Counterexample Guided Inference of Modular Specifications

William T. Hallahan*

Ranjit Jhala[†]

Ruzica Piskac*

*Yale University

†UCSD

Verification

Modular Verification

add2 :: x:Int -> { y:Int | y == x + 2 } add2 x = incr (incr x)

Modular Verification

To verify a caller, modular verifiers use callee's specification

Modular Verification

To verify a caller, modular verifiers use callee's specification

```
Modular Verification
```

```
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)
app :: x:[a] -> y:[a] -> z:[a]
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys
```

To verify a caller, modular verifiers use callee's specification

Question: How can we automatically find the required specifications?

William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac. Lazy Counterfactual Symbolic Execution. PLDI 2019.

Counterexamples

Concrete Counterexample

```
map :: (a -> b) -> xs:[a] -> { ys:[b] | size xs == size ys}
map f [] = []
map f (x:xs) = map f xs
```

Abstract Counterexample

add2 :: x:Int -> { y:Int | y == x + 2 } add2 x = incr (incr x) incr :: x:Int -> { y:Int | y > x }

incr x = x + 1

William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac. Lazy Counterfactual Symbolic Execution. PLDI 2019.

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

```
app :: x:[a] -> y:[a] -> z:[a]
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys
```

Abstract counterexample: concat [[], []] = [0] if app [] [] = [0] Real evaluation: app [] [] = [] Synthesis constraints: $pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])$ $pre_{app}([], []) \Rightarrow post_{app}([], [], [])$

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

```
app :: x:[a] -> y:[a] -> { z:[a] | size z == 0 }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys
```

Abstract counterexample: concat [[], []] = [0] if app [] [] = [0] Real evaluation: app [] [] = [] Synthesis constraints: $pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])$ $pre_{app}([], []) \Rightarrow post_{app}([], [], [])$

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

```
app :: x:[a] -> y:[a] -> { z:[a] | size z == 0 }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys
```

Concrete counterexample: app [0] [] = [0]

```
Synthesis constraints:

pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])

pre_{app}([], []) \Rightarrow post_{app}([], [], [])

pre_{app}([0], []) \Rightarrow post_{app}([0], [], [0])
```

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

```
app :: x:[a] -> y:[a] -> { z:[a] | size z == size x }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys
```

Concrete counterexample: app [0] [] = [0]

```
Synthesis constraints:

pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])

pre_{app}([], []) \Rightarrow post_{app}([], [], [])

pre_{app}([0], []) \Rightarrow post_{app}([0], [], [0])
```

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

```
app :: x:[a] -> y:[a] -> { z:[a] | size z == size x }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys
```

Concrete counterexample: app [0] [0] = [0, 0]

Synthesis constraints: $pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])$ $pre_{app}([], []) \Rightarrow post_{app}([], [], [])$ $pre_{app}([0], []) \Rightarrow post_{app}([0], [], [0])$ $pre_{app}([0], [0]) \Rightarrow post_{app}([0], [0], [0])$

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

```
app :: x:[a] -> y:[a] -> { z:[a] | size z == size x + size y}
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys
```

Concrete counterexample: app [0] [0] = [0, 0]

Synthesis constraints: $pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])$ $pre_{app}([], []) \Rightarrow post_{app}([], [], [])$ $pre_{app}([0], []) \Rightarrow post_{app}([0], [], [0])$ $pre_{app}([0], [0]) \Rightarrow post_{app}([0], [0], [0])$

```
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)
```

```
app :: x:[a] -> y:[a] -> { z:[a] | size z == size x + size y}
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys
```

Synthesis constraints: $pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])$ $pre_{app}([], []) \Rightarrow post_{app}([], [])$ $pre_{app}([0], []) \Rightarrow post_{app}([0], [], [0])$ $pre_{app}([0], [0]) \Rightarrow post_{app}([0], [0], [0])$

Call Graph Traversal

Walk **down** the call graph, from level 1 to level k.

At level i, synthesize specifications for the functions at level i + 1 that **would** (if correct) prove specifications of functions at level i.

Backtrack if:

- a concrete counterexamples to a specification at level <= i is found
- specification synthesis problem becomes unrealizable

Synthesizer

Synthesize LIA specifications for: f :: Int -> Int -> [Int]

$$f x y = [x + 4, y + 4]$$

Over:

Specification Type	Specification Example
Integer Literal Inputs/Outputs	f :: {x:lnt x < 0} -> { y:lnt y > 0} -> [lnt]
Integer Measures	f :: lnt -> lnt -> { xs:[lnt] size xs > 0 } size :: [a] -> lnt sumsize :: [[a]] -> lnt
ADT Contents	f :: lnt -> lnt -> [{ x:lnt x > 0 }]

Conversion

Synthesize LIA specifications for: $f :: Int \rightarrow Int \rightarrow [Int]$ $f \times y = [x + 4, y + 4]$

Constraint

$$\text{pre}_{\text{f}}(0, 1) \Rightarrow \text{post}_{\text{f}}(0, 1, [4, 5])$$

Integer Measures

size [4, 5] = 2pre_f(0, 1) \Rightarrow post_f(0, 1, 2) post_f(x, y, z) = z > 0 \downarrow post_f(x, y, z) = { z:[a] | size z > 0 }

Conversion

Synthesize LIA specifications for: $f :: Int \rightarrow Int \rightarrow [Int]$ $f \times y = [x + 4, y + 4]$

Constraint

$$\text{pre}_{f}(0, 1) \Rightarrow \text{post}_{f}(0, 1, [4, 5])$$

ADT Contents

$$post_{f_cons}(x, y, r)$$

$$pre_{f}(0, 1) \Rightarrow post_{f}(0, 1, 2)$$

$$\land post_{f_cons}(0, 1, 4)^{*}$$

$$\land post_{f_cons}(0, 1, 5)^{*}$$

$$post_{f}(x, y, r) = r > 0$$

$$post_{f_cons}(x, y, r) = r > 2$$

$$\downarrow$$

$$\{ r:[\{ x:Int \mid x > 2 \}] \mid size r > 0 \}$$

Evaluation

Ran the inference algorithm on 15 benchmarks, some created by us, some drawn from a graduate student level class homework assignment.

Benchmarks

Largest benchmark is the inner loop of a kmeans implementation, involving 34 functions. We prove the codes specifications in 596 seconds (slightly under 10 minutes.)

Conclusion

- For verification to succeed, modular verifiers require specifications to not only be correct, but be sufficiently supported by callee's specifications.
- Given specifications written by the user, our inference algorithm automatically finds the required set of specifications for a modular verifier to succeed.
- Using an SMT solver to synthesizer LIA specifications allows us SyGuS like synthesis, but to also prove unrealizability and get interpolants.
- Our approach is implemented to find LiquidHaskell specifications, using G2 as a counterexamples generator, and it's effectiveness is demonstrated on a variety of benchmarks.