Counterexample Guided Inference of Modular Specifications

William T. Hallahan*

Ranjit Jhala†

Ruzica Piskac*

*Yale University

†UCSD

Verification

$$
\begin{aligned}\n\text{map} &:: (a & \rightarrow b) & \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow \{ \text{ys: [b]} \} \\
\text{sign} &:: (a & \rightarrow b) \rightarrow \text{xs: [a]} \rightarrow
$$

Modular Verification

add2 :: x:Int -> { y:Int | $y == x + 2$ } add2 $x =$ incr (incr x)

Modular Verification

To verify a caller, modular verifiers use callee's specification

Modular Verification

To verify a caller, modular verifiers use callee's specification

```
Modular Verification
concat :: x: [[a]] \rightarrow \{v : [a] \mid size v = sumsize x\}concat [ = [ ]concat (xs:[]) = xsconcat (xs:(ys:xs)) = concat ((app xs ys):xs)app :: x:[a] \rightarrow y:[a] \rightarrow z:[a]app [ | | = [ |app xs [] = xsapp [] ys = ys
app (x:xs) ys = x:app xs ys
```
To verify a caller, modular verifiers use callee's specification

Question: How can we automatically find the required specifications?

William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac. *Lazy Counterfactual Symbolic Execution*. PLDI 2019.

Counterexamples

Concrete Counterexample

map :: $(a \rightarrow b) \rightarrow xs:[a] \rightarrow \{ ys:[b] \mid size xs == size ys \}$ map f $[] = []$ map $f(x:xs) = map f xs$

Abstract Counterexample

add2 :: x:Int -> { y:Int | $y == x + 2$ } add2 $x =$ incr (incr x) incr :: x:lnt -> { y:lnt | $y > x$ }

 $incr x = x + 1$

$$
add2 0 = 3
$$

if $incr0 = 2$

William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac. *Lazy Counterfactual Symbolic Execution*. PLDI 2019.

concat :: $x: [[a]] \rightarrow \{v : [a] \mid size v = sumsize x\}$ concat $[] = []$ concat $(xs:[]) = xs$ concat $(xs:(ys:xs)) = \text{concat} ((app xs ys):xs)$

```
app :: x:[a] \rightarrow y:[a] \rightarrow z:[a]app [] [] = []app xs [] = xsapp [] ys = ys
app (x:xs) ys = x:app xs ys
```
concat $[[], [[] = [0]$ if app $[]$ $[] = [0]$ Abstract counterexample: $app []$ $] = []$ Real evaluation: Synthesis constraints: $pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])$ $pre_{app}([], []) \Rightarrow post_{app}([], [])$

concat :: $x: [[a]] \rightarrow \{v : [a] \mid size v = sumsize x\}$ concat $[] = []$ concat $(xs:[]) = xs$ concat $(xs:(ys:xs)) = \text{concat} ((app xs ys):xs)$

```
app :: x:[a] -> y:[a] -> { z:[a] | size z == 0 }
app [] [] = []app xs [] = xsapp [] ys = ys
app (x:xs) ys = x:app xs ys
```
concat $[[], [[] = [0]$ if app $[]$ $[] = [0]$ Abstract counterexample: $app []$ $] = []$ Real evaluation: Synthesis constraints: $pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])$ $pre_{app}([], []) \Rightarrow post_{app}([], [])$

concat :: $x: [[a]] \rightarrow \{v : [a] \mid size v = sumsize x\}$ concat $[] = []$ concat $(xs:[]) = xs$ concat $(xs:(ys:xss)) =$ concat $((app xs ys):xss)$

```
app :: x:[a] -> y:[a] -> { z:[a] | size z == 0 }
app [] [] = []app xs [] = xsapp [] ys = ys
app (x:xs) ys = x:app xs ys
```
app $[0]$ $[] = [0]$ Concrete counterexample:

```
pre<sub>app</sub>([0], [] \Rightarrow post<sub>app</sub>([0], [], [0])pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])pre_{app}([], []) \Rightarrow post_{app}([], [], [])Synthesis constraints:
```
concat :: $x: [[a]] \rightarrow \{v : [a] \mid size v = sumsize x\}$ concat $[] = []$ concat $(xs:[]) = xs$ concat $(xs:(ys:xss)) =$ concat $((app xs ys):xss)$

```
app :: x:[a] \rightarrow y:[a] \rightarrow \{z:[a] \mid size z == size x \}app [] [] = []app xs [] = xsapp [] ys = ys
app (x:xs) ys = x:app xs ys
```
app $[0]$ $[] = [0]$ Concrete counterexample:

```
pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])pre_{app}([], []) \Rightarrow post_{app}([], [], [])pre<sub>app</sub>([0], [] \Rightarrow post<sub>app</sub>([0], [], [0])Synthesis constraints:
```
concat :: $x: [[a]] \rightarrow \{v : [a] \mid size v = sumsize x\}$ concat $[] = []$ concat $(xs:[]) = xs$ concat $(xs:(ys:xss)) =$ concat $((app xs ys):xss)$

```
app :: x:[a] \rightarrow y:[a] \rightarrow \{z:[a] \mid size z == size x \}app [] [] = []app xs [] = xsapp [] ys = ys
app (x:xs) ys = x:app xs ys
```
app $[0]$ $[0]$ = $[0, 0]$ Concrete counterexample:

 $pre_{app}([0], [0]) \Rightarrow post_{app}([0], [0], [0])$ $pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])$ $pre_{app}([], []) \Rightarrow post_{app}([], [], [])$ $pre_{app}([0], []$ \Rightarrow $post_{app}([0], []$, $[0])$ Synthesis constraints:

concat :: $x: [[a]] \rightarrow \{v : [a] \mid size v = sumsize x\}$ concat $[] = []$ concat $(xs:[]) = xs$ concat $(xs:(ys:xss)) =$ concat $((app xs ys):xss)$

```
app :: x:[a] -> y:[a] -> { z:[a] | size z == size x + size y}
app [] [] = []app xs [] = xsapp [] ys = ys
app (x:xs) ys = x:app xs ys
```
app $[0]$ $[0]$ = $[0, 0]$ Concrete counterexample:

 $pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])$ $pre_{app}([], []) \Rightarrow post_{app}([], [], [])$ $pre_{app}([0], []$ \Rightarrow $post_{app}([0], []$, $[0])$ $pre_{\text{app}}([0], [0]) \Rightarrow post_{\text{app}}([0], [0], [0])$ Synthesis constraints:

```
concat :: x: [[a]] \rightarrow \{v : [a] \mid size v = sumsize x\}concat [] = []concat (xs:[]) = xsconcat (xs:(ys:xss)) = concat ((app xs ys):xss)
```

```
app :: x:[a] -> y:[a] -> { z:[a] | size z == size x + size y}
app [] [] = []app xs [] = xsapp [] ys = ys
app (x:xs) ys = x:app xs ys
```
$pre_{app}([0], []$ \Rightarrow $post_{app}([0], []$, $[0])$ $pre_{app}([], []) \Rightarrow \neg post_{app}([], [], [0])$ $pre_{app}([], []) \Rightarrow post_{app}([], [])$ $pre_{app}([0], [0]) \Rightarrow post_{app}([0], [0], [0])$ Synthesis constraints:

Call Graph Traversal

Walk **down** the call graph, from level 1 to level k.

At level i, synthesize specifications for the functions at level i + 1 that **would** (if correct) prove specifications of functions at level i.

Backtrack if:

- a concrete counterexamples to a specification at level <= i is found
- specification synthesis problem becomes unrealizable

Synthesizer

Synthesize LIA specifications for: f:: Int -> Int -> [Int]

$$
f \times y = [x + 4, y + 4]
$$

Over:

Conversion

Synthesize LIA specifications for: f :: Int -> Int -> [Int] $f x y = [x + 4, y + 4]$

Construct	pre _f (0, 1) \Rightarrow post _f (0, 1, [4, 5])
-----------	--

size $[4, 5] = 2$ Pref(0, 1) ⇒ post_f(0, 1, 2) Integer Measures $post_f(x, y, z) = z > 0$ $post_f(x, y, z) = { z:[a] | size z > 0 }$

Conversion

Synthesize LIA specifications for: f:: Int -> Int -> [Int] $f \times y = [x + 4, y + 4]$

$$
\text{Construct}\qquad \qquad \text{pre}_f(0, 1) \Rightarrow \text{post}_f(0, 1, [4, 5])
$$

ADT Contents	\n $\text{post}_{f_{\text{cons}}}(x, y, r)$ \n	\n $\text{pre}_{f}(0, 1, 2)$ \n	\n $\text{post}_{f_{\text{cons}}}(0, 1, 4)$ \n
As $\text{post}_{f_{\text{cons}}}(0, 1, 5)$ \n	\n $\text{post}_{f_{\text{cons}}}(0, 1, 5)$ \n		
has $\text{post}_{f_{\text{cons}}}(x, y, r) = r > 0$ \n	\n $\text{post}_{f_{\text{cons}}}(x, y, r) = r > 2$ \n		
\n $\text{r}:\{\text{x}:\text{Int } \text{x} > 2\}] \text{ size } r > 0\}$ \n			

Evaluation

Ran the inference algorithm on 15 benchmarks, some created by us, some drawn from a graduate student level class homework assignment.

Benchmarks

Largest benchmark is the inner loop of a kmeans implementation, involving 34 functions. We prove the codes specifications in 596 seconds (slightly under 10 minutes.)

Conclusion

- For verification to succeed, modular verifiers require specifications to not only be correct, but be sufficiently supported by callee's specifications.
- Given specifications written by the user, our inference algorithm **automatically** finds the required set of specifications for a modular verifier to succeed.
- Using an SMT solver to synthesizer LIA specifications allows us SyGuS like synthesis, but to also prove unrealizability and get interpolants.
- Our approach is implemented to find LiquidHaskell specifications, using G2 as a counterexamples generator, and it's effectiveness is demonstrated on a variety of benchmarks.