Towards a Theory of
Learning Inductive Invariants

Yotam Feldman Neil Immerman Mooly Sagiv
422 422
Sharon Shoham James R. Wilcox
000 PN CERTORA

TELAVIV NID'D1212IN ﬁﬁ-
UNIVERSITY 2N°TR

Y @yotamfe, @SagivMooly, @wilcoxjay

https://twitter.com/yotamfe
https://twitter.com/SagivMooly
https://twitter.com/wilcoxjay

Safety of Transition Systems

Init: 0:
=0..0 Vi, - yn
X1, -

N\
=
(U
=
S
—/
|

(X1, eer Xn) +
(.»¥Yn) (mod2%)

l\’II i

Inductive Invariants

Init: 5
(x]_, ...,Xn) =0..0 Vi) eeer Yn = *

Bad xl’ ""xn = (xll "')xn) +

- 2 - y ere) mod 2™
(xl, ...,xn) =1..1 (yl yn) ()

I (xll "-;xn) * 1..1
Not inductive:

I -1

I[: x, # 1

Inductive: ‘S @%
) o)

Inductive Invariants

Goal:
Find inductive invariants automatically

I: (xq,....,x5) # 1...1
Not inductive:

I =1

I: x, # 1

Inductive: 8 @%
I o

This Work

Invariant Inference Exact Concept Learning

VS.

- Query-based learning models for invariant inference

- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from classification algorithms

Problem Setting:
Polynomial-Length Inference

Boolean transition systems, ~ = {p4, ..., P, }
Given a transition system from a class P (over),

Find an inductive invariant

I € DNF | | |I| < poly(n)

(Decision problem is 25 -complete.)

[CADE’09] Complexity and Algorithms for Monomial and Clausal Predicate Abstraction. Lahiri, Qadeer
[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Interpolation-Based Inference

I = Init

k + 1 times

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

I = Init

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

I = Init V Interpolant

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

I = Init V Interpolant

k + 1 times

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

I = Init V Interpolant

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Model-Based Interpolation

Init: d:
(xli "-;xn) =0..0 Vi) 2 Yn = *

Bad X1y ey Xy = (X1, e, Xp) +

_: 2 ’) =) mOd Zn
(X1,) = 1.1 1Y))

Interpolant; = (x; =0Ax, =1A-Ax, =1Ax, =0)

o, =01..10 k times

5(I)

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

Init: o
(xli "-;xn) 0..0 Vi) 2 Yn = *
X1y s X = (xl’ ___’xn) +

(x_:) = 1.1 2 (Y1, > ¥Yn) (mod?2™)
1y s An —

Interpolant; = (1, 0Ax, =1A-Ax, =1Ax, =0)

o, =01..10 k times

5(I)

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation
Init: o

(%1, ey Xp) =0..0 Yoy Yn = %
. X1y ey Xy = (X1, e, X)) +
=28 2+ 1)+ Yn) (mod 27
(X1, ey Xp) =
Interpolant, = (//OAxyé\ “ANxp, =1Ax, =0)
o, = 01..10 k times

o(l)

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation
Init: o

(%1, ey Xp) =0..0 Yoy Yn = %
. X1y ey Xp = (Xq, e, X)) +
Dad 2+ (Y1, >, Vn) (mod2™M)
(X1, ey Xp) =
Interpolant; = (//()Axyé\ Ax, =1 /\x{/O)
o, = 01..10)\times

5(D)

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation
Init: o

(%1, ey Xp) =0..0 Yoy Yn = %
. X1y ey Xy = (X1, e, X)) +
=28 2+ 1)+ Yn) (mod 27
(X1, ey Xp) =
Interpolant, = (//OAxyé\ “ANxp, =1Ax, =0)
o, = 01..10 k times

o(l)

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation
Init: o

(%1, ey Xp) =0..0 Yoy Yn = %
. X1y ey Xp = (Xq, e, X)) +
=28 2+ 1)+ Yn) (mod 27
(X1, ey Xp) =
Interpolant; = (//()Axyé\ /\x)//l/\ X, = 0)
o, = 01..10 ktlmes

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

Init: d:
(xli "';xn) =0..0 Vi) 2 Yn = *

Bad X1y ey Xy = (X1, e, Xp) +

. 2)) e mod 2"
(X1, s Xp) = 1.1 CZTR Y I)

I — ITllt V (xn: O) é) k times

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjgrner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

Inferring invariant in DNF:

\(f% A ---/\f};l)} V ..V \(f’ln A ---/\f’,@"m)}

|
gen(oq) gen(om)

[:= false

while (,0') counterexample
to Inductive(4,]):

I := 1 Vv generalize(o')
generalize(c'):

drop literals from o’
while BMC(6,0', k)N Bad = @

Model-Based Interpolation

[:= false

while (,0') counterexample
to Inductive(4,]):

I := 1 Vv generalize(o')
generalize(c'):

drop literals from o’
while BMC(6,0', k)N Bad = @

Understanding Invariant Inference

[:= false

while (,,0') counterexample
to Inductive(d,I):

I := 1 Vgeneralize(c')
generalize(o'):

drop literals from o’
while BMC(6,0', k)N Bad = @

Understanding Invariant Inference

[:= false

while (,,0') counterexample
to Inductive(d,I):

I := 1 Vgeneralize(c')
generalize(d"):

drop literals from ¢’

Whil% BMC(6,0', k)N Bad = @

S

Complexity bounds from Rich SAT queries allow
exact classification algorithms exponentially faster inference

Understanding Invariant Inference

Invariant Inference

Complexity bounds from
exact classification algorithms

VS.

Exact Concept Learning

Rich SAT queries allow
exponentially faster inference

Exact Concept Learning with
Equivalence & Membership Queries

learning algorithm . oracle
5498 isity,?

v/ / X+counterexample

isity,? T
v/ X+counterexampl¢
does g3 E?

7

Membership Equivalence

[ML'87] Queries and Concept Learning. Angluin

Invariant Inference with
Equivalence & Membership Queries

learning algorithm . oracle
5498 isity,?

v/ / X+counterexample
isity,?

v/ X+counterexample

does g3 E?

v/ X

Need to Need to
implement this implement this

[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Loding, Madhusudan, Neider

Inductiveness-Query Model

inference algorithm inductiveness-query oracle

a4 inductive?

»

V' |/ X+counterexample

a,, inductive? {ai}
. . >
Transition (0,0") of § s.t. ./ / X+counterexample
o E ai, o' E 0]

i}

Algorithms cannot access the transition relation directly,
only perform inductiveness queries

Complexity: # inductiveness queries
worst case amongst possible counterexamples

[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Loding, Madhusudan, Neider

Inductiveness-Query Model

inference algorithm inductiveness-query oracle

a4 inductive?
>

V' |/ X+counterexample

A ir;.c.zluctive? » {ai}

V' [/ X+counterexample

i}

I := false I inductive?

wh11e|j_) counter‘examplej VX

to [Inductive(d,)}
I := 1 Vv generalize(o')

generalize(o'):

drop literals from ¢’ j’ ?
0

while|BMC(6,0', k)N Bad =

Hoare-Query Model

Capable of modeling several interesting algorithms

inference algorithm Hoare-query oracle
{a HP1}?
vViIX
{am}HBn)? : 1} {bi}
vViIX

Algorithms cannot access the transition relation directly,
only perform Hoare queries

Hoare-Query Model

Capable of modeling several interesting algorithms

model of ={1}6{I},

O(n) queries U R
v
I := false « - [X
while L,a’) counterexample /
to [Inductive(s,—"
I := 1 Vv generalize(c')
{o'H{Bad}?

generalize(d'): g

Hoare-query
oracle

s

drop literals from o’ _—

while

v/X

BMC(6,0’,1)N Bad = @

Hoare > Inductiveness

Thm: There exists a class of transition systems P, so that for
solving polynomial-length inference:

1. d Hoare-query algorithm with poly(n) queries

2. 'V inductivenes<‘—query algorithm requires 2™ queries

a simple case of IC3/PDR
— |ICE cannot model PDR,

and the extension of [VMCAI'17] is necessary

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv
[VMCAI'17] IC3 - Flipping the E in ICE. Vizel, Gurfinkel, Shoham, Malik.

Hoare > Inductiveness

Thm: There exists a class of transition systems P, so that for
solving polynomial-length inference:

1. d Hoare-query algorithm with poly(n) queries
2. Vinductiveness-query algorithm requires 2*("™ queries

[:= false

while (,,0') counterexample
to Inductive(d,I):

I := 1 Vgeneralize(c')

{o'H{Bad}?
v/X

generalize(o'):
drop literals from ¢’ _—
while[BMC(6,0',1)N Bad = 0

Hoare > Inductiveness

Thm: There exists a class of transition systems P, so that for
solving polynomial-length inference:

1. d Hoare-query algorithm with poly(n) queries
2. Vinductiveness-query algorithm requires 2*("™ queries

1

Learning from Counterexamples
to Equivalence Queries

Thm: Learning from counterexamples to induction is harder
than learning from labeled examples.

v

V' [/ X+counterexample

A

isit a,,?

v

V' |/ X+counterexample

A

. . Learning monotone DNF:
Positive/negative examples: &

o TEQ,07 EQ subexponential

Counterexamples to induction:
ogF-@org E @ this work: Q(n)

[ML'87] Queries and Concept Learning, Angluin

[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.
[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Understanding Invariant Inference

[:= false

while (,,0') counterexample
to Inductive(d,I):

I := 1 Vgeneralize(c')
generalize(d"):

drop literals from ¢’

Whil% BMC (6,0, k\)ﬂ Bad = @

S N

Complexity bounds from Rich SAT queries allow
exact classification algorithms exponentially faster inference

Invariant Inference with
Equivalence & Membership Queries

learning algorithm . oracle
a8 isity,?

v/ |/ X+counterexample
isity,?

v/ X+counterexample

A

v

does g3 E?

v/ X

Need to Need to
implement this implement this

A

Thm. In general, in the Hoare-query model, no efficient way to
implement a teacher for equivalence and membership queries

[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Loding, Madhusudan, Neider

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Invariant Inference with
Equivalence & Membership Queries

Sufficient conditions for

exact learning : invariant inference

algorithms algorithms

Thm. In general, in the Hoare-query model, no efficient way to
implement a teacher for equivalence and membership queries

From Learning to Inference

Exact learning
DNF formulas

Y := false

while ¢’ counterexample
to Equivalence(y):

Y := Y V generalize(o')
generalize(c'):

drop literals from o'
while Membership(o')=V

[CACM’84] A Theory of the Learnable. Valiant

[ML'87] Queries and Concept Learning. Angluin

[ML'95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt

From Learning to Inference

Exact learning :
DNF formulas

Equivalence(y) : ——

Membership(o')=vV ——

[CACM’84] A Theory of the Learnable. Valiant

[ML'87] Queries and Concept Learning. Angluin

[ML'95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt

Inductive(I)

BMC(o”, k)N Bad = 0

From Learning to Inference

Inferring

Exact learning :
DNF invariants

DNF formulas

Equivalence () > Inductive(I)
Membership(o')=V > BMC(o',k)n Bad = @
[CACM’84] A Theory of the Learnable. Valiant [CAV’03] Interpolation and SAT-Based Model Checking,
[ML'87] Queries and Concept Learning. Angluin McMillan
[ML'95] On the Learnability of Disjunctive Normal Form [HVC’12] Computing Interpolants without Proofs.

Formulas. Aizenstein and Pitt Chockler, lvrii, Matsliah

From Learning to Inference

Efficiently

DNF formulas

Equivi

Membership(o')=V

Exact learning :

Efficiently

Inferring
DNF invariants

| The invariant is

k-fenced Inductive(l)

> BMC(o',k)Nn Bad = @

[CACM’84] A Theory of the Learnable. Valiant

[ML'87] Queries and Concept Learning. Angluin

[ML'95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt

[CAV’03] Interpolation and SAT-Based Model Checking,
McMillan

[HVC’12] Computing Interpolants without Proofs.
Chockler, lvrii, Matsliah

k-Fenced Invariants

(1,1,1)

(0,0,0)
I* _II*

k-Fenced Invariants

L

(0,0,0)
I* _II*

(1,1,1)

k-Fenced Invariants

(1,1,1)

k-Fenced Invariants

(1,1,1)

All the statesin g~ (1*)
can get to a bad state in at most k steps

Complexity Upper Bounds

Thm. Interpolation-based inference finds an invariant in a
polynomial number of SAT queries when

Fence condition: the Hamming boundary of I*
reaches bad states in k steps

No negated variables
+ g

I" is a short monotone DNF (via Angluin)
or

I" is a short almost-monotone DNF (via Bshouty)
O(1) terms with

negated variables

[POPL'21] Learning the Boundary of Inductive Invariants. Feldman, Sagiv, Shoham, Wilcox

Conclusion

Invariant Inference Exact Concept Learning

VS.

- Query-based learning models for invariant inference

- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from classification algorithms

