Towards a Theory of Learning Inductive Invariants

Yotam Feldman

Neil Immerman

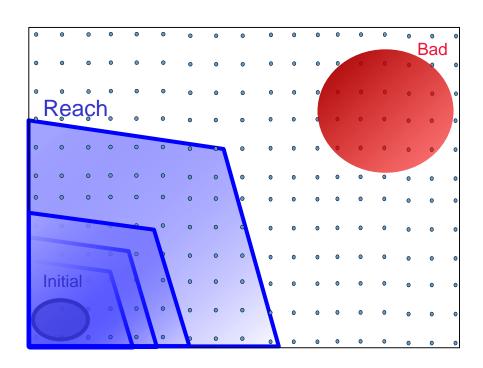
Mooly Sagiv

Sharon Shoham

James R. Wilcox

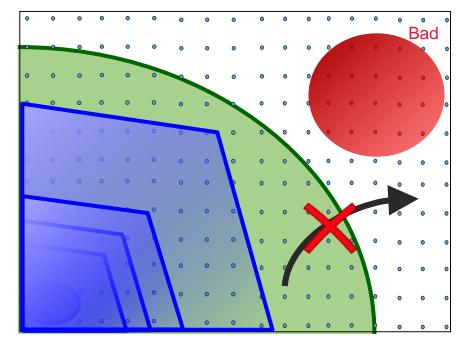
Safety of Transition Systems

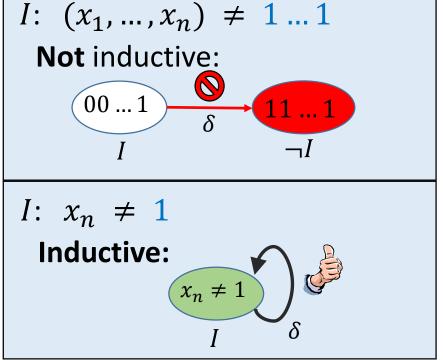
$$\begin{array}{ll} \underline{\text{Init}:} & \underline{\delta}: \\ (x_1,\ldots,x_n) \;\coloneqq\; 0 \ldots 0 & y_1,\ldots,y_n \;\coloneqq\; * \\ \underline{\text{Bad}:} & (x_1,\ldots,x_n) \;=\; 1 \ldots 1 & \underbrace{2 \cdot (y_1,\ldots,y_n)}_{\text{cond}} \;\; (\text{mod } 2^n) \end{array}$$



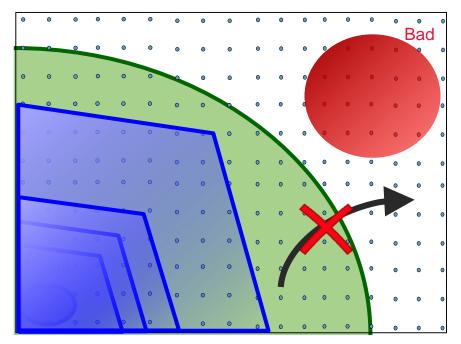
Inductive Invariants

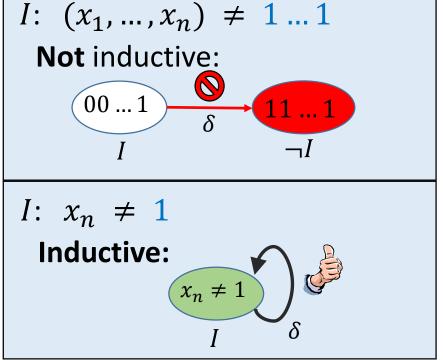
$$\begin{array}{ll} \underline{\text{lnit}} \colon & \underline{\delta} \colon \\ (x_1, \dots, x_n) \; \coloneqq \; 0 \dots 0 & \qquad \qquad y_1, \dots, y_n \; \coloneqq \; \ast \\ & \underline{\text{Bad}} \colon \\ (x_1, \dots, x_n) \; = \; 1 \dots 1 & \qquad \qquad 2 \cdot (y_1, \dots, y_n) \pmod{2^n} \end{array}$$





Inductive Invariants



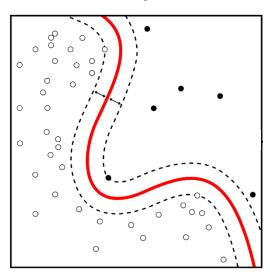


This Work

Invariant Inference

Exact Concept Learning

VS.



- Query-based learning models for invariant inference
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from classification algorithms

Problem Setting: Polynomial-Length Inference

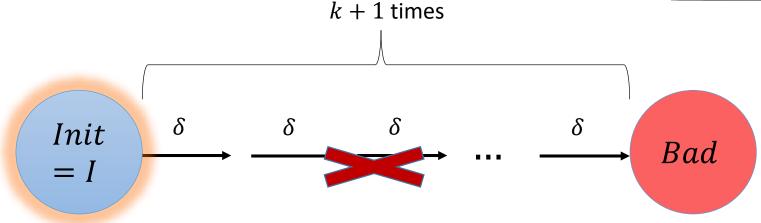
Boolean transition systems, $\Sigma = \{p_1, ..., p_n\}$ <u>Given</u> a transition system from a class \mathcal{P} (over Σ), <u>Find</u> an inductive invariant

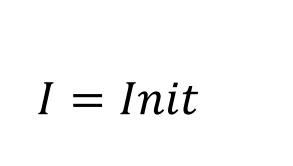
$$I \in DNF$$
 $|I| \le poly(n)$

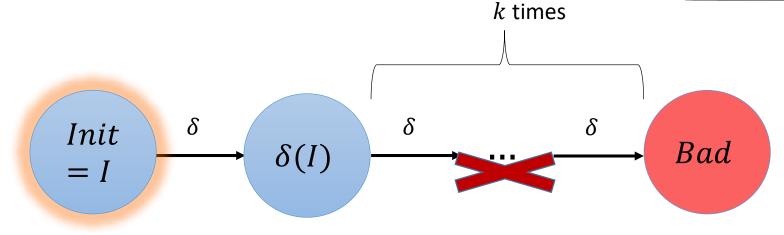
(Decision problem is Σ_2^P -complete.)

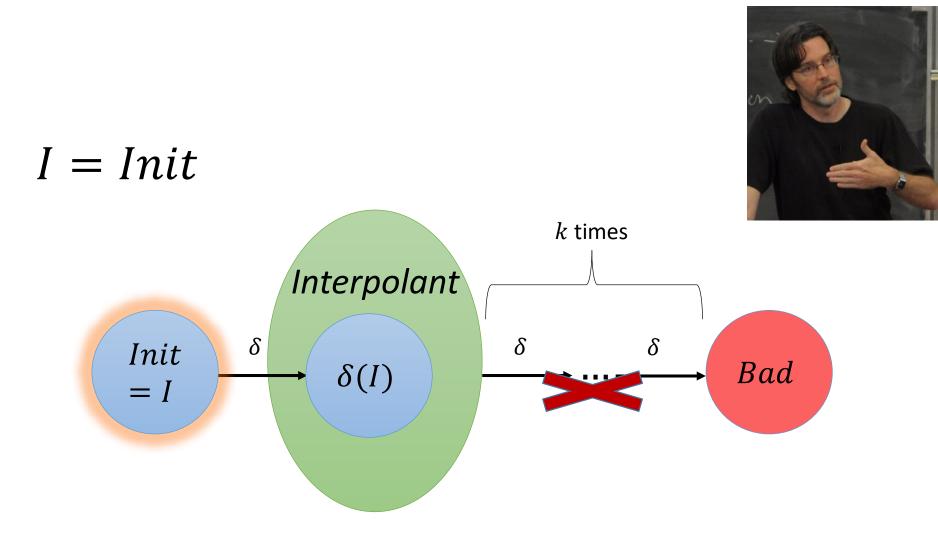
[CADE'09] Complexity and Algorithms for Monomial and Clausal Predicate Abstraction. Lahiri, Qadeer [POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

I = Init

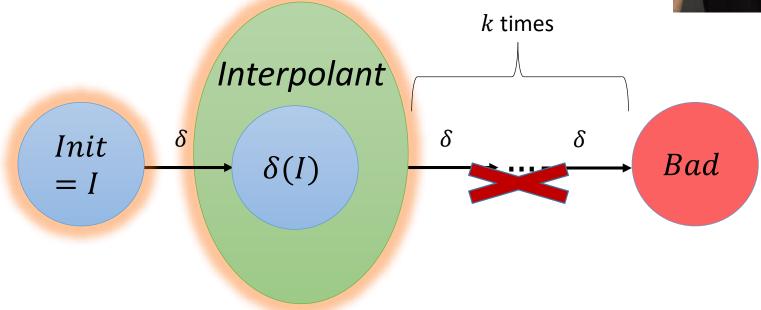




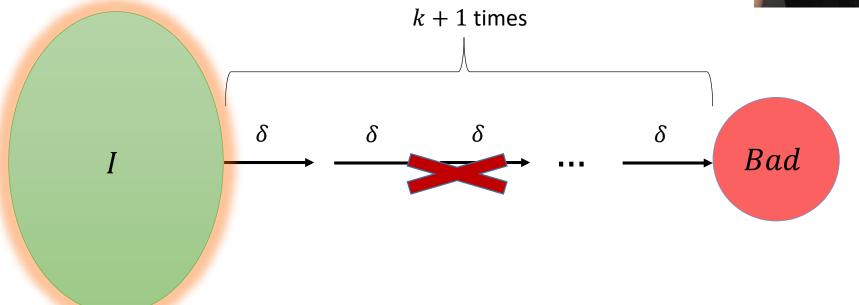




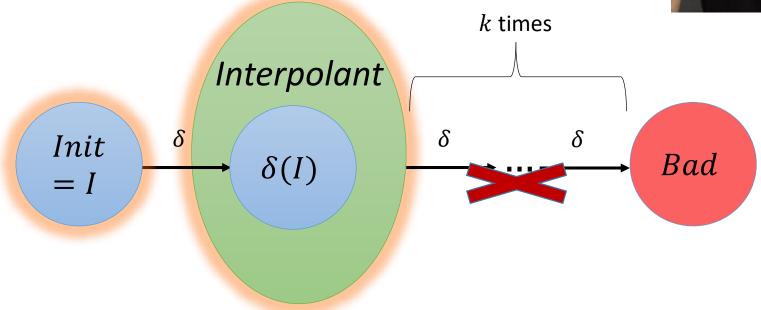
 $I = Init \lor Interpolant$



 $I = Init \lor Interpolant$



 $I = Init \lor Interpolant$



$$\frac{\ln it:}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$\frac{\text{Bad}:}{(x_1, \dots, x_n)} = 1 \dots 1$$

$$Interpolant_1 = (x_1 = 0 \land x_2 = 1 \land \dots \land x_n = 1 \land x_n = 0)$$

$$\sigma_1 = 01 \dots 10$$

$$k \text{ times}$$

$$\delta = I$$

$$\delta(I)$$

$$\frac{\ln it:}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$\frac{Bad:}{(x_1, \dots, x_n)} = 1 \dots 1$$

$$Interpolant_1 = (x_1 = 0 \land x_2 = 1 \land \dots \land x_n = 1 \land x_n = 0)$$

$$\sigma_1 = 01 \dots 10$$

$$k \text{ times}$$

$$\delta = I$$

$$\delta(I)$$

$$\frac{\text{lnit:}}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$\frac{\text{Bad:}}{(x_1, \dots, x_n)} = 1 \dots 1$$

$$Interpolant_1 = (x_1 = 0 \land x_2 = 1 \land \dots \land x_n = 1 \land x_n = 0)$$

$$\sigma_1 = 01 \dots 10$$

$$k \text{ times}$$

$$\delta = I$$

$$\delta (I)$$

$$\frac{\text{lnit:}}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$\frac{\text{Bad:}}{(x_1, \dots, x_n)} = 1 \dots 1$$

$$Interpolant_1 = (x_1 = 0 \land x_2 = 1 \land \dots \land x_n = 1 \land x_n = 0)$$

$$\sigma_1 = 01 \dots 10$$

$$k \text{ times}$$

$$\delta$$

$$\delta(I)$$

$$\frac{\text{lnit:}}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$\frac{\text{Bad:}}{(x_1, \dots, x_n)} = 1 \dots 1$$

$$Interpolant_1 = (x_1 = 0 \land x_2 = 1 \land \dots \land x_n = 1 \land x_n = 0)$$

$$\sigma_1 = 01 \dots 10$$

$$k \text{ times}$$

$$\delta = I$$

$$\delta (I)$$

$$\frac{\text{lnit:}}{(x_1, \dots, x_n)} := 0 \dots 0 \qquad y_1, \dots, y_n := * \\ x_1, \dots, x_n := (x_1, \dots, x_n) + \\ 2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$\frac{\text{Bad:}}{(x_1, \dots, x_n)} = 1 \dots 1$$

$$Interpolant_1 = (x_1 = 0 \land x_2 = 1 \land \dots \land x_n = 1 \land x_n = 0)$$

$$\sigma_1 = 01 \dots 10$$

$$k \text{ times}$$

$$\delta = I$$

$$\delta (I)$$

$$\frac{|\text{nit}:}{(x_1, \dots, x_n)} \coloneqq 0 \dots 0 \qquad y_1, \dots, y_n \coloneqq *$$

$$x_1, \dots, x_n \coloneqq (x_1, \dots, x_n) +$$

$$2 \cdot (y_1, \dots, y_n) \pmod{2^n}$$

$$I = Init \lor (x_n = 0)$$

$$k \text{ times}$$

$$\delta = I$$

$$\delta(I)$$

Inferring invariant in DNF:

$$\underbrace{ \begin{pmatrix} \ell_1^1 \wedge \cdots \wedge \ell_{k_1}^1 \end{pmatrix}}_{\text{gen}(\sigma_1)} \vee \ldots \vee \underbrace{ \begin{pmatrix} \ell_1^m \wedge \cdots \wedge \ell_{k_m}^m \end{pmatrix}}_{\text{gen}(\sigma_m)}$$

```
I := \text{false}

while (\_, \sigma') counterexample to \text{Inductive}(\delta, I):

I := I \lor \text{generalize}(\sigma')

generalize (\sigma'):

drop literals from \sigma'

while \text{BMC}(\delta, \sigma', k) \cap \text{Bad} = \emptyset
```

```
I := \mathrm{false}

while (\_, \sigma') counterexample to \mathrm{Inductive}(\delta, I):

I := I \vee \mathrm{generalize}(\sigma')

generalize (\sigma'):

drop literals from \sigma'

while \mathrm{BMC}(\delta, \sigma', k) \cap \mathrm{Bad} = \emptyset
```

```
I := \text{false}

while (\_, \sigma') counterexample to \text{Inductive}(\delta, I):

I := I \lor \text{generalize}(\sigma')

generalize (\sigma'):

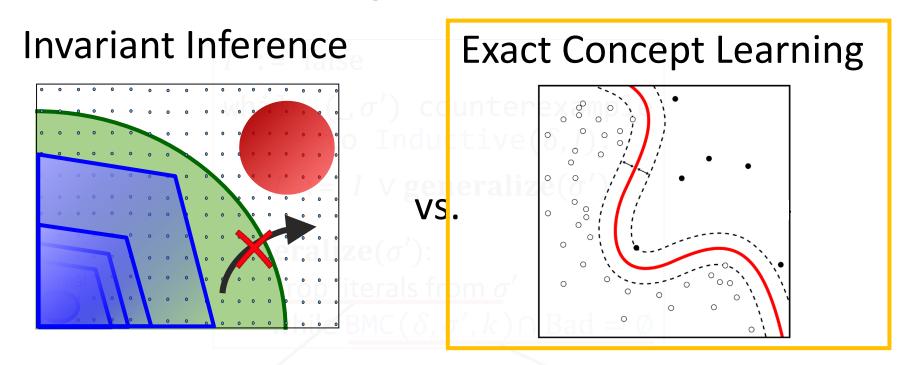
\frac{\text{drop literals from } \sigma'}{\text{while } \text{BMC}(\delta, \sigma', k) \cap \text{Bad}} = \emptyset
```



```
I := false
while (\_, \sigma') counterexample
          to Inductive(\delta,I):
     I := I \vee \mathbf{generalize}(\sigma')
generalize(\sigma'):
     drop literals from \sigma'
     while BMC (\delta, \sigma', k) \cap \text{Bad} = \emptyset
```

Complexity bounds from exact classification algorithms

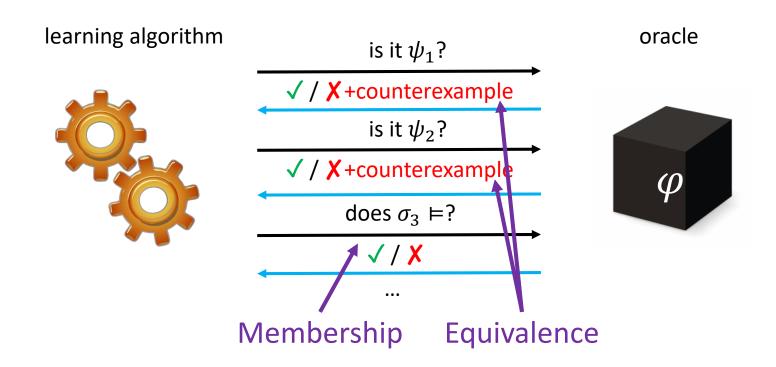
Rich SAT queries allow exponentially faster inference



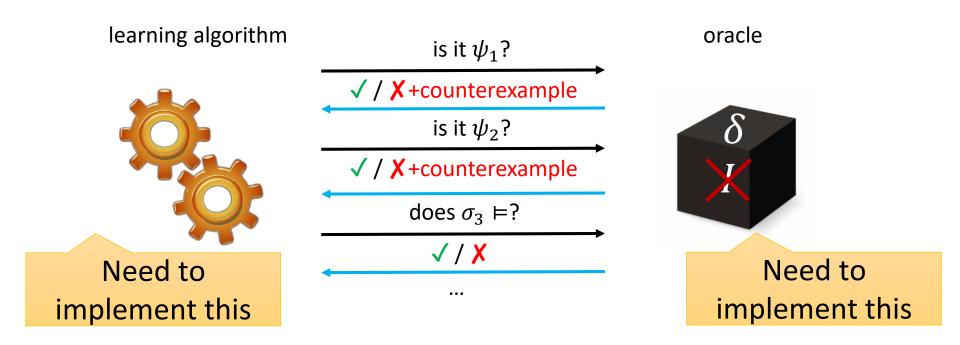
Complexity bounds from exact classification algorithms

Rich SAT queries allow exponentially faster inference

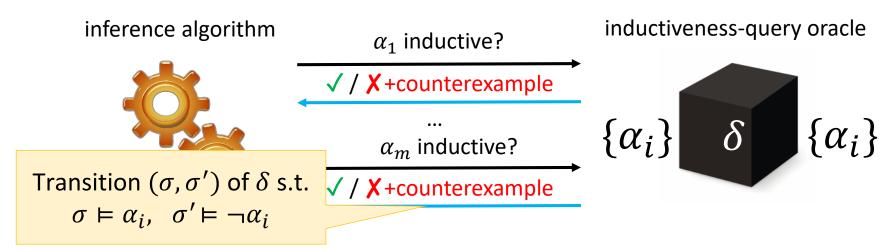
Exact Concept Learning with Equivalence & Membership Queries



Invariant Inference with Equivalence & Membership Queries



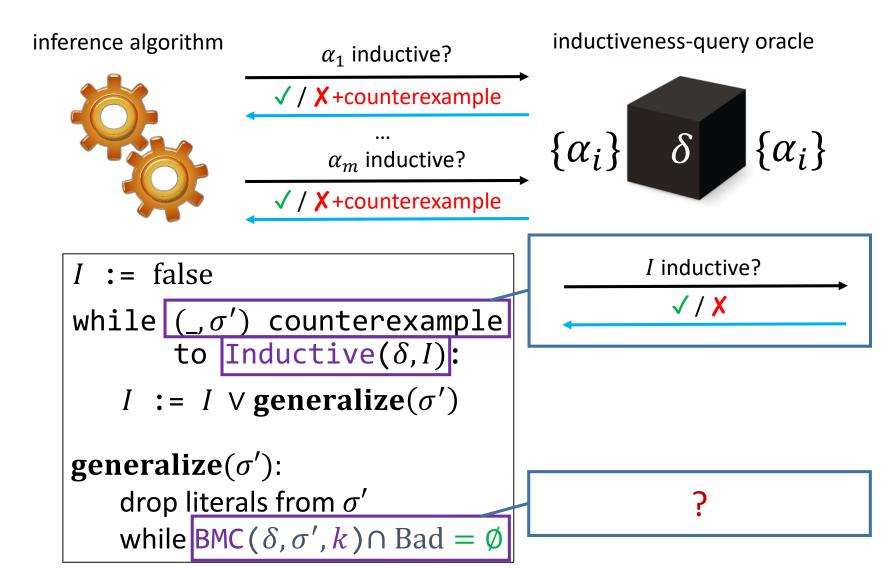
Inductiveness-Query Model



Algorithms cannot access the transition relation directly, only perform inductiveness queries

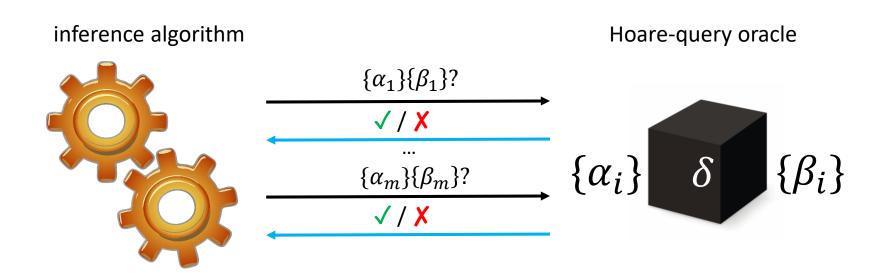
<u>Complexity</u>: # inductiveness queries worst case amongst possible counterexamples

Inductiveness-Query Model



Hoare-Query Model

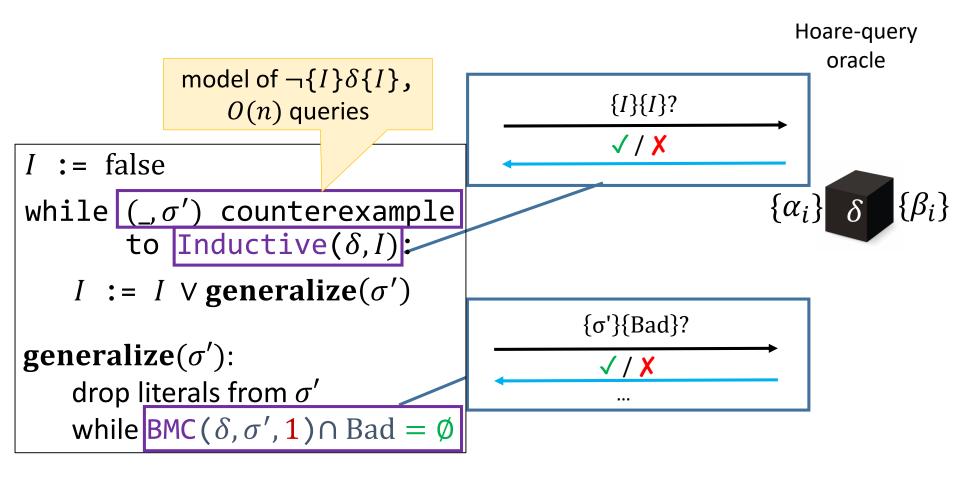
Capable of modeling several interesting algorithms



Algorithms cannot access the transition relation directly, only perform Hoare queries

Hoare-Query Model

Capable of modeling several interesting algorithms



Hoare > Inductiveness

Thm: There exists a class of transition systems \mathcal{P} , so that for solving polynomial-length inference:

- 1. \exists Hoare-query algorithm with poly(n) queries
- 2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

a simple case of IC3/PDR

⇒ ICE cannot model PDR, and the extension of [VMCAI'17] is necessary

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv [VMCAI'17] IC3 - Flipping the E in ICE. Vizel, Gurfinkel, Shoham, Malik.

Hoare > Inductiveness

Thm: There exists a class of transition systems \mathcal{P} , so that for solving polynomial-length inference:

- 1. \exists Hoare-query algorithm with poly(n) queries
- 2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

```
I := \text{false}
\text{while } (\_, \sigma') \text{ counterexample}
\text{to } \text{Inductive}(\delta, I) :
I := I \vee \text{generalize}(\sigma')
\text{generalize}(\sigma') : \qquad \qquad \{\sigma'\}\{\text{Bad}\}?
\text{drop literals from } \sigma' \qquad \qquad \dots
\text{while } \text{BMC}(\delta, \sigma', 1) \cap \text{Bad} = \emptyset
```

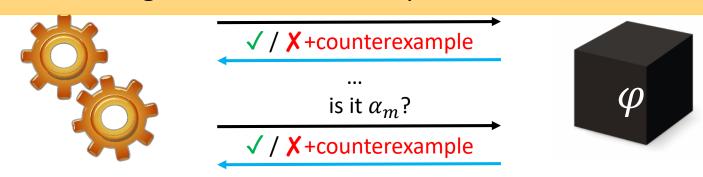
Hoare > Inductiveness

Thm: There exists a class of transition systems \mathcal{P} , so that for solving polynomial-length inference:

- 1. \exists Hoare-query algorithm with poly(n) queries
- 2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

Learning from Counterexamples to Equivalence Queries

<u>Thm</u>: Learning from counterexamples to induction is **harder** than learning from labeled examples.



Positive/negative examples:

$$\sigma^+ \vDash \varphi$$
 , $\sigma^- \vDash \neg \varphi$

Counterexamples to induction:

$$\sigma \vDash \neg \varphi \text{ or } \sigma' \vDash \varphi$$

Learning monotone DNF:

subexponential

this work: $2^{\Omega(n)}$

[ML'87] Queries and Concept Learning, Angluin

[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

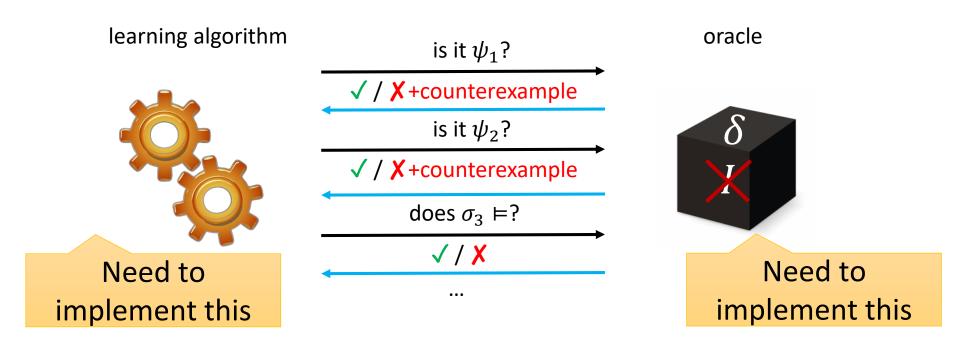
[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

```
I := \text{false}
\text{while } (\_, \sigma') \text{ counterexample}
\text{ to } \text{Inductive}(\delta, I) :
I := I \vee \text{generalize}(\sigma')
\text{generalize}(\sigma') :
\text{drop literals from } \sigma'
\text{while } \text{BMC}(\delta, \sigma', k) \cap \text{Bad} = \emptyset
```

Complexity bounds from exact classification algorithms

Rich SAT queries allow exponentially faster inference

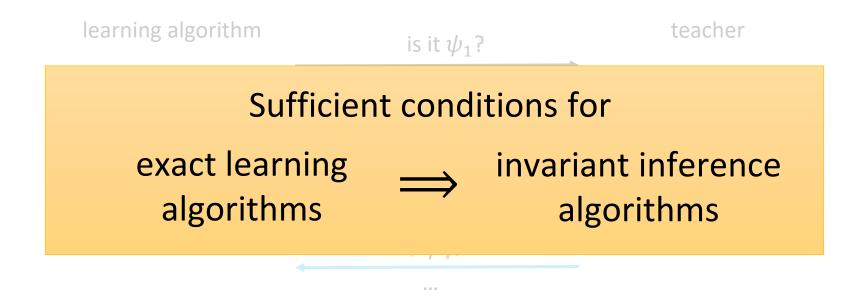
Invariant Inference with Equivalence & Membership Queries



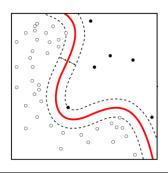
<u>Thm</u>. In general, in the Hoare-query model, **no efficient way** to implement a teacher for equivalence and membership queries

[CAV'14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider [POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Invariant Inference with Equivalence & Membership Queries



<u>Thm</u>. In general, in the Hoare-query model, **no efficient way** to implement a teacher for equivalence and membership queries



Exact **learning**DNF formulas

```
\psi := false

while \sigma' counterexample to Equivalence(\psi):

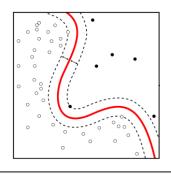
\psi := \psi \vee generalize(\sigma')

generalize(\sigma'):

drop literals from \sigma'

while Membership(\sigma') = \checkmark
```

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt



Exact **learning**DNF formulas

```
\psi := false

while \sigma' counterexample

to Equivalence(\psi):

\psi := \psi \vee generalize(\sigma')

generalize(\sigma'):

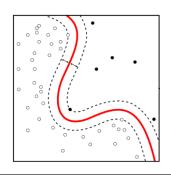
drop literals from \sigma'

while Membership(\sigma') = \checkmark
```

Inductive(I)

 $BMC(\sigma', k) \cap Bad = \emptyset$

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt



Exact **learning**DNF formulas

:= false

InferringDNF invariants

```
\psi := false

while \sigma' counterexample

to Equivalence(\psi):-

\psi := \psi \vee \text{generalize}(\sigma')

generalize(\sigma'):

drop literals from \sigma'

while Membership(\sigma') = \checkmark -
```

```
while (\_, \sigma') counterexample

to Inductive(I):

I := I \lor generalize(\sigma')

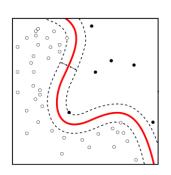
generalize(\sigma'):

drop literals from \sigma'

while BMC(\sigma', k) \cap Bad = \emptyset
```

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

[CAV'03] Interpolation and SAT-Based Model Checking, McMillan [HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah



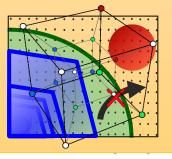
Efficiently

Exact **learning**DNF formulas

Efficiently

InferringDNF invariants

$$\psi$$
 := false while σ' counte to **Equiv**



The invariant is **k**-fenced

') counterexample
Inductive(I):
∨ generalize(σ')

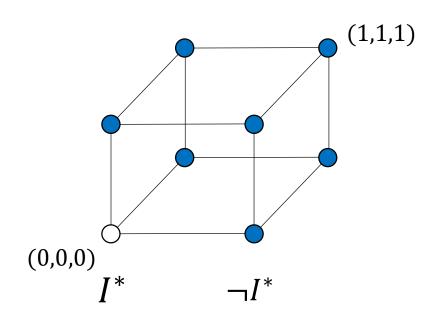
generalize(σ'):

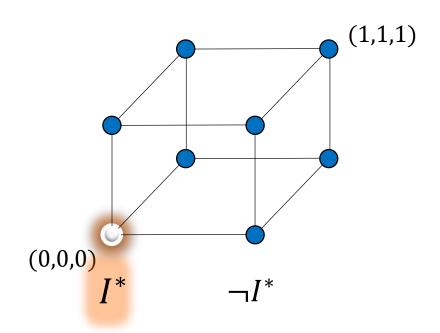
drop literals from σ' while Membership $(\sigma') = \checkmark$

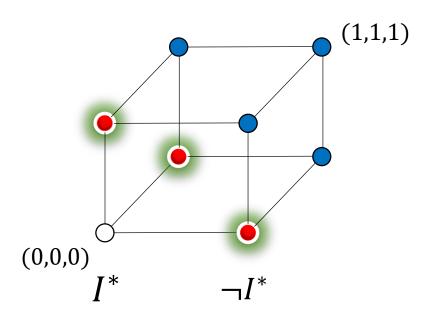
generalize(σ'): drop literals from σ' \rightarrow while BMC(σ' , k) \cap Bad = \emptyset

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

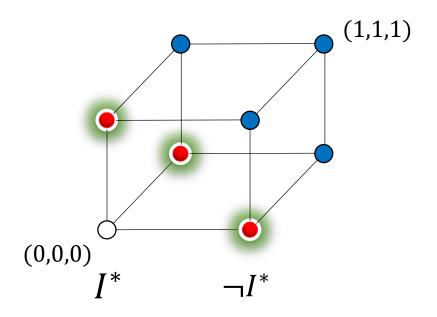
[CAV'03] Interpolation and SAT-Based Model Checking, McMillan [HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah







$$\partial^-(I^*)$$

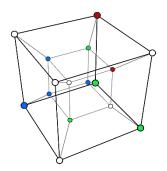


All the states in $\partial^-(I^*)$ can get to a bad state in at most k steps

Complexity Upper Bounds

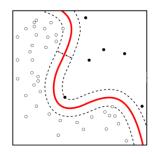
<u>Thm</u>. Interpolation-based inference finds an invariant in a polynomial number of SAT queries when

 $\exists I^*$.



Fence condition: the Hamming boundary of I^* reaches bad states in k steps

No negated variables



 I^* is a short monotone DNF (via Angluin) or

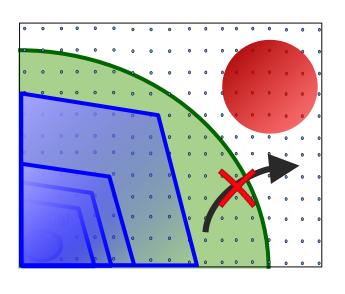
 I^* is a short almost-monotone DNF (via Bshouty)

O(1) terms with negated variables

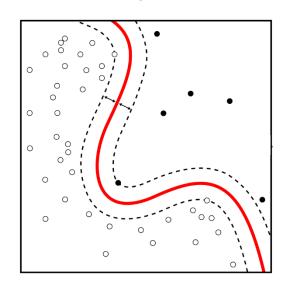
Conclusion

Invariant Inference

Exact Concept Learning



VS.



- Query-based learning models for invariant inference
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from classification algorithms