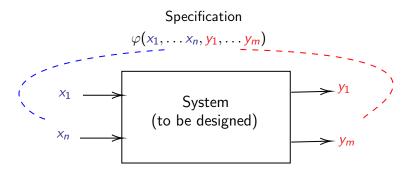
Counterexample-Guided Repair in Boolean Functional Synthesis

Supratik Chakraborty

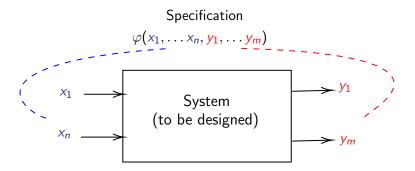
Indian Institute of Technology Bombay

Joint work with S. Akshay, Ajith John, Shetal Shah

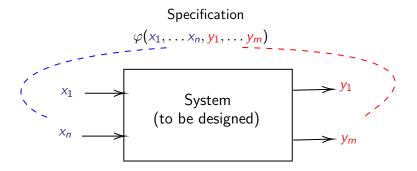
Workshop on Synthesis of Models & Systems, April 5, 2021 Simons Institute for the Theory of Computing



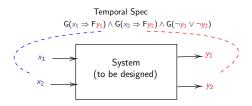
- Goal: Automatically synthesize system s.t. it satisfies $\varphi(x_1,...,x_n,y_1,...,y_m)$
 - x_i input variables (vector X)
 - y_j output variables (vector Y)



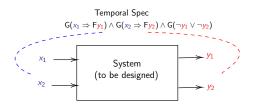
- Goal: Automatically synthesize system s.t. it satisfies $\varphi(x_1,...,x_n,y_1,...,y_m)$ whenever possible.
 - x_i input variables (vector X)
 - y_j output variables (vector Y)



- Goal: Automatically synthesize system s.t. it satisfies $\varphi(x_1,...,x_n,y_1,...,y_m)$ whenever possible.
 - x_i input variables (vector X)
 - y_j output variables (vector Y)
- Need Y as functions F of
 - "History" of X and Y, "State" of system, ... such that $\varphi(X, F)$ is satisfied.

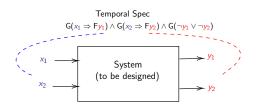


- Synthesize Y as function of
 - State (summarizing "history" of X and Y)



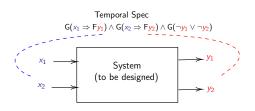
- Synthesize Y as function of
 - State (summarizing "history" of X and Y)





- Synthesize Y as function of
 - State (summarizing "history" of X and Y)

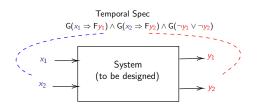
• Synthesize winning strategy to stay within winning region



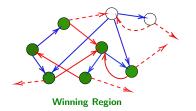
- Synthesize Y as function of
 - State (summarizing "history" of X and Y)



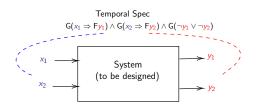
- Synthesize winning strategy to stay within winning region
 - WinRgn(NxtSt(state, Y)) = 1



- Synthesize Y as function of
 - State (summarizing "history" of X and Y)

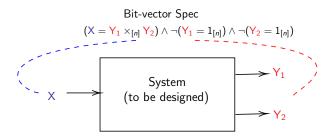


- Synthesize winning strategy to stay within winning region
 - $\bullet \ \, \mathsf{WinRgn}(\mathsf{NxtSt}(\mathsf{state},\, {\color{red} \mathbf{Y}})) = 1 \\$
 - No temporal operators

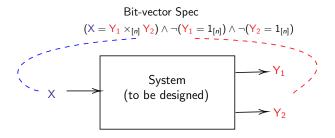


- Synthesize Y as function of
 - State (summarizing "history" of X and Y)

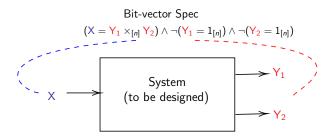
- Synthesize winning strategy to stay within winning region
 - WinRgn(NxtSt(state, $\frac{\mathbf{Y}}{\mathbf{Y}})) = 1$
 - No temporal operators
 - Not always satisfiable



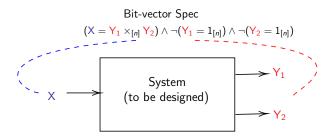
• Synthesize Y₁, Y₂ as functions of X



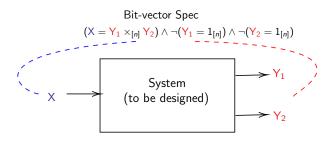
- Synthesize Y₁, Y₂ as functions of X
 - Spec has no temporal operators



- Synthesize Y₁, Y₂ as functions of X
 - Spec has no temporal operators
 - Y₁, Y₂ must be non-trivial factors of X



- Synthesize Y₁, Y₂ as functions of X
 - Spec has no temporal operators
 - Y₁, Y₂ must be non-trivial factors of X
 - Not always satisfiable (if X is prime)



- Synthesize Y₁, Y₂ as functions of X
 - Spec has no temporal operators
 - Y₁, Y₂ must be non-trivial factors of X
 - Not always satisfiable (if X is prime)
 - Efficient solution would break crypto systems

Formal definition

Given Boolean relation $\varphi(x_1,..,x_n,y_1,..,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Formal definition

Given Boolean relation $\varphi(x_1,...,x_n,y_1,...,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X (\exists y_1 \dots y_m \ \varphi(X, y_1 \dots y_m) \Leftrightarrow \varphi(X, F_1(X), \dots F_m(X)))$$

Formal definition

Given Boolean relation $\varphi(x_1,..,x_n,y_1,..,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X \big(\exists y_1 \dots y_m \ \varphi(X, y_1 \dots y_m) \ \Leftrightarrow \ \varphi(X, F_1(X), \dots F_m(X)) \ \big)$$

Formal definition

Given Boolean relation $\varphi(x_1,..,x_n,y_1,..,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X (\exists y_1 \dots y_m \varphi(X, y_1 \dots y_m) \Leftrightarrow \varphi(X, F_1(X), \dots F_m(X)))$$

 $F_j(X)$ is also called a *Skolem function* for y_j in φ .

• What if $\forall X \exists Y \varphi(X, Y) = 0$?

Formal definition

Given Boolean relation $\varphi(x_1,..,x_n,y_1,..,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X (\exists y_1 \dots y_m \varphi(X, y_1 \dots y_m) \Leftrightarrow \varphi(X, F_1(X), \dots F_m(X)))$$

- What if $\forall X \exists Y \varphi(X, Y) = 0$?
 - Interesting as long as $\exists X \exists Y \ \varphi(X, Y) = 1$

Formal definition

Given Boolean relation $\varphi(x_1,..,x_n,y_1,..,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X (\exists y_1 \dots y_m \varphi(X, y_1 \dots y_m) \Leftrightarrow \varphi(X, F_1(X), \dots F_m(X)))$$

- What if $\forall X \exists Y \varphi(X, Y) = 0$?
 - Interesting as long as $\exists X \exists Y \varphi(X, Y) = 1$
 - F(X) must give right value of Y for all X s.t. $\exists Y \varphi(X, Y) = 1$
 - F(X) inconsequential for other X

Formal definition

Given Boolean relation $\varphi(x_1,..,x_n,y_1,..,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X (\exists y_1 \dots y_m \varphi(X, y_1 \dots y_m) \Leftrightarrow \varphi(X, F_1(X), \dots F_m(X)))$$

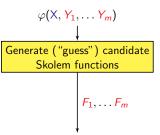
- What if $\forall X \exists Y \varphi(X, Y) = 0$?
 - Interesting as long as $\exists X\exists Y \ \varphi(X,Y)=1$
 - F(X) must give right value of Y for all X s.t. $\exists Y \varphi(X, Y) = 1$
 - F(X) inconsequential for other X
 - Given X, F(X), easy to check if $\exists Y \varphi(X, Y) = \varphi(X, F(X)) = 0$

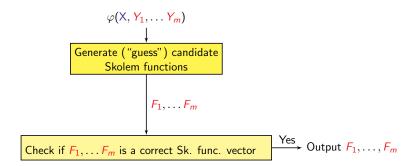
Applications of Boolean Functional Synthesis

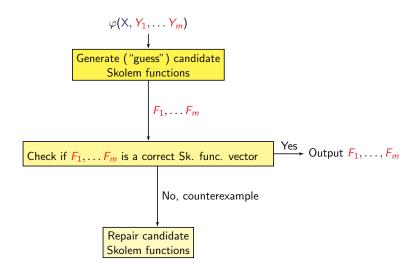
- 1. Cryptanalysis: Interesting but hard for synthesis!
- Disjunctive decomposition of symbolic transition relations [Trivedi et al'02]
- 3. Quantifier elimination, of course!
 - $\exists Y \varphi(X, Y) \equiv \varphi(X, F(X))$
- 4. Certifying QBF-SAT solvers
 - Nice survey of applications by Shukla et al'19
- 5. Reactive controller synthesis
 - Synthesizing moves to stay within winning region
- 6. Program synthesis
 - Combinatorial sketching [Solar-Lezama et al'06, Srivastava et al'13]
 - Complete functional synthesis [Kuncak et al'10]
- 7. Repair/partial synthesis of circuits [Fujita et al'13]

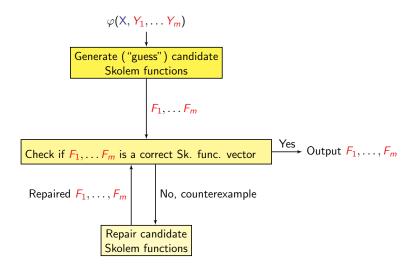
Existing Approaches

- 1. Closely related to most general Boolean unifiers
 - Boole'1847, Lowenheim'1908, Macii'98
- 2. Extract Sk. functions from proof of validity of $\forall X \exists Y \varphi(X, Y)$
 - Bendetti'05, Jussilla et al'07, Balabanov et al'12, Heule et al'14
- 3. Using templates: Solar-Lezama et al'06, Srivastava et al'13
- 4. Self-substitution + function composition: Jiang'09, Trivedi'03
- Synthesis from special normal form representation of specification
 - From ROBDDs: Kukula et al'00, Kuncak et al'10, Fried et al'16, Tabajara et al'17
 - From SynNNF: Akshay et al'09
- 6. Incremental determinization: Rabe et al'17,'18
- 7. Quantifier instantiation techniques in SMT solvers
 - Barrett et al'15, Bierre et al'17
- 8. Input/output component separation: C. et al'18
- 9. Guess/learn Skolem function candidate + check + **repair**
 - John et al'15, Akshay et al'17,'18,'20, Golia et al'20









Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$,

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$, and compute

• y_m as $G_m(X, y_1, \dots y_{m-1})$ from spec $\varphi(X, y_1, \dots y_{m-1}, y_m)$

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$, and compute

- y_m as $G_m(X, y_1, \dots y_{m-1})$ from spec $\varphi(X, y_1, \dots y_{m-1}, y_m)$
- y_{m-1} as $G_{m-1}(X, y_1, \dots y_{m-2})$ from $\exists y_m \varphi(X, y_1, \dots y_{m-2}, y_{m-1}, y_m)$
- :

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$, and compute

```
• y_m as G_m(X, y_1, \dots y_{m-1}) from spec \varphi(X, y_1, \dots y_{m-1}, y_m)
```

•
$$y_{m-1}$$
 as $G_{m-1}(X, y_1, \dots, y_{m-2})$ from $\exists y_m \varphi(X, y_1, \dots, y_{m-2}, y_{m-1}, y_m)$

• :

•
$$y_1$$
 as $G_1(X)$ from $\exists y_2 \ldots \exists y_m \varphi(X, y_1, y_2 \ldots y_m)$

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$, and compute

- y_m as $G_m(X, y_1, \dots y_{m-1})$ from spec $\varphi(X, y_1, \dots y_{m-1}, y_m)$
- y_{m-1} as $G_{m-1}(X, y_1, \dots, y_{m-2})$ from $\exists y_m \varphi(X, y_1, \dots, y_{m-2}, y_{m-1}, y_m)$
- •
- y_1 as $G_1(X)$ from $\exists y_2 \ldots \exists y_m \varphi(X, y_1, y_2 \ldots y_m)$
- Generate Skolem functions for only 1-output specs
- Need to compute (approximations of) $\exists y_i \dots y_m \varphi(X, Y)$

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$, and compute

- y_m as $G_m(X, y_1, \dots y_{m-1})$ from spec $\varphi(X, y_1, \dots y_{m-1}, y_m)$
- y_{m-1} as $G_{m-1}(X, y_1, \dots, y_{m-2})$ from $\exists y_m \varphi(X, y_1, \dots, y_{m-2}, y_{m-1}, y_m)$
- •
- y_1 as $G_1(X)$ from $\exists y_2 \ldots \exists y_m \varphi(X, y_1, y_2 \ldots y_m)$
- Generate Skolem functions for only 1-output specs
- Need to compute (approximations of) $\exists y_i \dots y_m \varphi(X, Y)$

A |X|-input, |Y|-output circuit computing the desired Skolem function vector $(F_1, \dots F_m)$ can be constructed with

- #gates $\leq \sum_{i=1}^{m} \#$ gates $(G_i) + 2m$
- #wires $\leq \sum_{i=1}^{m} \text{#wires}(G_i) + \frac{m(m-1)}{2}$

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$, and compute

- y_m as $G_m(X, y_1, \dots, y_{m-1})$ from spec $\varphi(X, y_1, \dots, y_{m-1}, y_m)$
- y_{m-1} as $G_{m-1}(X, y_1, \dots, y_{m-2})$ from $\exists y_m \varphi(X, y_1, \dots, y_{m-2}, y_{m-1}, y_m)$
- •
- y_1 as $G_1(X)$ from $\exists y_2 \ldots \exists y_m \varphi(X, y_1, y_2 \ldots y_m)$
- Generate Skolem functions for only 1-output specs
- Need to compute (approximations of) $\exists y_i \dots y_m \varphi(X, Y)$

A |X|-input, |Y|-output circuit computing the desired Skolem function vector $(F_1, \dots F_m)$ can be constructed with

- #gates $\leq \sum_{i=1}^{m} \#$ gates $(G_i) + 2m$
- #wires $\leq \sum_{i=1}^{m} \text{#wires}(G_i) + \frac{m(m-1)}{2}$

Sufficient to compute the G_i functions

Single output: $\varphi(X, y)$

- Both $\varphi(X,1)$ and $\neg \varphi(X,0)$ are Skolem functions
- No guess-work!

Single output: $\varphi(X, y)$

- Both $\varphi(X,1)$ and $\neg \varphi(X,0)$ are Skolem functions
- No guess-work!

- Need to compute $\exists y_i \dots \exists y_m \varphi(X, y_1, \dots y_{i-2}, y_{i-1}, y_i, \dots y_m)$
 - Hard in general
- ullet Approximations easily obtained from NNF of arphi

Single output: $\varphi(X, y)$

- Both $\varphi(X,1)$ and $\neg \varphi(X,0)$ are Skolem functions
- No guess-work!

- Need to compute $\exists y_i \dots \exists y_m \varphi(X, y_1, \dots y_{i-2}, y_{i-1}, y_i, \dots y_m)$
 - Hard in general
- ullet Approximations easily obtained from NNF of arphi
 - Over-approx: Set $y_i, \ldots y_m$ and $\neg y_i, \ldots \neg y_m$ leaves to 1

Single output: $\varphi(X, y)$

- Both $\varphi(X,1)$ and $\neg \varphi(X,0)$ are Skolem functions
- No guess-work!

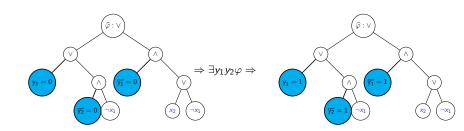
- Need to compute $\exists y_i \dots \exists y_m \varphi(X, y_1, \dots y_{i-2}, y_{i-1}, y_i, \dots y_m)$
 - Hard in general
- ullet Approximations easily obtained from NNF of arphi
 - Over-approx: Set $y_i, \ldots y_m$ and $\neg y_i, \ldots \neg y_m$ leaves to 1
 - Under-approx: Set $y_i, \dots y_m$ and $\neg y_i, \dots \neg y_m$ leaves to 0

Single output: $\varphi(X, y)$

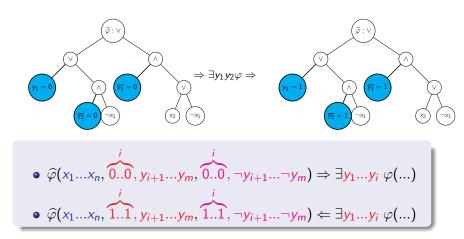
- Both $\varphi(X,1)$ and $\neg \varphi(X,0)$ are Skolem functions
- No guess-work!

- Need to compute $\exists y_i \dots \exists y_m \varphi(X, y_1, \dots y_{i-2}, y_{i-1}, y_i, \dots y_m)$
 - Hard in general
- ullet Approximations easily obtained from NNF of arphi
 - Over-approx: Set $y_i, \ldots y_m$ and $\neg y_i, \ldots \neg y_m$ leaves to 1
 - Under-approx: Set y_i, \dots, y_m and $\neg y_i, \dots, \neg y_m$ leaves to 0
 - ullet Use approximations to "guess" candidate functions G_i
 - Guarantees over-/under-approximation of guessed Skolem functions

Illustrating Approximations



Illustrating Approximations



Given candidate Skolem functions $F_1, \ldots F_m$,

Is
$$\forall X (\exists Y \varphi(X, Y) \Leftrightarrow \varphi(X, F(X))$$
?

Given candidate Skolem functions $F_1, \ldots F_m$,

Is
$$\forall X (\exists Y \varphi(X, Y) \Leftrightarrow \varphi(X, F(X))$$
?

Can we avoid using a QBF solver?

Given candidate Skolem functions $F_1, \ldots F_m$,

Is
$$\forall X (\exists Y \varphi(X, Y) \Leftrightarrow \varphi(X, F(X))$$
?

Can we avoid using a QBF solver?

Yes, we can! [ACGKS'15]

$$\left(\varphi(\mathsf{X},\mathsf{Y}')\wedge\bigwedge_{j=1}^{m}(Y_{j}\Leftrightarrow F_{j})\wedge\neg\varphi(\mathsf{X},\mathsf{Y})\right)$$

Given candidate Skolem functions $F_1, \ldots F_m$,

Is
$$\forall X (\exists Y \varphi(X, Y) \Leftrightarrow \varphi(X, F(X))$$
?

Can we avoid using a QBF solver?

Yes, we can! [ACGKS'15]

• Propositional error formula $\varepsilon(X, Y, Y')$:

$$\left(\varphi(\mathsf{X},\mathsf{Y}')\wedge\bigwedge_{j=1}^{m}(Y_{j}\Leftrightarrow F_{j})\wedge\neg\varphi(\mathsf{X},\mathsf{Y})\right)$$

• ε unsatisfiable iff $F_1, \dots F_m$ is correct Skolem function vector

Given candidate Skolem functions $F_1, \ldots F_m$,

Is
$$\forall X (\exists Y \varphi(X, Y) \Leftrightarrow \varphi(X, F(X))$$
?

Can we avoid using a QBF solver?

Yes, we can! [ACGKS'15]

$$\left(\varphi(\mathsf{X},\mathsf{Y}')\wedge\bigwedge_{j=1}^{m}(Y_{j}\Leftrightarrow F_{j})\wedge\neg\varphi(\mathsf{X},\mathsf{Y})\right)$$

- ε unsatisfiable iff $F_1, \dots F_m$ is correct Skolem function vector
- \bullet Suppose σ : satisfying assignment of ε

Given candidate Skolem functions $F_1, \ldots F_m$,

Is
$$\forall X (\exists Y \varphi(X, Y) \Leftrightarrow \varphi(X, F(X))$$
?

Can we avoid using a QBF solver?

Yes, we can! [ACGKS'15]

$$\left(\varphi(\mathsf{X},\mathsf{Y}')\wedge\bigwedge_{j=1}^{m}(\mathsf{Y}_{j}\Leftrightarrow\mathsf{F}_{j})\wedge\neg\varphi(\mathsf{X},\mathsf{Y})\right)$$

- ε unsatisfiable iff $F_1, \dots F_m$ is correct Skolem function vector
- ullet Suppose σ : satisfying assignment of arepsilon

•
$$\varphi(\sigma[X], \sigma[Y')] = 1$$
, $\sigma[Y] = F(\sigma[X])$, $\varphi(\sigma[X], \sigma[Y]) = 0$

Given candidate Skolem functions $F_1, \ldots F_m$,

Is
$$\forall X (\exists Y \varphi(X, Y) \Leftrightarrow \varphi(X, F(X))$$
?

Can we avoid using a QBF solver?

Yes, we can! [ACGKS'15]

$$\left(\varphi(\mathsf{X},\mathsf{Y}')\wedge\bigwedge_{j=1}^{m}(\mathsf{Y}_{j}\Leftrightarrow\mathsf{F}_{j})\wedge\neg\varphi(\mathsf{X},\mathsf{Y})\right)$$

- ε unsatisfiable iff $F_1, \dots F_m$ is correct Skolem function vector
- ullet Suppose σ : satisfying assignment of arepsilon
 - $\varphi(\sigma[X], \sigma[Y')] = 1$, $\sigma[Y] = F(\sigma[X])$, $\varphi(\sigma[X], \sigma[Y]) = 0$
 - σ is counterexample to the claim that $F_1, \dots F_m$ is a correct Skolem function vector

Recall: Skolem functions guessed from approximations of $\exists y_{i+1} \dots \exists y_m \varphi(X, y_1, \dots y_{i-1}, y_i, y_{i+1}, \dots y_m)$

Recall: Skolem functions guessed from approximations of

$$\exists y_{i+1} \ldots \exists y_m \, \varphi(X, y_1, \ldots y_{i-1}, y_i, y_{i+1}, \ldots y_m)$$

• Let $\exists y_{i+1} \dots \exists y_m \, \varphi(X, Y) \Rightarrow \Theta_i(X, y_1, \dots y_{i-1}, y_i)$ Over-approx

Recall: Skolem functions guessed from approximations of

$$\exists y_{i+1} \ldots \exists y_m \, \varphi(X, y_1, \ldots y_{i-1}, y_i, y_{i+1}, \ldots y_m)$$

- Let $\exists y_{i+1} \dots \exists y_m \, \varphi(X, Y) \Rightarrow \Theta_i(X, y_1, \dots y_{i-1}, y_i)$
- Let $\delta_i = \neg \Theta_i|_{y_i=0}$; $\gamma_i = \neg \Theta_i|_{y_i=1}$ Under-approximations

Recall: Skolem functions guessed from approximations of

$$\exists y_{i+1} \ldots \exists y_m \, \varphi(X, y_1, \ldots y_{i-1}, y_i, y_{i+1}, \ldots y_m)$$

- Let $\exists y_{i+1} \dots \exists y_m \varphi(X, Y) \Rightarrow \Theta_i(X, y_1, \dots y_{i-1}, y_i)$
- Let $\delta_i = \neg \Theta_i|_{y_i=0}$; $\gamma_i = \neg \Theta_i|_{y_i=1}$
- Initial guess $G_i(X, y_1, \dots, y_{i-1}) \in \{\delta_i, \neg \gamma_i\}$

Recall: Skolem functions guessed from approximations of

$$\exists y_{i+1} \ldots \exists y_m \, \varphi(X, y_1, \ldots y_{i-1}, y_i, y_{i+1}, \ldots y_m)$$

- Let $\exists y_{i+1} \dots \exists y_m \, \varphi(X, Y) \Rightarrow \Theta_i(X, y_1, \dots y_{i-1}, y_i)$
- Let $\delta_i = \neg \Theta_i|_{y_i=0}$; $\gamma_i = \neg \Theta_i|_{y_i=1}$
- Initial guess $G_i(X, y_1, \dots y_{i-1}) \in \{\delta_i, \neg \gamma_i\}$... 1-sided error
 - $G_i = \delta_i$ cannot err if it evaluates to 1
 - $G_i = \neg \gamma_i$ cannot err if it evaluates to 0

Recall: Skolem functions guessed from approximations of

$$\exists y_{i+1} \ldots \exists y_m \, \varphi(X, y_1, \ldots y_{i-1}, \underline{y_i}, y_{i+1}, \ldots y_m)$$

- Let $\exists y_{i+1} \dots \exists y_m \, \varphi(X, Y) \Rightarrow \Theta_i(X, y_1, \dots y_{i-1}, y_i)$
- Let $\delta_i = \neg \Theta_i|_{y_i=0}$; $\gamma_i = \neg \Theta_i|_{y_i=1}$
- Initial guess $G_i(X, y_1, \dots y_{i-1}) \in \{\delta_i, \neg \gamma_i\}$... **1-sided error**
 - $G_i = \delta_i$ cannot err if it evaluates to 1
 - $G_i = \neg \gamma_i$ cannot err if it evaluates to 0

Generalized counterexample

Given
$$\sigma \models \varepsilon(X, Y, Y')$$
 and δ_i, γ_i for $1 \leq i \leq m$

Recall: Skolem functions guessed from approximations of

$$\exists y_{i+1} \ldots \exists y_m \, \varphi(X, y_1, \ldots y_{i-1}, \underline{y_i}, y_{i+1}, \ldots y_m)$$

- Let $\exists y_{i+1} \dots \exists y_m \, \varphi(X, Y) \Rightarrow \Theta_i(X, y_1, \dots y_{i-1}, y_i)$
- Let $\delta_i = \neg \Theta_i|_{y_i=0}$; $\gamma_i = \neg \Theta_i|_{y_i=1}$
- Initial guess $G_i(X, y_1, \dots y_{i-1}) \in \{\delta_i, \neg \gamma_i\}$... **1-sided error**
 - $G_i = \delta_i$ cannot err if it evaluates to 1
 - $G_i = \neg \gamma_i$ cannot err if it evaluates to 0

Generalized counterexample

Given $\sigma \models \varepsilon(X, Y, Y')$ and δ_i, γ_i for $1 \le i \le m$ Find function $\mu(X, y_1, \dots y_{j-1})$ for some $j \in \{1, \dots m\}$ s.t.

Recall: Skolem functions guessed from approximations of

$$\exists y_{i+1} \ldots \exists y_m \, \varphi(X, y_1, \ldots y_{i-1}, \underbrace{y_i}_{i}, y_{i+1}, \ldots y_m)$$

- Let $\exists y_{i+1} \dots \exists y_m \, \varphi(X, Y) \Rightarrow \Theta_i(X, y_1, \dots y_{i-1}, y_i)$
- Let $\delta_i = \neg \Theta_i|_{y_i=0}$; $\gamma_i = \neg \Theta_i|_{y_i=1}$
- Initial guess $G_i(X, y_1, \dots, y_{i-1}) \in \{\delta_i, \neg \gamma_i\}$... **1-sided error**
 - $G_i = \delta_i$ cannot err if it evaluates to 1
 - $G_i = \neg \gamma_i$ cannot err if it evaluates to 0

Generalized counterexample

Given $\sigma \models \varepsilon(X, Y, Y')$ and δ_i, γ_i for $1 \le i \le m$

•
$$\sigma \models \mu$$
 ... μ generalizes σ

Recall: Skolem functions guessed from approximations of

$$\exists y_{i+1} \ldots \exists y_m \, \varphi(X, y_1, \ldots y_{i-1}, y_i, y_{i+1}, \ldots y_m)$$

- Let $\exists y_{i+1} \dots \exists y_m \, \varphi(X, Y) \Rightarrow \Theta_i(X, y_1, \dots y_{i-1}, y_i)$
- Let $\delta_i = \neg \Theta_i|_{y_i=0}$; $\gamma_i = \neg \Theta_i|_{y_i=1}$
- Initial guess $G_i(X, y_1, \dots, y_{i-1}) \in \{\delta_i, \neg \gamma_i\}$... **1-sided error**
 - $G_i = \delta_i$ cannot err if it evaluates to 1
 - $G_i = \neg \gamma_i$ cannot err if it evaluates to 0

Generalized counterexample

Given $\sigma \models \varepsilon(X, Y, Y')$ and δ_i, γ_i for $1 \le i \le m$

- $\sigma \models \mu$... μ generalizes σ
- $\mu \Rightarrow \gamma_j \wedge \delta_j$

Recall: Skolem functions guessed from approximations of

$$\exists y_{i+1} \ldots \exists y_m \, \varphi(X, y_1, \ldots y_{i-1}, y_i, y_{i+1}, \ldots y_m)$$

- Let $\exists y_{i+1} \dots \exists y_m \varphi(X, Y) \Rightarrow \Theta_i(X, y_1, \dots y_{i-1}, y_i)$
- Let $\delta_i = \neg \Theta_i|_{y_i=0}$; $\gamma_i = \neg \Theta_i|_{y_i=1}$
- Initial guess $G_i(X, y_1, \dots, y_{i-1}) \in \{\delta_i, \neg \gamma_i\}$... **1-sided error**
 - $G_i = \delta_i$ cannot err if it evaluates to 1
 - $G_i = \neg \gamma_i$ cannot err if it evaluates to 0

Generalized counterexample

Given $\sigma \models \varepsilon(X, Y, Y')$ and δ_i, γ_i for $1 \le i \le m$

- $\sigma \models \mu$... μ generalizes σ
- $\mu \Rightarrow \gamma_j \wedge \delta_j$
 - $\bullet \Rightarrow \forall y_j \dots \forall y_m \neg \varphi(X, y_1, \dots y_{j-1}, y_j, y_{j+1}, \dots y_m)$

Recall: Skolem functions guessed from approximations of

$$\exists y_{i+1} \ldots \exists y_m \, \varphi(X, y_1, \ldots y_{i-1}, y_i, y_{i+1}, \ldots y_m)$$

- Let $\exists y_{i+1} \dots \exists y_m \varphi(X, Y) \Rightarrow \Theta_i(X, y_1, \dots y_{i-1}, y_i)$
- Let $\delta_i = \neg \Theta_i|_{y_i=0}$; $\gamma_i = \neg \Theta_i|_{y_i=1}$
- Initial guess $G_i(X, y_1, \dots y_{i-1}) \in \{\delta_i, \neg \gamma_i\}$... **1-sided error**
 - $G_i = \delta_i$ cannot err if it evaluates to 1
 - $G_i = \neg \gamma_i$ cannot err if it evaluates to 0

Generalized counterexample

Given $\sigma \models \varepsilon(X, Y, Y')$ and δ_i, γ_i for $1 \le i \le m$

- $\sigma \models \mu$... μ generalizes σ
- $\mu \Rightarrow \gamma_j \wedge \delta_j$
 - $\Rightarrow \forall y_j \dots \forall y_m \neg \varphi(X, y_1, \dots y_{j-1}, y_j, y_{j+1}, \dots y_m)$
 - If $\pi \models \mu$, no extension of π satisfies φ ... counterexample

Recall: Skolem functions guessed from approximations of

$$\exists y_{i+1} \ldots \exists y_m \, \varphi(X, y_1, \ldots y_{i-1}, y_i, y_{i+1}, \ldots y_m)$$

- Let $\exists y_{i+1} \dots \exists y_m \varphi(X, Y) \Rightarrow \Theta_i(X, y_1, \dots y_{i-1}, y_i)$
- Let $\delta_i = \neg \Theta_i|_{y_i=0}$; $\gamma_i = \neg \Theta_i|_{y_i=1}$
- Initial guess $G_i(X, y_1, \dots, y_{i-1}) \in \{\delta_i, \neg \gamma_i\}$... **1-sided error**
 - $G_i = \delta_i$ cannot err if it evaluates to 1
 - $G_i = \neg \gamma_i$ cannot err if it evaluates to 0

Generalized counterexample

Given $\sigma \models \varepsilon(X, Y, Y')$ and δ_i, γ_i for $1 \le i \le m$ Find function $\mu(X, y_1, \dots, y_{i-1})$ for some $j \in \{1, \dots, m\}$ s.t.

- $\sigma \models \mu$... μ generalizes σ
- $\mu \Rightarrow \gamma_j \wedge \delta_j$
 - $\Rightarrow \forall y_j \dots \forall y_m \neg \varphi(X, y_1, \dots y_{j-1}, y_j, y_{j+1}, \dots y_m)$
 - If $\pi \models \mu$, no extension of π satisfies φ ... counterexample

Must ensure that $(\mathsf{X}, \mathit{G}_1, \ldots \mathit{G}_{j-1})$ never evaluates to π

• Every model of $\mu(X, y_1, \dots y_{j-1})$ gives a problematic combination of $G_1, \dots G_{j-1}$ values

- Every model of $\mu(X, y_1, \dots y_{j-1})$ gives a problematic combination of $G_1, \dots G_{j-1}$ values
- Flip G_{i-1} whenever μ holds

- Every model of $\mu(X, y_1, \dots y_{j-1})$ gives a problematic combination of $G_1, \dots G_{j-1}$ values
- Flip G_{i-1} whenever μ holds
 - Recall $G_{j-1} \in \{ \neg \gamma_{j-1}, \delta_{j-1} \}$

- Every model of $\mu(X, y_1, \dots y_{j-1})$ gives a problematic combination of $G_1, \dots G_{j-1}$ values
- Flip G_{i-1} whenever μ holds
 - Recall $G_{j-1} \in \{\neg \gamma_{j-1}, \delta_{j-1}\}$
 - Only source of error: under-approximation of $\neg \exists y_i, \dots \exists y_m \varphi(X, y_1, \dots y_{i-2}, y_{i-1}, y_i, \dots y_m)$

- Every model of $\mu(X, y_1, \dots y_{j-1})$ gives a problematic combination of $G_1, \dots G_{j-1}$ values
- Flip G_{i-1} whenever μ holds
 - Recall $G_{j-1} \in \{\neg \gamma_{j-1}, \delta_{j-1}\}$
 - Only source of error: under-approximation of $\neg \exists y_j, \dots \exists y_m \varphi(X, y_1, \dots y_{j-2}, y_{j-1}, y_j, \dots y_m)$
 - Repair: Expand under-approximation
 - If G_{j-1} is $\neg \gamma_{j-1}$, $\gamma_{j-1} \leftarrow \gamma_{j-1} \lor \mu|_{\sigma[y_{j-1}]}$
 - If G_{j-1} is δ_{j-1} , $\delta_{j-1} \leftarrow \delta_{j-1} \lor \mu|_{\sigma[y_{j-1}]}$

- Every model of $\mu(X, y_1, \dots y_{j-1})$ gives a problematic combination of $G_1, \dots G_{j-1}$ values
- Flip G_{j-1} whenever μ holds
 - Recall $G_{j-1} \in \{\neg \gamma_{j-1}, \delta_{j-1}\}$
 - Only source of error: under-approximation of $\neg \exists y_i, \dots \exists y_m \varphi(X, y_1, \dots y_{i-2}, y_{i-1}, y_i, \dots y_m)$
 - Repair: Expand under-approximation
 - If G_{j-1} is $\neg \gamma_{j-1}$, $\gamma_{j-1} \leftarrow \gamma_{j-1} \lor \mu|_{\sigma[y_{j-1}]}$
 - If G_{j-1} is δ_{j-1} , $\delta_{j-1} \leftarrow \delta_{j-1} \lor \mu|_{\sigma[y_{j-1}]}$

Counter-example guided repair by expanding δ_i 's and γ_i 's.

- Every model of $\mu(X, y_1, \dots y_{j-1})$ gives a problematic combination of $G_1, \dots G_{j-1}$ values
- Flip G_{j-1} whenever μ holds
 - Recall $G_{j-1} \in \{\neg \gamma_{j-1}, \delta_{j-1}\}$
 - Only source of error: under-approximation of $\neg \exists y_i, \dots \exists y_m \varphi(X, y_1, \dots y_{i-2}, y_{i-1}, y_i, \dots y_m)$
 - Repair: Expand under-approximation
 - If G_{j-1} is $\neg \gamma_{j-1}$, $\gamma_{j-1} \leftarrow \gamma_{j-1} \lor \mu|_{\sigma[y_{j-1}]}$
 - If G_{j-1} is δ_{j-1} , $\delta_{j-1} \leftarrow \delta_{j-1} \lor \mu|_{\sigma[y_{j-1}]}$

Counter-example guided repair by expanding δ_i 's and γ_i 's.

Expansion-based repair

- Every model of $\mu(X, y_1, \dots y_{j-1})$ gives a problematic combination of $G_1, \dots G_{j-1}$ values
- Flip G_{j-1} whenever μ holds
 - Recall $G_{j-1} \in \{\neg \gamma_{j-1}, \delta_{j-1}\}$
 - Only source of error: under-approximation of $\neg \exists y_i, \dots \exists y_m \varphi(X, y_1, \dots y_{i-2}, y_{i-1}, y_i, \dots y_m)$
 - Repair: Expand under-approximation
 - If G_{j-1} is $\neg \gamma_{j-1}$, $\gamma_{j-1} \leftarrow \gamma_{j-1} \lor \mu|_{\sigma[y_{j-1}]}$
 - If G_{j-1} is δ_{j-1} , $\delta_{j-1} \leftarrow \delta_{j-1} \lor \mu|_{\sigma[y_{j-1}]}$

Counter-example guided repair by expanding δ_i 's and γ_i 's.

Expansion-based repair

Simple argument for termination – expansions can't go on forever

Counterexample-guided repair

```
Can we always find \mu?
```

Counterexample-guided repair

Can we always find μ ? Yes!!!

Can we always find μ ?

- $\mu_{\text{worst-case}}$: ClausalForm $(\sigma[X, y_1, \dots y_{m-1}])$
 - $\sigma \models \mu_{\text{worst-case}}$

Can we always find μ ?

- $\mu_{\text{worst-case}}$: ClausalForm $(\sigma[X, y_1, \dots y_{m-1}])$
 - $\sigma \models \mu_{\text{worst-case}}$
 - $\mu_{\text{worst-case}} \Rightarrow \gamma_m \wedge \delta_m$

Can we always find μ ?

Yes!!!

- $\mu_{\text{worst-case}}$: ClausalForm $(\sigma[X, y_1, \dots y_{m-1}])$
 - $\sigma \models \mu_{\text{worst-case}}$
 - $\mu_{\text{worst-case}} \Rightarrow \gamma_m \wedge \delta_m$

... Why?

Can we always find μ ?

- $\mu_{\text{worst-case}}$: ClausalForm $(\sigma[X, y_1, \dots y_{m-1}])$
 - $\sigma \models \mu_{\text{worst-case}}$
 - $\mu_{\text{worst-case}} \Rightarrow \gamma_{\textit{m}} \wedge \delta_{\textit{m}}$... Why?
 - \bullet $\textit{G}_{\textit{m}} \in \{\varphi|_{\textit{y}_{\textit{m}}=1}, \ \neg \varphi|_{\textit{y}_{\textit{m}}=0}\}$ always correct Skolem function

Can we always find μ ?

- $\mu_{\text{worst-case}}$: ClausalForm $(\sigma[X, y_1, \dots y_{m-1}])$
 - $\sigma \models \mu_{\text{worst-case}}$
 - $\mu_{\text{worst-case}} \Rightarrow \gamma_{\textit{m}} \wedge \delta_{\textit{m}}$... Why?
 - $G_m \in \{\varphi|_{y_m=1}, \ \neg \varphi|_{y_m=0}\}$ always correct Skolem function
 - And yet, $\varphi(\sigma[X, y_1, \dots y_{m-1}], G_m(\sigma[X, y_1, \dots y_{m-1}])) = 0$

Can we always find μ ?

- $\mu_{\text{worst-case}}$: ClausalForm $(\sigma[X, y_1, \dots y_{m-1}])$
 - $\sigma \models \mu_{\text{worst-case}}$
 - $\mu_{\text{worst-case}} \Rightarrow \gamma_{\textit{m}} \wedge \delta_{\textit{m}}$... Why?
 - $G_m \in \{\varphi|_{y_m=1}, \ \neg \varphi|_{y_m=0}\}$ always correct Skolem function
 - And yet, $\varphi(\sigma[X, y_1, \dots y_{m-1}], G_m(\sigma[X, y_1, \dots y_{m-1}])) = 0$
- Choose smallest j s.t. $\sigma \models \delta_j \wedge \gamma_j$

Can we always find μ ?

Yes!!!

- $\mu_{\text{worst-case}}$: ClausalForm $(\sigma[X, y_1, \dots y_{m-1}])$
 - $\sigma \models \mu_{\text{worst-case}}$
 - $\mu_{\text{worst-case}} \Rightarrow \gamma_{\textit{m}} \wedge \delta_{\textit{m}}$... Why?
 - $G_m \in \{\varphi|_{y_m=1}, \ \neg \varphi|_{y_m=0}\}$ always correct Skolem function
 - And yet, $\varphi(\sigma[X, y_1, \dots y_{m-1}], G_m(\sigma[X, y_1, \dots y_{m-1}])) = 0$
- Choose smallest j s.t. $\sigma \models \delta_j \wedge \gamma_j$

Repairing multiple Skolem functions

Can we always find μ ?

Yes!!!

- $\mu_{\text{worst-case}}$: ClausalForm $(\sigma[X, y_1, \dots y_{m-1}])$
 - $\sigma \models \mu_{\text{worst-case}}$
 - $\mu_{\text{worst-case}} \Rightarrow \gamma_{\textit{m}} \wedge \delta_{\textit{m}}$... Why?
 - $G_m \in \{\varphi|_{y_m=1}, \ \neg \varphi|_{y_m=0}\}$ always correct Skolem function
 - And yet, $\varphi(\sigma[X, y_1, ..., y_{m-1}], G_m(\sigma[X, y_1, ..., y_{m-1}])) = 0$
- Choose smallest j s.t. $\sigma \models \delta_j \wedge \gamma_j$

Repairing multiple Skolem functions

Observation:
$$(\mu|_{y_{j-1}=0} \land \mu|_{y_{j-1}=1}) \Rightarrow \forall y_{j-1} \dots \forall y_m \neg \varphi$$

Can we always find μ ?

Yes!!!

- $\mu_{\text{worst-case}}$: ClausalForm $(\sigma[X, y_1, \dots y_{m-1}])$
 - $\sigma \models \mu_{\text{worst-case}}$
 - $\mu_{\text{worst-case}} \Rightarrow \gamma_{\textit{m}} \wedge \delta_{\textit{m}}$... Why?
 - $G_m \in \{\varphi|_{y_m=1}, \ \neg \varphi|_{y_m=0}\}$ always correct Skolem function
 - And yet, $\varphi(\sigma[X, y_1, ..., y_{m-1}], G_m(\sigma[X, y_1, ..., y_{m-1}])) = 0$
- Choose smallest j s.t. $\sigma \models \delta_j \wedge \gamma_j$

Repairing multiple Skolem functions

Observation: $(\mu|_{y_{j-1}=0} \land \mu|_{y_{j-1}=1}) \Rightarrow \forall y_{j-1} \dots \forall y_m \neg \varphi$

• Update μ to $\mu|_{y_{i-1}=0} \wedge \mu|_{y_{i-1}=1}$ and repeat with j decremented

Can we always find μ ?

Yes!!!

- $\mu_{\text{worst-case}}$: ClausalForm $(\sigma[X, y_1, \dots y_{m-1}])$
 - $\sigma \models \mu_{\text{worst-case}}$
 - $\mu_{\text{worst-case}} \Rightarrow \gamma_m \wedge \delta_m$
 - $G_m \in \{\varphi|_{y_m=1}, \ \neg \varphi|_{y_m=0}\}$ always correct Skolem function
 - And yet, $\varphi(\sigma[X, y_1, \dots y_{m-1}], G_m(\sigma[X, y_1, \dots y_{m-1}])) = 0$
- Choose smallest j s.t. $\sigma \models \delta_j \wedge \gamma_j$

Repairing multiple Skolem functions

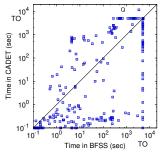
Observation: $(\mu|_{y_{j-1}=0} \land \mu|_{y_{j-1}=1}) \Rightarrow \forall y_{j-1} \dots \forall y_m \neg \varphi$

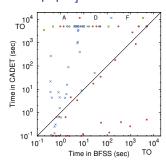
- Update μ to $\mu|_{y_{j-1}=0} \wedge \mu|_{y_{j-1}=1}$ and repeat with j decremented
- Can repair multiple Skolem functions starting from one counterexample

... Why?

Experimental Comparison

BFSS (Cex-guided-repair) vis-a-vis CADET (incremental determinization) [Rabe & Seshia'16] [Comparisons with other tools in FMSD 2020 paper]

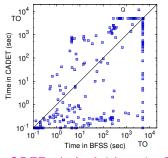


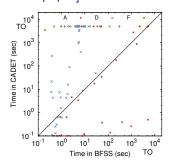


Q: QBFEval, A: Arithmetic, F: Factorization, D: Disjunctive Decomposition. TO: Timeout (3600 sec)

Experimental Comparison

BFSS (Cex-guided-repair) vis-a-vis CADET (incremental determinization) [Rabe & Seshia'16] [Comparisons with other tools in FMSD 2020 paper]





Q: QBFEval, A: Arithmetic, F: Factorization, D: Disjunctive Decomposition. TO: Timeout (3600 sec)

- Mixed results: tools have orthogonal strengths
- Using CADET and BFSS as a portfolio solver sounds promising

Manthan: Golia et al [GMR'20]

• "Guess" using machine learning techniques

- "Guess" using machine learning techniques
 - Sample solutions of $\varphi(X, Y)$: Data-driven!!!

- "Guess" using machine learning techniques
 - Sample solutions of $\varphi(X, Y)$: Data-driven!!!
 - Learn "Decision Tree" for y_i in terms of $X, y_1, \dots y_{i-1}$

- "Guess" using machine learning techniques
 - Sample solutions of $\varphi(X,Y)$: Data-driven!!!
 - Learn "Decision Tree" for y_i in terms of $X, y_1, \dots y_{i-1}$
 - Ok to not match data exactly
 - Can have 2-sided errors!
 - Repair learnt decision trees later!
 - Often results in small decision trees

- "Guess" using machine learning techniques
 - Sample solutions of $\varphi(X,Y)$: Data-driven!!!
 - Learn "Decision Tree" for y_i in terms of $X, y_1, \dots y_{i-1}$
 - Ok to not match data exactly
 - Can have 2-sided errors!
 - Repair learnt decision trees later!
 - Often results in small decision trees
- "Check" using error formula $\varepsilon(X, Y, Y')$ as before

- "Guess" using machine learning techniques
 - Sample solutions of $\varphi(X,Y)$: Data-driven!!!
 - Learn "Decision Tree" for y_i in terms of $X, y_1, \dots y_{i-1}$
 - Ok to not match data exactly
 - Can have 2-sided errors!
 - Repair learnt decision trees later!
 - Often results in small decision trees
- "Check" using error formula $\varepsilon(X, Y, Y')$ as before
- "Repair" using unsatisfiable cores

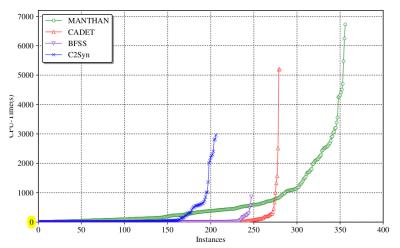
- "Guess" using machine learning techniques
 - Sample solutions of $\varphi(X,Y)$: Data-driven!!!
 - Learn "Decision Tree" for y_i in terms of $X, y_1, \dots y_{i-1}$
 - Ok to not match data exactly
 - Can have 2-sided errors!
 - Repair learnt decision trees later!
 - Often results in small decision trees
- "Check" using error formula $\varepsilon(X, Y, Y')$ as before
- "Repair" using unsatisfiable cores
 - $\sigma \models \varepsilon(X, Y, Y')$
 - Candidates to repair: F_i s.t. $y_i \neq Y'_i$

- "Guess" using machine learning techniques
 - Sample solutions of $\varphi(X,Y)$: Data-driven!!!
 - Learn "Decision Tree" for y_i in terms of $X, y_1, \dots y_{i-1}$
 - Ok to not match data exactly
 - Can have 2-sided errors!
 - Repair learnt decision trees later!
 - Often results in small decision trees
- "Check" using error formula $\varepsilon(X, Y, Y')$ as before
- "Repair" using unsatisfiable cores
 - $\sigma \models \varepsilon(X, Y, Y')$
 - Candidates to repair: F_i s.t. $y_i \neq Y'_i$
 - $R_i(X, Y) = \varphi(X, Y) \wedge \bigwedge_{i=1}^n (x_i \Leftrightarrow \sigma[x_i]) \wedge (y_i \Leftrightarrow \sigma[Y'_i])$

- "Guess" using machine learning techniques
 - Sample solutions of $\varphi(X,Y)$: Data-driven!!!
 - Learn "Decision Tree" for y_i in terms of $X, y_1, \dots y_{i-1}$
 - Ok to not match data exactly
 - Can have 2-sided errors!
 - Repair learnt decision trees later!
 - Often results in small decision trees
- "Check" using error formula $\varepsilon(X, Y, Y')$ as before
- "Repair" using unsatisfiable cores
 - $\sigma \models \varepsilon(X, Y, Y')$
 - Candidates to repair: F_i s.t. $y_i \neq Y'_i$
 - $R_i(X, Y) = \varphi(X, Y) \wedge \bigwedge_{i=1}^n (x_i \Leftrightarrow \sigma[x_i]) \wedge (y_i \Leftrightarrow \sigma[Y'_i])$
 - Find repair formula β from Unsat Core of $R_i(X, Y)$

- "Guess" using machine learning techniques
 - Sample solutions of $\varphi(X, Y)$: Data-driven!!!
 - Learn "Decision Tree" for y_i in terms of $X, y_1, \dots y_{i-1}$
 - Ok to not match data exactly
 - Can have 2-sided errors!
 - Repair learnt decision trees later!
 - Often results in small decision trees
- "Check" using error formula $\varepsilon(X, Y, Y')$ as before
- "Repair" using unsatisfiable cores
 - $\sigma \models \varepsilon(X, Y, Y')$
 - Candidates to repair: F_i s.t. $y_i \neq Y'_i$
 - $R_i(X, Y) = \varphi(X, Y) \wedge \bigwedge_{i=1}^n (x_i \Leftrightarrow \sigma[x_i]) \wedge (y_i \Leftrightarrow \sigma[Y'_i])$
 - Find repair formula β from Unsat Core of $R_i(X, Y)$
 - Update
 - F_i to $F_i \vee \beta$ if $\sigma[y_i] = 0$
 - F_i to $F_i \wedge \neg \beta$ if $\sigma[y_i] = 1$

Some more experimental comparisons [GMR20]



[Courtesy "Manthan: A Data Driven Approach to Boolean Functional Synthesis", Golia et al, CAV 2020]

 Boolean functional synthesis has diverse applications, including in temporal synthesis

- Boolean functional synthesis has diverse applications, including in temporal synthesis
- Guess-check-repair: a powerful paradigm

- Boolean functional synthesis has diverse applications, including in temporal synthesis
- Guess-check-repair: a powerful paradigm
- Different approaches to guessing possible
 - Based on approximations of quantifier elimination
 - Based on machine learning

- Boolean functional synthesis has diverse applications, including in temporal synthesis
- Guess-check-repair: a powerful paradigm
- Different approaches to guessing possible
 - Based on approximations of quantifier elimination
 - Based on machine learning
- Different approaches to counterexample-guided repair possible
 - Expansion of under-approximations
 - Unsatisfiable core based repair

- Boolean functional synthesis has diverse applications, including in temporal synthesis
- Guess-check-repair: a powerful paradigm
- Different approaches to guessing possible
 - Based on approximations of quantifier elimination
 - Based on machine learning
- Different approaches to counterexample-guided repair possible
 - Expansion of under-approximations
 - Unsatisfiable core based repair
- Recent results (BFSS, Manthan) extremely promising!!!