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Motivating Example

Consider an agent acting in the following stochastic grid world.

1. Set of actions: { ↑, ↓, ←, → }.

2. , slip and move ↓.p =
1

32

Q: What was the agent trying to do?
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Consider an agent acting in the following stochastic grid world.

What was the agent trying to do?

Q: Did the agent intend to touch the red tile?
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What was the agent trying to do?

Consider an agent acting in the following stochastic grid world.

Q: Did the agent intend to touch the red tile? A: Probably Not.

Q: Did the agent intend to eventually touch a yellow tile?
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What was the agent trying to do?

Consider an agent acting in the following stochastic grid world.

Q: Did the agent intend to touch the red tile? A: Probably Not.

Q: Did the agent intend to eventually touch a yellow tile? A: Probably.
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Communication through demonstrations

goal
Visit a yellow

tile
00010001

01010010

0101101

Demonstration information channel.

Can often learn given unlabeled demonstration errors!
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Communication through demonstrations

goal
Visit a yellow

tile
00010001

01010010

0101101

Demonstration information channel.

Goal: Develop algorithms to learn speci�cations from
unlabeled demonstrations.

Q: Why not learn rewards?
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Problems with rewards

How to safely compose in a dynamics invariant way?
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Problems with rewards

1. Dynamic States != Reward States

2. Beware the curse of history (Pineau et al 2003). 
Adding history can result in exponential state space explosion.
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Speci�cations admit composition

Example Gridworld Domain.

Example Task

 = Eventually recharge.

 = Avoid lava.
 = If agent enters water, the agent must dry

off before recharging.

φ = ∧ ∧φ1 φ2 φ3

φ1

φ2

φ3

Can learn incrementally or in parallel and then recompose.
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Structure of the talk

Prelude - Problem Setup

00010001
01010010

0101101

Abstract Traces

Act 1 - Naïve Problem Formulation

Act 2 - Exploiting Boolean Structure

Finale - Experiment
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Structure of the talk

Act 2 - Exploiting Boolean Structure

Prelude - Problem Setup

00010001
01010010

0101101

Abstract Traces

Act 1 - Naïve Problem Formulation

Finale - Experiment
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Structure of the talk

Finale - Experiment

Prelude - Problem Setup

00010001
01010010

0101101

Abstract Traces

Act 1 - Naïve Problem Formulation

Act 2 - Exploiting Boolean Structure
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Basic de�nitions

1. Assume some �xed sets of states and actions.

s₁ s₂

a₁ a₂

...
s₃

a₃

2. A trace, , is a sequence of states and actions.ξ

3. Assume all traces the same length, .τ ∈ N
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Basic de�nitions

1. Assume some �xed sets of states and actions.

2. A trace, , is a sequence of states and actions.ξ

3. Assume all traces the same length, .τ ∈ N

4. A (Boolean) speci�cation , is a set of traces.

Traces

task

φ

5. We say  satis�es , written , if .ξ φ ξ ⊨ φ ξ ∈ φ
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No a-priori order on traces

?
>

Agent model induces ordering.

1. Need to know what moves are "risky".

2. Need to know agent's objective and competency.
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Agent model induces ordering

A demonstration of a task  is an unlabeled example where  
the agent tries to satisfy .

φ

φ

Agency is key. Need a notion of action.

Success probabilities induce an ordering.

>
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Solution Ingredients

1. Compare Likelihoods.

Pr( )
Abstract TracesDemonstrations

| Pr( )
Abstract TracesDemonstrations

|>
?

2. Search for likely speci�cations.

Concept Class
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Solution Ingredients

1. Compare Likelihoods. Focus on this today.

Pr( )
Abstract TracesDemonstrations

| Pr( )
Abstract TracesDemonstrations

|>
?

2. Search for likely speci�cations.

Concept Class
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Structure of the talk

Prelude - Problem Setup

00010001
01010010

0101101

Abstract Traces

Act 1 - Naïve Problem Formulation

Act 2 - Exploiting Boolean Structure

Finale - Experiment
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Structure of the talk

Act 1 - Naïve Problem Formulation

Prelude - Problem Setup

00010001
01010010

0101101

Abstract Traces

1. Cast problem as inverse reinforcement learning.
2. Apply principle of maximum causal entropy.

Act 2 - Exploiting Boolean Structure

Finale - Experiment
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Inverse Reinforcement Learning

s₁ s₂

a₁ a₂

...
s₃

a₃

Assume agent is acting in a Markov Decision process and optimizing the
sum of an unknown state reward, , i.e,:r(s)

( ( r( ) | π))max
π

Es1:τ
∑
i=1

τ

si

where
π(a | s) = Pr(a | s)

Given a series of demonstrations, what reward, , best explains the
behavior? (Abbeel and Ng 2004)

r(s)
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Inverse Reinforcement Learning

s₁ s₂

a₁ a₂

...
s₃

a₃

Given a series of demonstrations, what reward, , best explains the
behavior? (Abbeel and Ng 2004)

r(s)

1. Problem: There is no unique solution as posed!

Pr(r | ξ) =?

2. Idea: Disambiguate via the Principle of Maximum Causal
Entropy. (Ziebart, et al. 2010)
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Idea: Reduce Speci�cation Inference to IRL.

Q: What should the reward be?

?
>

Proposal: Use indicator.

r(ξ) ≜ {
1
0

if ξ ∈ φ

otherwise
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Idea: Reduce Speci�cation Inference to IRL.

r(ξ) ≜ {
1

0

if ξ ∈ φ

otherwise

Note: States are now traces.
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Idea: Reduce Speci�cation Inference to IRL.

Note: States are now traces.

r(ξ) ≜ {
1

0

if ξ ∈ φ

otherwise

7/8

1/8

7/8

1/8

7/8

1/8

7/8

1/8

1 1

1

11

11

1

1 1 1

1

1

1

a

b

c

d

e

f

g

h

i

Suppose  is over traces of length 2.φ
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Idea: Reduce Speci�cation Inference to IRL.

Note: States are now traces.

Suppose  is over traces of length 2.

r(ξ) ≜ {
1

0

if ξ ∈ φ

otherwise

a

b b d

1/8 7/8
1

gc e c e

1
1/8 7/8

c e c

1
1/8 7/8

e

1 7/8

1 000000 0 0

t =0

t =1

t =2

agent action

enviroment action

φ
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Idea: Reduce Speci�cation Inference to IRL.

a

b b d

1/8 7/8
1

gc e c e

1
1/8 7/8

c e c

1
1/8 7/8

e

1 7/8

1 000000 0 0

t =0

t =1

t =2

agent action

enviroment action

Problem: Naïve reduction leds to exponential blow up.

Post-pone this concern for now.
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Structure of the talk

Prelude - Problem Setup

Act 1 - Naïve Problem Formulation

1. Cast problem as inverse reinforcement learning.

r(ξ) ≜ {
1
0

if ξ ∈ φ

otherwise

2. Apply principle of maximum causal entropy.

Act 2 - Exploiting Boolean Structure

Finale - Experiment
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Structure of the talk

Act 1 - Naïve Problem Formulation

Prelude - Problem Setup

1. Cast problem as inverse reinforcement learning.

r(ξ) ≜ {
1
0

if ξ ∈ φ

otherwise

2. Apply principle of maximum causal entropy.

Act 2 - Exploiting Boolean Structure

Finale - Experiment
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High Entropy Policies are Robust

Key problem

Given , was is demonstrator likely to do? 
 

φ

 = ?Pr( ∣ )At S1:t

Note: Maximum causal entropy forecaster minimizes worst case
prediction log-loss. (Ziebart, et al. 2010)

Maximum causal entropy → Robust agent proxy
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Maximum Causal Entropy

Key Idea: Don't commit more than the observations require.

Pr( ∣ ) =  ?At S1:t

Formally: Maximize expected causal entropy.

subject to expected reward matching.

H(  ||  ) = H( ∣ )A1:τ S1:τ ∑
t=1

T

At S1:t
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Maximum Causal Entropy

Key Idea: Don't commit more than the observations require.

Formally: Maximize expected causal entropy.

Pr( ∣ ) =  ?At S1:t

H(  ||  ) = H( ∣ )A1:τ S1:τ ∑
t=1

T

At S1:t

subject to . E[r( )] =S1:τ r∗
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Maximum Causal Entropy

Key Idea: Don't commit more than the observations require.

Formally: Maximize expected causal entropy.

subject to .

Pr( ∣ ) =  ?At S1:t

H(  ||  ) = H( ∣ )A1:τ S1:τ ∑
t=1

T

At S1:t

 Pr( ∈ φ) =S1:τ p∗
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Will consider two cases

a.  
"Learning Task Speci�cations from Demonstrations." NeurIPS 2018

H( ∣∣ ) ≈ H( ∣ )A1:τ S1:τ A1:τ S1:τ

b.  
"Maximum Causal Entropy Speci�cation Inference from

Demonstrations.", CAV 2020

H( ∣∣ ) ≉ H( ∣ )A1:τ S1:τ A1:τ S1:τ
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a.  
"Learning Task Speci�cations from Demonstrations." NeurIPS 2018

Lets start with MaxEnt case

H( ∣∣ ) ≈ H( ∣ )A1:τ S1:τ A1:τ S1:τ

b.  
"Maximum Causal Entropy Speci�cation Inference from

Demonstrations.", CAV 2020

H( ∣∣ ) ≉ H( ∣ )A1:τ S1:τ A1:τ S1:τ
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Structure of the talk

Prelude - Problem Setup

Act 1 - Naïve Problem Formulation

a

b b d

1/8 7/8
1

gc e c e

1
1/8 7/8

c e c

1
1/8 7/8

e

1 7/8

1 000000 0 0

t =0

t =1

t =2

agent action

enviroment action

Act 2 - Exploiting Boolean Structure

Finale - Experiment
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Change of perspective

Random bit model: Represent Markov Decision Process as
deterministic transition system with access to  coin �ips.nc

DynamicsAction Next State
Coin flips

State

Dynamics : S × → S{0, 1} +na nc
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Change of perspective

Unrolling and composing with speci�cation results in a predicate.

Dynamics
Action Bits

Coin flips

Dynamics

Action Bits

Coin flips

Specification
SAT

ψ : → {0, 1}{0, 1}τ⋅( + )na nc
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Policy closes the loop
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Looks like a biased coin

Observe satisfaction probability, .pφ

Need to be consistent with Bernoulli random variable.
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Pulling back the curtain

Satisfaction probability, , affected by policy and how "easy" the
speci�cation/dynamics combination is.

pφ
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Policy doesn't need to be reactive

 
"Learning Task Speci�cations from Demonstrations." NeurIPS 2018

H( ∣∣ ) ≈ H( ∣ )A1:τ S1:τ A1:τ S1:τ

E�ects separable in MaxEnt case
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E�ects separable in MaxEnt case

≜ Pr(ξ ⊨ φ | teacher π)      ≜ Pr(ξ ⊨ φ | uniform  )pφ qφ A1:τ

1. The  given  is:Maximum Entropy Distribution pφ

Pr(  | demos, φ) ∝S1:τ

⎧

⎩
⎨

pφ

qφ

p¬φ

q¬φ

if  ∈ φS1:τ

if  ∉ φS1:τ

2. Note: When the dynamics are deterministic, this recovers the size
principle from concept learning! (Tenenbaum 1999)

45 /  90



Maximum Entropy Likelihood given i.i.d. demos
Additional Assumptions

Teacher at least as good as random: ≥pφ qφ

Demonstrations, demos given i.i.d.

Demonstrations are representative: .n ⋅ ≈ #{   ∈  φ}pφ ξi

≜ coin with bias        ≜ coin with bias Pφ pφ Qφ qφ

...

Pr(demos | φ) ∝ exp(n ⋅ )1[ ≥ ]pφ qφ
  

better than random

( ∣∣ )DKL Pφ Qφ
  

InfoGain over random actions.

Aside: Can be interpreted as quantifying the atypicality of 
 over random action hypothesis. (Sanov's Theorem 1957)demos
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Max Entropy and Max Causal Entropy

b.  
"Maximum Causal Entropy Speci�cation Inference from

Demonstrations.", CAV 2020

a.  
"Learning Task Speci�cations from Demonstrations." NeurIPS 2018

H( ∣∣ ) ≈ H( ∣ )A1:τ S1:τ A1:τ S1:τ

H( ∣∣ ) ≉ H( ∣ )A1:τ S1:τ A1:τ S1:τ
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Generally need to be reactive.

 
"Maximum Causal Entropy Speci�cation Inference from Demonstrations.",

CAV 2020

H( ∣∣ ) ≉ H( ∣ )A1:τ S1:τ A1:τ S1:τ
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Soft Bellman backup

Maximum Causal Entropy Policy

log ( (  |  )) = ( , ) − ( )πθ a1:t s1:t Qθ a1:t s1:t Vθ s1:t

where

( ) ≜ {Vθ s1:t
ln∑a1:t

e ( , )Qθ a1:t s1:t

θ ⋅ [ ∈ φ]s1:τ

if t ≠ τ,

otherwise.

( , ) ≜ [ ( ) |  , ]Qθ a1:t s1:t Es1:t+1
Vθ st+1 s1:t a1:t

Find  to match .θ p∗
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Soft Bellman backup

Maximum Causal Entropy Policy

( ) ≜ {Vθ s1:t
ln∑a1:t

e ( , )Qθ a1:t s1:t

θ ⋅ [ ∈ φ]s1:τ

if t ≠ τ,

otherwise.

( , ) ≜ [ ( ) |  , ]Qθ a1:t s1:t Es1:t+1
Vθ st+1 s1:t a1:t

Focus on recursive soft-value calculation.
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Looks like standard Bellman backup

Maximum Causal Entropy Policy

max ↦ smooth maximum.

( ) ≜ {Vθ s1:t
( , )smaxa1:t

Qθ a1:t s1:t

θ ⋅ 1[ ∈ φ]s1:τ

if t ≠ τ,

otherwise.

( , ) ≜ [ ( ) |  , ]Qθ a1:t s1:t Es1:t+1
Vθ st+1 s1:t a1:t
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Soft Bellman backup

a

b b d

1/8 7/8
1

gc e c e

1
1/8 7/8

c e c

1
1/8 7/8

e

1 7/8

1 000000 0 0

t =0

t =1

t =2

agent action

enviroment action

( ) ≜ {Vθ s1:t
( , )smaxa1:t

Qθ a1:t s1:t

θ ⋅ 1[ ∈ φ]s1:τ

if t ≠ τ ,

otherwise.

( , ) ≜ [ ( ) |  , ]Qθ a1:t s1:t Es1:t+1 Vθ st+1 s1:t a1:t
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Backup as computation graph

1 71

1 7
1 1 7 1

7

θθ 00000000000000 00

smax

E

smax smax smax

1 1

Q Q

Q Q Q Q Q
Q

V

V
V V

E E E E E E

E

( ) ≜ {Vθ s1:t
( , )smaxa1:t

Qθ a1:t s1:t

θ ⋅ 1[ ∈ φ]s1:τ

if t ≠ τ ,

otherwise.

( , ) ≜ [ ( ) |  , ]Qθ a1:t s1:t Es1:t+1 Vθ st+1 s1:t a1:t

Find  to match .θ p∗
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Backup as computation graph

1 71

1 7
1 1 7 1

7

θθ 00000000000000 00

smax

E

smax smax smax

1 1

Q Q

Q Q Q Q Q
Q

V

V
V V

E E E E E E

E

Note: Satisfaction probability grows monotonically in .θ

Can binary search for  such that satisfaction probability matches data.θ
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Backup as computation graph

1 71

1 7
1 1 7 1

7

θθ 00000000000000 00

smax

E

smax smax smax

1 1

Q Q

Q Q Q Q Q
Q

V

V
V V

E E E E E E

E

Problem: Unrolled tree grows exponentially in horizon!
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Backup as computation graph

1 71

1 7
1 1 7 1

7

θθ 00000000000000 00

smax

E

smax smax smax

1 1

Q Q

Q Q Q Q Q
Q

V

V
V V

E E E E E E

E

Observation 1: A lot of shared structure in computation graph.

Observation 2: System and environment actions are ordered.
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Backup as computation graph

1 71

1 7
1 1 7 1

7

θθ 00000000000000 00

smax

E

smax smax smax

1 1

Q Q

Q Q Q Q Q
Q

V

V
V V

E E E E E E

E

Idea: Encode graph as a binary predicate

and represent as Reduced Ordered Binary Decision Diagram 
(Bryant 1986).

ψ : {0, 1 → {0, 1}}n
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Idea: Encode graph as a binary predicate

and represent as Reduced Ordered Binary Decision Diagram 
(Bryant 1986).

Random Bit Model

Dynamics
Action Bits

Coin flips

Dynamics

Action Bits

Coin flips

Specification
SAT

ψ : → {0, 1}{0, 1}τ⋅( + )na nc
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Random Bit Model

ψ : → {0, 1}{0, 1}τ⋅( + )na nc

Proposal: Represent  as Binary Decision Diagram with bits in causal order.ψ

Action Bits

Coin Flips

Action Bits

Coin Flips

Time
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Random Bit Model

Proposal: Represent  as Binary Decision Diagram with bits in causal order.

ψ : → {0, 1}{0, 1}τ⋅( + )na nc

ψ

Time

1 2 3 4 5 6 7 8 9 10

1

0
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Maximum Causal Entropy and BDDs

Q: Can Maximum Entropy Causal Policy be computed on causally
ordered BDDs? A: Yes!

1. Associativity of  and .smax E

smax( , … , ) = ln( )α1 α4 ∑
i=1

4

e
αi
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Maximum Causal Entropy and BDDs

Q: Can Maximum Entropy Causal Policy be computed on causally
ordered BDDs? A: Yes!

1. Associativity of  and .smax E

smax( , … , ) = ln( + )α1 α4 e
ln( + )e

α1 e
α2

e
ln( + )e

α3 e
α4
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Maximum Causal Entropy and BDDs

Q: Can Maximum Entropy Causal Policy be computed on causally
ordered BDDs? A: Yes!

1. Associativity of  and .smax E

smax( , … , ) = smax(smax( , ), smax( , ))α1 α4 α1 α2 α3 α4
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Maximum Causal Entropy and BDDs

Q: Can Maximum Entropy Causal Policy be computed on causally
ordered BDDs? A: Yes!

1. Associativity of  and .smax E

2. smax(α, α) = α + ln(2)

3. E(α, α) = α
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Maximum Causal Entropy and BDDs

1. Associativity of  and .smax E

2. smax(α, α) = α + ln(2)

3. E(α, α) = α

Time

1 2 3 4 5 6 7 8 9 10

1

0
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Maximum Causal Entropy and BDDs

1. Associativity of  and .

2. 

3. 

smax E

smax(α, α) = α + ln(2)

E(α, α) = α

Time

1 2 3 4 5 6 7 8 9 10

θ
0

sm
ax E E

sm
ax

sm
ax
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Size Bounds

Q: How big can these Causal BDDs be?

|BDD| ≤ ⋅ ( ⋅ )⋅ ( log(|A|) + #coins)τ
 

horizon

  
# inputs

|S/φ| ⋅ |A|
  

composed automaton

2#coins
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Size Bounds

|BDD| ≤ ⋅ ( ⋅ )⋅ ( log(|A|) + #coins)τ
 

horizon

  
# inputs

|S/φ| ⋅ |A|
  

composed automaton

2#coins

Linear in horizon!

Note: Using function composition, can build BDD e�ciently.

68 /  90



Max Entropy and Max Causal Entropy

a.  
Need to compute performance of unifomly random actions.

H( ∣∣ ) ≈ H( ∣ )A1:τ S1:τ A1:τ S1:τ

b.  
Compressed Bellman backup on binary decision diagram.

H( ∣∣ ) ≉ H( ∣ )A1:τ S1:τ A1:τ S1:τ
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Solution Ingredients

1. Compare Likelihoods.

Pr( )
Abstract TracesDemonstrations

| Pr( )
Abstract TracesDemonstrations

|>
?

2. Search for likely speci�cations.

Concept Class
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Structure of the talk

Prelude - Problem Setup

Act 1 - Naive Reduction to Maximum Causal Entropy IRL

Act 2 - Exploiting Boolean structure

Finale - Experiment
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Toy Experiment
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Toy Experiment

Dynamics

Agent can attempt to move {↑, ↓, ←, →}.

With probability , agent will slip and move ←.1

32
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Toy Experiment

Dynamics

A = {↑, ↓, ←, →}.

, slip and move ←.p =
1

32
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Toy Experiment

Dynamics

A = {↑, ↓, ←, →}.

, slip and move ←.p =
1

32

Provided 6 unlabeled demonstrations for the task:

Go to and stay at the yellowyellow tile (recharge).

Avoid redred tiles (lava).

If you enter a blueblue, touch a brownbrown tile before recharging.

Within 10 time steps.

Note: Dashed demonstration fails to dry off
due to slipping.
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Toy Experiments

Dynamics

A = {↑, ↓, ←, →}.

, slip and move ←.

Spec Policy Size ROBDD Relative Log Likelihood
(#nodes) build time (Compared to True)

true 1 0.48s 0
φ1 =  Avoid Lava 1797 1.5s -22

φ2= Recharge 1628 1.2s 5

φ3= Don't recharge while wet 750 1.6s -10

φ4 = φ1 ∧ φ2 523 1.9s 4

φ5 = φ1 ∧ φ3 1913 1.5s -2

φ6 = φ2 ∧ φ3 1842 2s 15

φ⋆ = φ1 ∧ φ2 ∧ φ3 577 1.6 27

(smaller better) (smaller better) (bigger better)

p =
1

32
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Toy Experiments

Spec Policy Size ROBDD Relative Log Likelihood
(#nodes) build time (Compared to True)

true 1 0.48s 0
φ1 =  Avoid Lava 1797 1.5s -22

φ2= Recharge 1628 1.2s 5

φ3= Don't recharge while wet 750 1.6s -10

φ4 = φ1 ∧ φ2 523 1.9s 4

φ5 = φ1 ∧ φ3 1913 1.5s -2

φ6 = φ2 ∧ φ3 1842 2s 15

φ⋆ = φ1 ∧ φ2 ∧ φ3 577 1.6 27

(smaller better) (smaller better) (bigger better)

Key observation: True speci�cation more
likely than consistent speci�cations.
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Toy Experiments

Dynamics

A = {↑, ↓, ←, →}.

, slip and move ←.

Find ipython binder for experiment at: 

p =
1

32

bit.ly/2WgzDcW

Code for this paper: 
  

github.com/mvcisback/mce-spec-inference
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Structure of the talk

Prelude - Problem Setup

Act 1 - Naive Reduction to Maximum Causal Entropy IRL

Act 2 - Exploiting Boolean structure

Finale - Experiment
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Conclusions

goal
Visit a yellow

tile
00010001

01010010

0101101

Demos are often a natural way to relay a trace property.

Can still learn given unlabeled demonstration errors!

Sketched 2 algorithms based on maximizing (causal) entropy.
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Questions?

goal
Visit a yellow

tile
00010001

01010010

0101101

Slides @ mjvc.me/simonsSP21
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Causal Policies

Actions shouldn't depend on information from the future.

Goal: Reach yellow. How will agent act?
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Non-Causal Policies

Actions shouldn't depend on information from the future.

t + 2 

Example of conditioning on the future.
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Causal Policies

Actions shouldn't depend on information from the future.

Maybe we get pushed by wind.
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Causal Conditioning

Actions shouldn't depend on information from the future.

Pr(  ||  ) ≜ Pr(  |  , )A1:τ S1:τ ∏
t=1

τ

At S1:t A1:t−1

Simplify by assuming  only depends on states.φ
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Causal Conditioning

Actions shouldn't depend on information from the future.

Simplify by assuming  only depends on states.

Pr(  ||  ) = Pr(  |  )A1:τ S1:τ ∏
t=1

τ

At S1:t

φ

Key problem

Given , was is demonstrator likely to do? 
 

φ

 = ?Pr( ∣∣ )A1:τ S1:τ
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Maximum Causal Entropy

Key Idea: Don't commit more than the observations require.

Formally: Maximize expected causal entropy.

subject to .

Pr(  ||  ) =  ?A1:τ S1:τ

H(  ||  ) ≜ E[log( )]A1:τ S1:τ
1

Pr(  ||  )A1:τ S1:τ

 E[r( )] =S1:τ r∗
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while matching satisi�cation probabilities.

High Entropy Policies are Robust
Maximize

H(  ||  ) ≜ E[log( )]A1:τ S1:τ
1

Pr(  ||  )A1:τ S1:τ

Goal: Reach yellow. How will agent act?
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High Entropy Policies are Robust
Maximize

while matching satisi�cation probabilities.

H(  ||  ) ≜ E[log( )]A1:τ S1:τ
1

Pr(  ||  )A1:τ S1:τ

Minimum Entropy Forecaster

Put all of the probability mass one 1 path.
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High Entropy Policies are Robust
Maximize

while matching satisi�cation probabilities.

H(  ||  ) ≜ E[log( )]A1:τ S1:τ
1

Pr(  ||  )A1:τ S1:τ

High Entropy Forecaster

Distribute prediction over high value paths.

90 /  90


