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Verification

map :: (a -> b) -> 
map f [] = []
map f (x:xs) =

[a] -> [b]xs: { ys:     | size xs == size ys }

map f xsf x:



Modular Verification

add2 :: x:Int -> { y:Int | y == x + 2 }
add2 x = incr (incr x)



Modular Verification

add2 :: x:Int -> { y:Int | y == x + 2 }
add2 x = incr (incr x)

incr :: x:Int -> { y:Int | y > x }
incr x = x + 1 

To verify a caller, modular verifiers use callee’s specification
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Modular Verification

To verify a caller, modular verifiers use callee’s specification

Question: How can we automatically find the required specifications?

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a]
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys
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Counterexamples

map :: (a -> b) -> xs:[a] -> { ys:[b] | size xs == size ys}
map f [] = []
map f (x:xs) = map f xs

Concrete Counterexample

Abstract Counterexample

map id [1] = []

add2 :: x:Int -> { y:Int | y == x + 2 }
add2 x = incr (incr x)

incr :: x:Int -> { y:Int | y > x }
incr x = x + 1

add2 0 = 3
if  incr 0 = 2

William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac. 
Lazy Counterfactual Symbolic Execution.  PLDI 2019. 
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Example
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a]
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

concat [[], []] = [0]
if app [] [] = [0]

Abstract counterexample:

app [] [] = []
Real evaluation:

Synthesis constraints:

preapp([], []) ⇒ ¬postapp([], [], [0]) 
preapp([], []) ⇒ postapp([], [], []) 
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Example
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)
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Example
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == size x + size y 
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

app [0] [0] = [0, 0]
Concrete counterexample:
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Call Graph Traversal
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Walk down the call graph, from level 1 to level k.

At level i, synthesize specifications for the functions
at level i + 1 that would (if correct) prove 
specifications of functions at level i.

Backtrack if:
• a concrete counterexamples to a specification at 

level <= i is found
• specification synthesis problem becomes 

unrealizable
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Synthesizer
Synthesize LIA specifications for: 

Integer Literal Inputs/Outputs f ::  {x:Int | x < 0} -> { y:Int | y > 0} -> [Int]

Integer Measures
f :: Int -> Int -> { xs:[Int] | size xs > 0 }

size :: [a] -> Int
sumsize :: [[a]] -> Int

ADT Contents f :: Int -> Int -> [{ x:Int | x > 0 }]

f :: Int -> Int -> [Int]

f x y = [x + 4, y + 4]
Over:

Specification Type Specification Example



Conversion

pref(0, 1) ⇒ postf(0, 1, [4, 5]) Constraint

size [4, 5] = 2

pref(0, 1) ⇒ postf(0, 1, 2) 
Integer Measures

Synthesize LIA specifications for: f :: Int -> Int -> [Int]

f x y = [x + 4, y + 4]

postf(x, y, z) = z > 0

postf(x, y, z) = { z:[a] | size z > 0 }



Conversion

pref(0, 1) ⇒ postf(0, 1, [4, 5]) Constraint

pref(0, 1) ⇒ postf(0, 1, 2) 
∧ postf_cons(0, 1, 4)
∧ postf_cons(0, 1, 5)

postf_cons(x, y, r)
[4, 5]

ADT Contents

Synthesize LIA specifications for: f :: Int -> Int -> [Int]

f x y = [x + 4, y + 4]

postf(x, y, r) = r > 0
post f_cons(x, y, r) = r > 2

{ r:[{ x:Int | x > 2 }] | size r > 0 }



Evaluation

Ran the inference algorithm on 15 benchmarks, some created by us, some drawn 
from a graduate student level class homework assignment.
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Largest benchmark is the inner loop of a kmeans implementation, involving 34 functions.  
We prove the codes specifications in 596 seconds (slightly under 10 minutes.)



Conclusion

• For verification to succeed, modular verifiers require specifications to not only 
be correct, but be sufficiently supported by callee’s specifications.

• Given specifications written by the user, our inference algorithm 
automatically finds the required set of specifications for a modular verifier 
to succeed.

• Using an SMT solver to synthesizer LIA specifications allows us SyGuS like 
synthesis, but to also prove unrealizability and get interpolants.

• Our approach is implemented to find LiquidHaskell specifications, using G2 as 
a counterexamples generator, and it’s effectiveness is demonstrated on a 
variety of benchmarks.


