn(X)))

F;(X) is also called a Skolem function for y; in .

o What if ¥X3Y ¢(X,Y) = 07

Boolean Functional Synthesis

Formal definition

Given Boolean relation o(xi, .., Xn, V1, -+, Ym)
@ x; input variables (vector X)
@ y; output variables (vector Y)

Synthesize Boolean functions F;(X) for each y; s.t.

VX(i oym e(Koyi o oym) < (X, Fi(X), ... Fn(X)))

F;(X) is also called a Skolem function for y; in .

e What if YX3Y ¢(X,Y) =07
o Interesting as long as AX3Y p(X,Y) =1

Boolean Functional Synthesis

Formal definition

Given Boolean relation o(xi, .., Xn, V1, -+, Ym)
@ x; input variables (vector X)
@ y; output variables (vector Y)

Synthesize Boolean functions F;(X) for each y; s.t.

VX(i oym e(Koyi o oym) < (X, Fi(X), ... Fn(X)))

F;(X) is also called a Skolem function for y; in .

e What if YX3Y ¢(X,Y) =07
o Interesting as long as AX3Y p(X,Y) =1
o F(X) must give right value of Y for all X s.t. IYp(X,Y) =1

e F(X) inconsequential for other X

Boolean Functional Synthesis

Formal definition

Given Boolean relation o(xi, .., Xn, V1, -+, Ym)
@ x; input variables (vector X)
@ y; output variables (vector Y)

Synthesize Boolean functions F;(X) for each y; s.t.

VX(i oym e(Koyi o oym) < (X, Fi(X), ... Fn(X)))

F;(X) is also called a Skolem function for y; in .

e What if YX3Y ¢(X,Y) =07
o Interesting as long as AX3Y p(X,Y) =1
o F(X) must give right value of Y for all X s.t. IYp(X,Y) =1

e F(X) inconsequential for other X

o Given X, F(X), easy to check if Y o(X,Y) = ¢o(X,F(X)) =0

Applications of Boolean Functional Synthesis

1. Cryptanalysis: Interesting but hard for synthesis!
2. Disjunctive decomposition of symbolic transition relations
[Trivedi et al'02]
3. Quantifier elimination, of coursel
o IY p(X,Y) = o(X,F(X))
4. Certifying QBF-SAT solvers
o Nice survey of applications by Shukla et al'19
5. Reactive controller synthesis
e Synthesizing moves to stay within winning region
6. Program synthesis

o Combinatorial sketching [Solar-Lezama et al'06, Srivastava et
al'13]
o Complete functional synthesis [Kuncak et al'10]

7. Repair/partial synthesis of circuits [Fujita et al'13]

Existing Approaches

1. Closely related to most general Boolean unifiers
e Boole'1847, Lowenheim'1908, Macii'98
2. Extract Sk. functions from proof of validity of YX3Y¢(X,Y)
o Bendetti'05, Jussilla et al’07, Balabanov et al'12, Heule et
al'l4
3. Using templates: Solar-Lezama et al’06, Srivastava et al'13
Self-substitution + function composition: Jiang'09, Trivedi'03
5. Synthesis from special normal form representation of
specification
e From ROBDDs: Kukula et al’00, Kuncak et al'10, Fried et
al'16, Tabajara et al'l7
e From SynNNF: Akshay et al'09
6. Incremental determinization: Rabe et al'17,'18
7. Quantifier instantiation techniques in SMT solvers
o Barrett et al’'15, Bierre et al'17
Input/output component separation: C. et al'18
9. Guess/learn Skolem function candidate + check + repair
e John et al'l5, Akshay et al'17,’18,'20, Golia et al'20

>

®

A Practically Effective Solution: Guess-Check-Repair

e(X, Y1,... Yim)

!

Generate (“guess”) candidate
Skolem functions

Fi,...Fn

A Practically Effective Solution: Guess-Check-Repair

e(X, Y1,... Yim)

|

Generate (“guess”) candidate
Skolem functions

Fi,...Fn

Yes =
Check if Fy1,... F,, is a correct Sk. func. vector [Output F1,..., Fmy

A Practically Effective Solution: Guess-Check-Repair

e(X, Y1,... Yim)

|

Generate (“guess”) candidate
Skolem functions

Fi,...Fn

Check if Fy1,... F,, is a correct Sk. func. vector

ﬁ» Output Fi,...,Fy

No, counterexample

Repair candidate
Skolem functions

A Practically Effective Solution: Guess-Check-Repair

e(X, Y1,... Yim)

|

Generate (“guess”) candidate
Skolem functions

Fi,...Fn

Check if Fy1,... F,, is a correct Sk. func. vector

ﬁ» Output Fi,...,Fy

Repaired Fi,...,Fp No, counterexample

Repair candidate
Skolem functions

A Useful “Guess”-ing Trick

Fix a linear ordering of outputs: y1 < yo < -+ < ¥,

A Useful “Guess”-ing Trick

Fix a linear ordering of outputs: y; < y» < -+ < v, and compute
@ ymas Gu(X,y1,...ym—1) from spec o(X,y1,. .. Ym—1,Ym)

A Useful “Guess”-ing Trick

Fix a linear ordering of outputs: y; < y» < -+ < v, and compute
@ ymas Gu(X,y1,...ym—1) from spec o(X,y1,. .. Ym—1,Ym)
@ ym—1as Gmo1(X,y1,. .. Ym—2) from Iym ©(X, y1, ... Ym—2, Ym—1,Ym)

A Useful “Guess”-ing Trick

Fix a linear ordering of outputs: y; < y» < -+ < v, and compute
@ ymas Gu(X,y1,...ym—1) from spec o(X,y1,. .. Ym—1,Ym)
@ ym—1as Gmo1(X,y1,. .. Ym—2) from Iym ©(X, y1, ... Ym—2, Ym—1,Ym)

o
@ y; as Gi(X) from Jyz ... ym (X, y1,¥2 - .- Ym)

A Useful “Guess”-ing Trick

Fix a linear ordering of outputs: y; < y» < -+ < v, and compute

@ ymas Gu(X,y1,...ym—1) from spec o(X,y1,. .. Ym—1,Ym)

@ ym1as Gn1(X,y1,...ym—2) from Iym (X, y1,. .. Ym—2, Ym—1,¥Ym)
°:

@ y; as Gi(X) from Ty ... Fym o (X, y1,¥2...Ym)

@ Generate Skolem functions for only 1-output specs

@ Need to compute (approximations of) Jy; ... ym ¢(X,Y)

A Useful “Guess”-ing Trick

Fix a linear ordering of outputs: y; < y» < -+ < v, and compute
@ v as Gm(X,y1,. .. ym—1) from spec ©(X, y1, ... Ym—1,Ym)
Ym—1 35 Gm_1(X,y1,...ym—2) from 3ym o(X,y1,... Ym—2,Ym—1,¥m)

y1 as Gi(X) from 3yz... 3ym @(X, y1,¥2 .- . ym)

Generate Skolem functions for only 1-output specs

Need to compute (approximations of) Jy; ... ym p(X,Y)

A |X]-input, |Y|-output circuit computing the desired Skolem
function vector (F1,...F,) can be constructed with

o #gates <) 7, #gates(G;) +2m
o #wires < > 7, F#wires(G)) +M

A Useful “Guess”-ing Trick

Fix a linear ordering of outputs: y; < y» < -+ < v, and compute
@ v as Gm(X,y1,. .. ym—1) from spec ©(X, y1, ... Ym—1,Ym)
Ym—1 35 Gm_1(X,y1,...ym—2) from 3ym o(X,y1,... Ym—2,Ym—1,¥m)

y1 as Gi(X) from 3yz... 3ym @(X, y1,¥2 .- . ym)

Generate Skolem functions for only 1-output specs

Need to compute (approximations of) Jy; ... ym p(X,Y)

A |X]-input, |Y|-output circuit computing the desired Skolem
function vector (F1,...F,) can be constructed with

o #gates <) 7, #gates(G;) +2m
o #wires < > 7, F#wires(G)) +M

Sufficient to compute the G; functions

The “Guess”ing Game

Single output: ¢(X,y)

@ Both ¢(X, 1) and =¢(X,0) are Skolem functions
@ No guess-work!

10

The “Guess”ing Game

Single output: ¢(X,y)

e Both (X, 1) and —¢(X,0) are Skolem functions
@ No guess-work!

Multiple outputs: @(X, y1,...Ym)

o Need to compute Jy; ... 3ym@(X, Y1, Yie2, Vi1, Yis- - Ym)
e Hard in general

@ Approximations easily obtained from NNF of ¢

10

The “Guess”ing Game

Single output: ¢(X,y)

e Both (X, 1) and —¢(X,0) are Skolem functions
@ No guess-work!

Multiple outputs: @(X, y1,...Ym)

o Need to compute Jy; ... 3ym@(X, Y1, Yie2, Vi1, Yis- - Ym)
e Hard in general

@ Approximations easily obtained from NNF of ¢
e Over-approx: Set y;,...Ym and —y;, ...y, leaves to 1

10

The “Guess”ing Game

Single output: ¢(X,y)

e Both (X, 1) and —¢(X,0) are Skolem functions
@ No guess-work!

Multiple outputs: @(X, y1,...Ym)

o Need to compute Jy; ... 3ym@(X, Y1, Yie2, Vi1, Yis- - Ym)
e Hard in general
@ Approximations easily obtained from NNF of ¢

e Over-approx: Set y;,...Ym and —y;, ...y, leaves to 1
o Under-approx: Set y;,...ym and —y;, ...y, leaves to 0

10

The “Guess”ing Game

Single output: ¢(X,y)

e Both (X, 1) and —¢(X,0) are Skolem functions
@ No guess-work!

Multiple outputs: @(X, y1,...Ym)

o Need to compute Jy; ... 3ym@(X, Y1, Yie2, Vi1, Yis- - Ym)
e Hard in general
@ Approximations easily obtained from NNF of ¢

e Over-approx: Set y;,...Ym and —y;, ...y, leaves to 1
e Under-approx: Set y;,...ym and —y;,...ym, leaves to 0
e Use approximations to “guess’ candidate functions G;
o Guarantees over-/under-approximation of guessed Skolem
functions

10

[llustrating Approximations

11

[llustrating Approximations

R =~ =~
@ O(x1...Xn, 0.0, yit1.--¥m, 0.0, —yit1...mym) = Iyi...yi p(...)

N &
@ O(x1..%n, 1.1, Yit1..¥Ym, 1.1, 2yit1...mym) < Iyi...yi o(...)

11

Checking correctness of “guess”-ed Skolem functions

Given candidate Skolem functions F1,... F,

Is VX(IY(X,Y) & o(X,F(X)) ?

12

Checking correctness of “guess”-ed Skolem functions

Given candidate Skolem functions F1,... F,
Is VX(Yp(X,Y) & o(X,F(X)) ?

Can we avoid using a QBF solver?

12

Checking correctness of “guess”-ed Skolem functions

Given candidate Skolem functions Fq, ... F,,
Is VX(Yp(X,Y) & o(X,F(X)) ?

Can we avoid using a QBF solver?

v

Yes, we can! [ACGKS'15]

@ Propositional error formula (X, Y, Y’):
(06 Y) A ALY & F) A=o(X,Y))

Checking correctness of “guess”-ed Skolem functions

Given candidate Skolem functions Fq, ... F,,
Is VX(Yp(X,Y) & o(X,F(X)) ?

Can we avoid using a QBF solver?

v

Yes, we can! [ACGKS'15]

@ Propositional error formula (X, Y, Y’):

(£, Y) A ALY & F) A =p(X,Y))
@ ¢ unsatisfiable iff F,... F,, is correct Skolem function vector

Checking correctness of “guess”-ed Skolem functions

Given candidate Skolem functions Fq, ... F,,
Is VX(Yp(X,Y) & o(X,F(X)) ?

Can we avoid using a QBF solver?

v

Yes, we can! [ACGKS'15]

@ Propositional error formula (X, Y, Y’):

(£, Y) A ALY & F) A =p(X,Y))
@ ¢ unsatisfiable iff F,... F,, is correct Skolem function vector
@ Suppose o: satisfying assignment of ¢

Checking correctness of “guess”-ed Skolem functions

Given candidate Skolem functions Fq, ... F,,
Is VX(Yp(X,Y) & o(X,F(X)) ?

Can we avoid using a QBF solver?

v

Yes, we can! [ACGKS'15]

@ Propositional error formula (X, Y, Y’):
(06 Y) A ALY & F) A=o(X,Y))
@ ¢ unsatisfiable iff F,... F,, is correct Skolem function vector

@ Suppose o: satisfying assignment of ¢
° p(a[X],olY)] =1, o[Y]=F(o[X]), ¢(o[X],0Y])=0

Checking correctness of “guess”-ed Skolem functions

Given candidate Skolem functions Fq, ... F,,
Is VX(Yp(X,Y) & o(X,F(X)) ?

Can we avoid using a QBF solver?

v

Yes, we can! [ACGKS'15]

@ Propositional error formula (X, Y, Y’):

(£, Y) A ALY & F) A =p(X,Y))
@ ¢ unsatisfiable iff F,... F,, is correct Skolem function vector
@ Suppose o: satisfying assignment of ¢
o p(o[X],o[Y) =1, o[Y]=F(o[X]), «(o[X],o[Y])=0
e o is counterexample to the claim that f4,... F,, is a correct
Skolem function vector

Counterexample Generalization

Recall: Skolem functions guessed from approximations of
it Fym e(Ky1s e Vi1, Vi Yig1s - - - Ym)

13

Counterexample Generalization

Recall: Skolem functions guessed from approximations of

Ayivr - ym (K yi, o Yie1, Vis Yigds - - - Ym)
o Let Jyip1... Iymo(X,Y) = ©i(X,y1, ... ¥i-1, Vi) Over-approx

13

Counterexample Generalization

Recall: Skolem functions guessed from approximations of
yiv1 - Iym e, y1s oo Yie1, Vis Vi1, - - - Yim)

o Let Jyip1...3ym @(X,Y) = ©i(X, y1,. .. yi-1,¥i)

o Let 5,‘ = _‘@i|y,-:0; vi = _‘@i|y;=1 Under-approximations

13

Counterexample Generalization

Recall: Skolem functions guessed from approximations of
it Fym e(Ky1s e Vi1, Vi Yig1s - - - Ym)

o Let E|y,'+1 e Hym (p(x, Y) = @,'(X,yl, .. .y,'_l,y,')

o Let §; = =Ojf,=0; 7 = 7Oily=1

o Initial guess G;(X, y1,...yi—1) € {0;, i}

13

Counterexample Generalization

Recall: Skolem functions guessed from approximations of
Fyit1- - Wme(Koy1, - Yie1, i, Yit1, -+ - Ym)
o Let dyiy1... Fym (X, Y) = ©;(X, y1, ... yi1, Vi)
o Let §; = —0j|y—0; i ="0Oil,=1
o Initial guess G;(X,y1,...yi—1) € {di,—i} ... 1-sided error
o G; = §; cannot err if it evaluates to 1
e G; = —y; cannot err if it evaluates to 0

13

Counterexample Generalization

Recall: Skolem functions guessed from approximations of
yitt - 3Ym (K Y15 - Yie1, iy Yigds - - - Ym)
o Let dyiy1... Fym (X, Y) = ©;(X, y1, ... yi1, Vi)
o Let 5,‘ = _‘@i|yf=0; Vi = —|@,'|y/.:1
o Initial guess G;(X,y1,...yi—1) € {di,—i} ... 1-sided error
o G; = §; cannot err if it evaluates to 1
e G; = —y; cannot err if it evaluates to 0

Generalized counterexample

Given o = ¢(X,Y,Y’) and §;,7; for 1 < i< m

Counterexample Generalization

Recall: Skolem functions guessed from approximations of
yitt - 3Ym (K Y15 - Yie1, iy Yigds - - - Ym)
o Let dyiy1... Fym (X, Y) = ©;(X, y1, ... yi1, Vi)
o Let 5,‘ = _‘@i|yf=0; Vi = —|@,'|y/.:1
o Initial guess G;(X,y1,...yi—1) € {di,—i} ... 1-sided error
o G; = §; cannot err if it evaluates to 1
e G; = —y; cannot err if it evaluates to 0

Generalized counterexample
Given o = ¢(X,Y,Y’) and §;,7; for 1 < i< m
Find function (X, y1,...yj—1) for some j € {1,...m} s.t.

Counterexample Generalization

Recall: Skolem functions guessed from approximations of
yitt - 3Ym (K Y15 - Yie1, iy Yigds - - - Ym)
o Let dyiy1... Fym (X, Y) = ©;(X, y1, ... yi1, Vi)
o Let 5,‘ = _‘@i|yf=0; Vi = —|@,'|y/.:1
o Initial guess G;(X,y1,...yi—1) € {di,—i} ... 1-sided error
o G; = §; cannot err if it evaluates to 1
e G; = —y; cannot err if it evaluates to 0

Generalized counterexample
Given o = ¢(X,Y,Y’) and §;,7; for 1 < i< m
Find function (X, y1,...yj—1) for some j € {1,...m} s.t.

oo kEu ... 1 generalizes o

Counterexample Generalization

Recall: Skolem functions guessed from approximations of
yitt - 3Ym (K Y15 - Yie1, iy Yigds - - - Ym)
o Let dyiy1... Fym (X, Y) = ©;(X, y1, ... yi1, Vi)
o Let 5,‘ = _‘@i|yf=0; Vi = —|@,'|y/.:1
o Initial guess G;(X,y1,...yi—1) € {di,—i} ... 1-sided error
o G; = §; cannot err if it evaluates to 1
e G; = —y; cannot err if it evaluates to 0

Generalized counterexample
Given o = ¢(X,Y,Y’) and §;,7; for 1 < i< m
Find function (X, y1,...yj—1) for some j € {1,...m} s.t.

oo kEu ... 1 generalizes o
@ U= AGj

Counterexample Generalization

Recall: Skolem functions guessed from approximations of
yitt - 3Ym (K Y15 - Yie1, iy Yigds - - - Ym)
o Let dyiy1... Fym (X, Y) = ©;(X, y1, ... yi1, Vi)
o Let 5,‘ = _‘@i|yf=0; Vi = —|@,'|y/.:1
o Initial guess G;(X,y1,...yi—1) € {di,—i} ... 1-sided error
o G; = §; cannot err if it evaluates to 1
e G; = —y; cannot err if it evaluates to 0

Generalized counterexample
Given o = ¢(X,Y,Y’) and §;,7; for 1 < i< m
Find function (X, y1,...yj—1) for some j € {1,...m} s.t.

oo kEu ... 1 generalizes o
@ U= AGj
° :>vyj-~~V}’m_‘<P(X7Y17~-~yj—1a)’jayj+17~-~)/m)

Counterexample Generalization

Recall: Skolem functions guessed from approximations of
yitt - 3Ym (K Y15 - Yie1, iy Yigds - - - Ym)
o Let dyiy1... Fym (X, Y) = ©;(X, y1, ... yi1, Vi)
o Let 5,‘ = _‘@i|yf=0; Vi = —|@,'|y/.:1
o Initial guess G;(X,y1,...yi—1) € {di,—i} ... 1-sided error
o G; = §; cannot err if it evaluates to 1
e G; = —y; cannot err if it evaluates to 0

Generalized counterexample
Given o = ¢(X,Y,Y’) and §;,7; for 1 < i< m
Find function (X, y1,...yj—1) for some j € {1,...m} s.t.

oo kEu ... 1 generalizes o
@ U= AGj

° :>vyj-~~V}’m_‘<P(X7Y17~-~yj—1a)’jayj+17~-~)/m)
o If m = u, no extension of 7 satisfies ¢ ... counterexample

Counterexample Generalization

Recall: Skolem functions guessed from approximations of
yitt - 3Ym (K Y15 - Yie1, iy Yigds - - - Ym)
o Let dyiy1... Fym (X, Y) = ©;(X, y1, ... yi1, Vi)
o Let 6; = —Oi|,—0; Vi ="0i],=1
o Initial guess G;(X,y1,...yi—1) € {di,—i} ... 1-sided error
o G; = §; cannot err if it evaluates to 1
e G; = —y; cannot err if it evaluates to 0

Generalized counterexample
Given o = ¢(X,Y,Y’) and §;,7; for 1 < i< m
Find function (X, y1,...yj—1) for some j € {1,...m} s.t.

oo kEu ... 1 generalizes o
@ U= AGj

° :>vyj-~~V}’m_‘<P(X7Y17~-~yj—1a)’jayj+17~-~)/m)

o If m = i, no extension of 7 satisfies ¢ ... counterexample

Must ensure that (X, Gi,... Gj_1) never evaluates to

Repairing “guess’-ed candidate Skolem functions

e Every model of ;(X, y1,...yj—1) gives a problematic
combination of Gi,... Gj_1 values

14

Repairing “guess’-ed candidate Skolem functions

e Every model of ;(X, y1,...yj—1) gives a problematic
combination of Gi,... Gj_1 values
e Flip G;_1 whenever p holds

14

Repairing “guess’-ed candidate Skolem functions

e Every model of ;(X, y1,...yj—1) gives a problematic
combination of Gi,... Gj_1 values
e Flip G;_1 whenever p holds
o Recall Gj_1 € {—yj_1,d;-1}

14

Repairing “guess’-ed candidate Skolem functions

e Every model of ;(X, y1,...yj—1) gives a problematic
combination of Gi,... Gj_1 values
e Flip G;_1 whenever p holds
o Recall Gj_1 € {—yj_1,d;-1}
e Only source of error: under-approximation of
=3y, Aym (Ko v, Y2, Vi1, Y - - Yim)

14

Repairing “guess’-ed candidate Skolem functions

e Every model of ;(X, y1,...yj—1) gives a problematic
combination of Gi,... Gj_1 values
e Flip G;_1 whenever p holds
o Recall Gj_1 € {—yj_1,d;-1}
e Only source of error: under-approximation of

=3y, Aym (Ko v, Y2, Vi1, Y - - Yim)
e Repair: Expand under-approximation

o If Gj_1is —yj_1, V-1 < V-1V N|a[yj71]
o If Gj_1is 5j_1, 51‘_1 — 5j_1 V /A|J[yj_1]

14

Repairing “guess’-ed candidate Skolem functions

e Every model of ;(X, y1,...yj—1) gives a problematic
combination of Gi,... Gj_1 values
@ Flip Gj_1 whenever p holds
o Recall Gj_1 € {—yj_1,d;-1}
e Only source of error: under-approximation of

=3y, Aym (Ko v, Y2, Vi1, Y - - Yim)
e Repair: Expand under-approximation

o If G1is =j—1, -1 ¢ V-1V Ulopy,_y)
o If Gj_1is 51;1, 51;1 — 5j71 V /A|J[yj_1]

Counter-example guided repair by expanding §;'s and 7;'s.

14

Repairing “guess’-ed candidate Skolem functions

e Every model of ;(X, y1,...yj—1) gives a problematic
combination of Gi,... Gj_1 values
@ Flip Gj_1 whenever p holds
o Recall Gj_1 € {—yj_1,d;-1}
e Only source of error: under-approximation of

=3y, Aym (Ko v, Y2, Vi1, Y - - Yim)
e Repair: Expand under-approximation

o If Givis i1, im1 4 V-1V tlopy)
o If Gj_1is 51;1, 51;1 — 5j71 V /L|J[yj_1]

Counter-example guided repair by expanding §;'s and 7;'s.

Expansion-based repair

14

Repairing “guess’-ed candidate Skolem functions

e Every model of ;(X, y1,...yj—1) gives a problematic
combination of Gi,... Gj_1 values
@ Flip Gj_1 whenever p holds

o Recall ijl S {—ryj_l,éj_l}
e Only source of error: under-approximation of

=3y, Aym (Ko v, Y2, Vi1, Y - - Yim)
e Repair: Expand under-approximation

o If Givis i1, im1 4 V-1V tlopy)
o If Gj_1is 51;1, 51;1 — 5j71 V /L|J[yj_1]

Counter-example guided repair by expanding §;'s and 7;'s.
Expansion-based repair

Simple argument for termination — expansions can't go on forever

14

Counterexample-guided repair

Can we always find p?

Counterexample-guided repair

Can we always find p?

Yes!!!

Counterexample-guided repair

Can we always find p?

Yes!!!
® [iworst—case: ClausalForm(a[X, yi1,...ym-1])

LY ': Hworst—case

Counterexample-guided repair

Can we always find p?

Yes!!!
® [iworst—case: ClausalForm(a[X, yi1,...ym-1])

LY ': Hworst—case
@ [lworst—case = Ym /\ Om

Counterexample-guided repair

Can we always find p?

Yes!!!
® [iworst—case: ClausalForm(a[X, yi1,...ym-1])

LY ': Hworst—case
@ [worst—case = Ym /\ Om Why7

Counterexample-guided repair

Can we always find p?

Yes!!!
® [iworst—case: ClausalForm(a[X, yi1,...ym-1])

LY ': Hworst—case
@ [worst—case = Ym /\ Om Why7

o Gpn € {¢ly=1, 7¥|y.=0} always correct Skolem function

Counterexample-guided repair

Can we always find p?

Yes!!!
® [iworst—case: ClausalForm(a[X, yi1,...ym-1])

O @ ': Mworst—case

® lworst—case = Ym A\ Om ... Why?
o Gpn € {¢ly=1, 7¥|y.=0} always correct Skolem function
o And yet, (p(O’[X7y1, oo 'ymfl]v Gm(U[X,yh . '}/mfl])) =0

Counterexample-guided repair

Can we always find p?

Yes!!!
® [iworst—case: ClausalForm(a[X, yi1,...ym-1])

O @ ': Mworst—case

® lworst—case = Ym A\ Om ... Why?
o Gpn € {¢ly=1, 7¥|y.=0} always correct Skolem function
o And yet, (p(O’[X7y1, oo 'ymfl]v Gm(U[X,yh . '}/mfl])) =0

@ Choose smallest j s.t. o |=6; A~;

Counterexample-guided repair
Can we always find p?

Yes!!!
® [iworst—case: ClausalForm(a[X, yi1,...ym-1])

o0 ': Hworst—case
° Nworst—case = 7m A 5m Why7

o Gpn € {¢ly=1, 7¥|y.=0} always correct Skolem function
o And yet, p(o[X, y1,...Ym-1], Gm(o[X, y1,. .. ym-1])) = 0

@ Choose smallest j s.t. o |=6; A~;

v

Repairing multiple Skolem functions

Counterexample-guided repair
Can we always find p?

Yes!!!
® [iworst—case: ClausalForm(a[X, yi1,...ym-1])

o0 ': Hworst—case
° Nworst—case = 7m A 5m Why7

o Gpn € {¢ly=1, 7¥|y.=0} always correct Skolem function
o And yet, p(o[X, y1,...Ym-1], Gm(o[X, y1,. .. ym-1])) = 0

@ Choose smallest j s.t. o |=6; A~;

v

Repairing multiple Skolem functions

Observation: (u|y,_,—0 A ply_,=1) = Vyj-1...Vym-p

Counterexample-guided repair
Can we always find p?

Yes!!!
® [iworst—case: ClausalForm(a[X, yi1,...ym-1])

o0 ': Hworst—case
° Nworst—case = 7m A 5m Why7

o Gpn € {¢ly=1, 7¥|y.=0} always correct Skolem function
o And yet, p(o[X, y1,...Ym-1], Gm(o[X, y1,. .. ym-1])) = 0

@ Choose smallest j s.t. o |=6; A~;

v

Repairing multiple Skolem functions

Observation: (u|y,_,—0 A ply_,=1) = Vyj-1...Vym-p

o Update p to puly, ;=0 A pily,_;=1 and repeat with j decremented

Counterexample-guided repair
Can we always find p?

Yes!!!
® [iworst—case: ClausalForm(a[X, yi1,...ym-1])

o0 ': Hworst—case
° Nworst—case = 7m A 5m Why7

o Gpn € {¢ly=1, 7¥|y.=0} always correct Skolem function
o And yet, p(o[X, y1,...Ym-1], Gm(o[X, y1,. .. ym-1])) = 0

@ Choose smallest j s.t. o |=6; A~;

v

Repairing multiple Skolem functions

Observation: (u|y,_,—0 A ply_,=1) = Vyj-1...Vym-p

o Update p to puly, ;=0 A pily,_;=1 and repeat with j decremented

@ Can repair multiple Skolem functions starting from one
counterexample

Experimental Comparison

BFSS (Cex-guided-repair) vis-a-vis CADET (incremental

determinization) [Rabe & Seshia'16]

[Comparisons with other tools in FMSD 2020 paper]

10* Q =
TO Dunnmmnug
p
el #
2 B, ®
g 5 o i
k) o
E 5 8y B
3 102 | L e oA .
S wo ® B
£ 1L a o
@ 10 g B4 °
E a E o B
£ o
100 % | ° .
g @52 5 ° oo o
o P 0% T tonfg® o OB
10 ® o gm® P .
107 10 10" 102 10° 10*
TO

Time in BFSS (sec)

10*
TO
10° +

102 +

10" b

Time in CADET (sec)

10° ¢

107

o o

107"

el Cl I L L
10° 10" 102 10° 10t

Time in BFSS (sec) TO

Q: QBFEval, A: Arithmetic, F: Factorization, D: Disjunctive
Decomposition. TO: Timeout (3600 sec)

16

Experimental Comparison

BFSS (Cex-guided-repair) vis-a-vis CADET (incremental

determinization) [Rabe & Seshia'16]

[Comparisons with other tools in FMSD 2020 paper]

10*
e

Time in CADET (sec)

107

9
5 e

L e
== aa]

aFeo o w

& e @ e 2oaflg @ o
o | °

o m

g o
om0 oo coom)

107"

100 10" 102 10°

10*

Time in BFSS (sec) TO

10*
e

Time in CADET (sec)

107

o o

107"

el Cl I L L
10° 10" 102 10° 10t

Time in BFSS (sec) TO

Q: QBFEval, A: Arithmetic, F: Factorization, D: Disjunctive
Decomposition. TO: Timeout (3600 sec)

@ Mixed results: tools have orthogonal strengths
@ Using CADET and BFSS as a portfolio solver sounds
promising

16

Another Flavour of Guess-Check-Repair

Manthan: Golia et al [GMR'20]

17

Another Flavour of Guess-Check-Repair

Manthan: Golia et al [GMR'20]
@ “Guess” using machine learning techniques

17

Another Flavour of Guess-Check-Repair

Manthan: Golia et al [GMR'20]
@ “Guess” using machine learning techniques
e Sample solutions of ¢(X,Y): Data-driven!!!

17

Another Flavour of Guess-Check-Repair

Manthan: Golia et al [GMR'20]
@ “Guess” using machine learning techniques

e Sample solutions of ¢(X,Y): Data-driven!!!
o Learn “Decision Tree” for y; in terms of X, y1,...y; 1

17

Another Flavour of Guess-Check-Repair

Manthan: Golia et al [GMR'20]
@ “Guess” using machine learning techniques
e Sample solutions of p(X,Y): Data-driven!!!
o Learn “Decision Tree” for y; in terms of X, y1,...y; 1
@ Ok to not match data exactly
Can have 2-sided errors!

Repair learnt decision trees later!
Often results in small decision trees

17

Another Flavour of Guess-Check-Repair

Manthan: Golia et al [GMR'20]
@ “Guess” using machine learning techniques

e Sample solutions of p(X,Y): Data-driven!!!
o Learn “Decision Tree” for y; in terms of X, y1,...y; 1
@ Ok to not match data exactly
@ Can have 2-sided errors!
@ Repair learnt decision trees later!
@ Often results in small decision trees

@ "“Check” using error formula (X, Y,Y’) as before

17

Another Flavour of Guess-Check-Repair

Manthan: Golia et al [GMR'20]
@ “Guess” using machine learning techniques

e Sample solutions of p(X,Y): Data-driven!!!
o Learn “Decision Tree” for y; in terms of X, y1,...y; 1

@ Ok to not match data exactly

@ Can have 2-sided errors!

@ Repair learnt decision trees later!

o Often results in small decision trees

@ "“Check” using error formula (X, Y,Y’) as before
@ "Repair’ using unsatisfiable cores

17

Another Flavour of Guess-Check-Repair

Manthan: Golia et al [GMR'20]
@ “Guess” using machine learning techniques

e Sample solutions of p(X,Y): Data-driven!!!
o Learn “Decision Tree” for y; in terms of X, y1,...y; 1

@ Ok to not match data exactly

@ Can have 2-sided errors!

@ Repair learnt decision trees later!

o Often results in small decision trees

@ "“Check” using error formula (X, Y,Y’) as before

@ “Repair”’ using unsatisfiable cores
o o Ee(X,Y,Y")
o Candidates to repair: F; s.t. y; #Y/;

17

Another Flavour of Guess-Check-Repair

Manthan: Golia et al [GMR'20]
@ “Guess” using machine learning techniques

e Sample solutions of p(X,Y): Data-driven!!!
o Learn “Decision Tree” for y; in terms of X, y1,...y; 1

@ Ok to not match data exactly

@ Can have 2-sided errors!

@ Repair learnt decision trees later!

o Often results in small decision trees

@ “Check” using error formula £(X,Y,Y’) as before
@ “Repair”’ using unsatisfiable cores
o o Ee(X,Y,Y)
o Candidates to repair: F; s.t. y; #Y/;
o Ri(X.Y) = o(X.Y) A ALy (i & olxl) A (vi & oY1)

17

Another Flavour of Guess-Check-Repair

Manthan: Golia et al [GMR'20]
@ “Guess” using machine learning techniques
e Sample solutions of p(X,Y): Data-driven!!!
o Learn “Decision Tree” for y; in terms of X, y1,...y; 1

@ Ok to not match data exactly

@ Can have 2-sided errors!

@ Repair learnt decision trees later!

o Often results in small decision trees

@ “Check” using error formula £(X,Y,Y’) as before

@ “Repair”’ using unsatisfiable cores

o kE=e(X,Y,Y)

Candidates to repair: F; s.t. y; #Y/;

RIX,Y) = 00X, Y) A ALy (- alx]) A (1 < oY)
Find repair formula 38 from Unsat Core of R;(X,Y)

17

Another Flavour of Guess-Check-Repair

Manthan: Golia et al [GMR'20]

@ “Guess” using machine learning techniques
e Sample solutions of p(X,Y): Data-driven!!!
o Learn “Decision Tree” for y; in terms of X, y1,...y; 1
@ Ok to not match data exactly
@ Can have 2-sided errors!
@ Repair learnt decision trees later!
o Often results in small decision trees

@ "“Check” using error formula (X, Y,Y’) as before

@ “Repair”’ using unsatisfiable cores
o Ee(X,Y,Y)
Candidates to repair: F; s.t. y; #Y/;
RIXY) = (X, Y) A ALy (5 alx]) A (1 < ofY'))
Find repair formula 38 from Unsat Core of R;(X,Y)
Update

e F; to F/Vﬂ ifU[y;] =0

e F; to F,'/\—‘ﬂ ifO‘[y,'] =1

17

Some more experimental comparisons [GMR20]

Tl MANTHAN
—+— CADET
6000 4-| —%— BFSS
—=— C2Syn

!
. |
| /

CrU-11mels)
:
%{}o‘

:
PRy
N

0 50 100 150 200 250 300 350 400
Instances

[Courtesy “Manthan: A Data Driven Approach to Boolean Functional Synthesis”,
Golia et al, CAV 2020]

18

Conclusion

@ Boolean functional synthesis has diverse applications,
including in temporal synthesis

10

Conclusion

@ Boolean functional synthesis has diverse applications,
including in temporal synthesis

@ Guess-check-repair: a powerful paradigm

10

Conclusion

@ Boolean functional synthesis has diverse applications,
including in temporal synthesis

@ Guess-check-repair: a powerful paradigm

o Different approaches to guessing possible

e Based on approximations of quantifier elimination
e Based on machine learning

19

Conclusion

@ Boolean functional synthesis has diverse applications,
including in temporal synthesis

@ Guess-check-repair: a powerful paradigm

o Different approaches to guessing possible

e Based on approximations of quantifier elimination
e Based on machine learning

@ Different approaches to counterexample-guided repair possible

e Expansion of under-approximations
o Unsatisfiable core based repair

19

Conclusion

@ Boolean functional synthesis has diverse applications,
including in temporal synthesis

Guess-check-repair: a powerful paradigm

Different approaches to guessing possible

e Based on approximations of quantifier elimination
e Based on machine learning

Different approaches to counterexample-guided repair possible

e Expansion of under-approximations
o Unsatisfiable core based repair

@ Recent results (BFSS, Manthan) extremely promising!!!

19

