
Counterexample Guided Inference of
Modular Specifications

William T. Hallahan*

Ranjit Jhala†

Ruzica Piskac*

*Yale University
†UCSD

Verification

map :: (a -> b) ->
map f [] = []
map f (x:xs) =

[a] -> [b]xs: { ys: | size xs == size ys }

map f xsf x:

Modular Verification

add2 :: x:Int -> { y:Int | y == x + 2 }
add2 x = incr (incr x)

Modular Verification

add2 :: x:Int -> { y:Int | y == x + 2 }
add2 x = incr (incr x)

incr :: x:Int -> { y:Int | y > x }
incr x = x + 1

To verify a caller, modular verifiers use callee’s specification

Modular Verification

add2 :: x:Int -> { y:Int | y == x + 2 }
add2 x = incr (incr x)

incr :: x:Int -> { y:Int | y == x + 1}
incr x = x + 1

To verify a caller, modular verifiers use callee’s specification

Modular Verification

To verify a caller, modular verifiers use callee’s specification

Question: How can we automatically find the required specifications?

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a]
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

Overview

Code

Users
Specifications

Verifier Verified!

Concrete
Counterexample

Abstract
Counterexample

G2

William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac.
Lazy Counterfactual Symbolic Execution. PLDI 2019.

Overview

Code

Users
Specifications

Verifier Verified!

Concrete
Counterexample
(to synthesized
specification)

Abstract
Counterexample

G2

Synthesized
Specifications

Concrete
Counterexample

(to users
specification)

Synthesizer

Overview

Code

Users
Specifications

Verifier Verified!

Concrete
Counterexample
(to synthesized
specification)

Abstract
Counterexample

G2

Synthesized
Specifications

Concrete
Counterexample

(to users
specification)

Synthesizer
LIA

Specification
Synthesizer

Overview

Code

Users
Specifications

Verifier Verified!

Concrete
Counterexample
(to synthesized
specification)

Abstract
Counterexample

G2

Synthesized
Specifications

Concrete
Counterexample

(to users
specification)

Synthesizer
LIA

Specification
Synthesizer

Counterexamples

map :: (a -> b) -> xs:[a] -> { ys:[b] | size xs == size ys}
map f [] = []
map f (x:xs) = map f xs

Concrete Counterexample

Abstract Counterexample

map id [1] = []

add2 :: x:Int -> { y:Int | y == x + 2 }
add2 x = incr (incr x)

incr :: x:Int -> { y:Int | y > x }
incr x = x + 1

add2 0 = 3
if incr 0 = 2

William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac.
Lazy Counterfactual Symbolic Execution. PLDI 2019.

Overview

Code

Users
Specifications

Verifier Verified!

Concrete
Counterexample
(to synthesized
specification)

Abstract
Counterexample

G2

Synthesized
Specifications

Concrete
Counterexample

(to users
specification)

Synthesizer
LIA

Specification
Synthesizer

Example
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a]
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

concat [[], []] = [0]
if app [] [] = [0]

Abstract counterexample:

app [] [] = []
Real evaluation:

Synthesis constraints:

preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])

Example
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == 0 }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

concat [[], []] = [0]
if app [] [] = [0]

Abstract counterexample:

app [] [] = []
Real evaluation:

Synthesis constraints:

preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])

Example
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == 0 }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

app [0] [] = [0]
Concrete counterexample:

preapp([0], []) ⇒ postapp([0], [], [0])

preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])

Synthesis constraints:

Example
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == size x }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

app [0] [] = [0]
Concrete counterexample:

preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])
preapp([0], []) ⇒ postapp([0], [], [0])

Synthesis constraints:

Example
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == size x }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

app [0] [0] = [0, 0]
Concrete counterexample:

preapp([0], [0]) ⇒ postapp([0], [0], [0])

preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])
preapp([0], []) ⇒ postapp([0], [], [0])

Synthesis constraints:

Example
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == size x + size y
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

app [0] [0] = [0, 0]
Concrete counterexample:

}

preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])
preapp([0], []) ⇒ postapp([0], [], [0])
preapp([0], [0]) ⇒ postapp([0], [0], [0])

Synthesis constraints:

Example
concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == size x + size y
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

}

preapp([0], []) ⇒ postapp([0], [], [0])

preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])

preapp([0], [0]) ⇒ postapp([0], [0], [0])

Synthesis constraints:

Call Graph Traversal

concat

app

concatMap

map

f

gh

… … …

Level

1

2

k - 2

k - 1

k

…

User provided
specification

Synthesized
specification

Walk down the call graph, from level 1 to level k.

At level i, synthesize specifications for the functions
at level i + 1 that would (if correct) prove
specifications of functions at level i.

Backtrack if:
• a concrete counterexamples to a specification at

level <= i is found
• specification synthesis problem becomes

unrealizable

Overview

Code

Users
Specifications

Verifier Verified!

Concrete
Counterexample
(to synthesized
specification)

Abstract
Counterexample

G2

Synthesized
Specifications

Concrete
Counterexample

(to users
specification)

Synthesizer
LIA

Specification
Synthesizer

Synthesizer

Constraints Measures
(size, sumsize)

Synthesize
specification

Verifier
Specification Interpolant

Realizable Unrealizable

Synthesizer

Constraints Measures
(size, sumsize)

Synthesize
specification

Verifier
Specification Interpolant

Realizable Unrealizable

Synthesize
specification

over LIA
(using SMT)

Synthesizer

Constraints

Convert to
Integer

template

Synthesize
specification

over LIA
(using SMT)

Convert
back to full

features

Verifier
Specification Interpolant

Realizable Unrealizable

Measures
(size, sumsize)

Synthesizer
Synthesize LIA specifications for:

Integer Literal Inputs/Outputs f :: {x:Int | x < 0} -> { y:Int | y > 0} -> [Int]

Integer Measures
f :: Int -> Int -> { xs:[Int] | size xs > 0 }

size :: [a] -> Int
sumsize :: [[a]] -> Int

ADT Contents f :: Int -> Int -> [{ x:Int | x > 0 }]

f :: Int -> Int -> [Int]

f x y = [x + 4, y + 4]
Over:

Specification Type Specification Example

Conversion

pref(0, 1) ⇒ postf(0, 1, [4, 5]) Constraint

size [4, 5] = 2

pref(0, 1) ⇒ postf(0, 1, 2)
Integer Measures

Synthesize LIA specifications for: f :: Int -> Int -> [Int]

f x y = [x + 4, y + 4]

postf(x, y, z) = z > 0

postf(x, y, z) = { z:[a] | size z > 0 }

Conversion

pref(0, 1) ⇒ postf(0, 1, [4, 5]) Constraint

pref(0, 1) ⇒ postf(0, 1, 2)
∧ postf_cons(0, 1, 4)
∧ postf_cons(0, 1, 5)

postf_cons(x, y, r)
[4, 5]

ADT Contents

Synthesize LIA specifications for: f :: Int -> Int -> [Int]

f x y = [x + 4, y + 4]

postf(x, y, r) = r > 0
post f_cons(x, y, r) = r > 2

{ r:[{ x:Int | x > 2 }] | size r > 0 }

Evaluation

Ran the inference algorithm on 15 benchmarks, some created by us, some drawn
from a graduate student level class homework assignment.

0

20

40

60

80

100

120

140

160

180

200

co
nc

at
(1)

co
nc

at
(2)

co
nc

at
(3)

dr
op map

rep
lic

ate

rev
ers

e
ris

er siz
e

tak
e

zip
W

ith

dr
op

/dr
op

En
d

tak
e/r

ep
lic

ate

ne
are

st

Benchmarks

Time(s)

T
im

eo
ut

Largest benchmark is the inner loop of a kmeans implementation, involving 34 functions.
We prove the codes specifications in 596 seconds (slightly under 10 minutes.)

Conclusion

• For verification to succeed, modular verifiers require specifications to not only
be correct, but be sufficiently supported by callee’s specifications.

• Given specifications written by the user, our inference algorithm
automatically finds the required set of specifications for a modular verifier
to succeed.

• Using an SMT solver to synthesizer LIA specifications allows us SyGuS like
synthesis, but to also prove unrealizability and get interpolants.

• Our approach is implemented to find LiquidHaskell specifications, using G2 as
a counterexamples generator, and it’s effectiveness is demonstrated on a
variety of benchmarks.

