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Safety of Transition Systems
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Inductive Invariants
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Inductive Invariants

Goal:
Find inductive invariants automatically
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This Work

Invariant Inference Exact Concept Learning

VS.

- Query-based learning models for invariant inference

- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from classification algorithms



Problem Setting:
Polynomial-Length Inference

Boolean transition systems, ~ = {p4, ..., P, }
Given a transition system from a class P (over ),

Find an inductive invariant

I € DNF | | |I| < poly(n)

(Decision problem is 25 -complete.)

[CADE’09] Complexity and Algorithms for Monomial and Clausal Predicate Abstraction. Lahiri, Qadeer
[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv
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Model-Based Interpolation
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Model-Based Interpolation

Inferring invariant in DNF:
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Understanding Invariant Inference
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Complexity bounds from Rich SAT queries allow
exact classification algorithms exponentially faster inference




Understanding Invariant Inference

Invariant Inference

Complexity bounds from
exact classification algorithms

VS.

Exact Concept Learning

Rich SAT queries allow
exponentially faster inference



Exact Concept Learning with
Equivalence & Membership Queries

learning algorithm . oracle
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[ML'87] Queries and Concept Learning. Angluin



Invariant Inference with
Equivalence & Membership Queries
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[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Loding, Madhusudan, Neider



Inductiveness-Query Model

inference algorithm inductiveness-query oracle
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Algorithms cannot access the transition relation directly,
only perform inductiveness queries

Complexity: # inductiveness queries
worst case amongst possible counterexamples

[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Loding, Madhusudan, Neider
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Hoare-Query Model

Capable of modeling several interesting algorithms

inference algorithm Hoare-query oracle
{a HP1}?
vViIX
{am}HBn)? : 1} {bi}
vViIX

Algorithms cannot access the transition relation directly,
only perform Hoare queries



Hoare-Query Model

Capable of modeling several interesting algorithms

model of ={1}6{I},
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Hoare > Inductiveness

Thm: There exists a class of transition systems P, so that for
solving polynomial-length inference:

1. d Hoare-query algorithm with poly(n) queries

2. 'V inductivenes<‘—query algorithm requires 2™ queries

a simple case of IC3/PDR
— |ICE cannot model PDR,

and the extension of [VMCAI'17] is necessary

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv
[VMCAI'17] IC3 - Flipping the E in ICE. Vizel, Gurfinkel, Shoham, Malik.
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Thm: There exists a class of transition systems P, so that for
solving polynomial-length inference:
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Learning from Counterexamples
to Equivalence Queries

Thm: Learning from counterexamples to induction is harder
than learning from labeled examples.

v

V' [/ X+counterexample
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isit a,,?

v

V' |/ X+counterexample

A

. . Learning monotone DNF:
Positive/negative examples: &

o TEQ,07 EQ subexponential

Counterexamples to induction:
ogF-@org E @ this work: Q(n)

[ML'87] Queries and Concept Learning, Angluin

[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.
[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv
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Invariant Inference with
Equivalence & Membership Queries

learning algorithm . oracle
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Thm. In general, in the Hoare-query model, no efficient way to
implement a teacher for equivalence and membership queries

[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Loding, Madhusudan, Neider

[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv



Invariant Inference with
Equivalence & Membership Queries

Sufficient conditions for

exact learning : invariant inference

algorithms algorithms

Thm. In general, in the Hoare-query model, no efficient way to
implement a teacher for equivalence and membership queries



From Learning to Inference

Exact learning
DNF formulas

Y := false

while ¢’ counterexample
to Equivalence(y):

Y := Y V generalize(o')
generalize(c'):

drop literals from o'
while Membership(o')=V

[CACM’84] A Theory of the Learnable. Valiant

[ML'87] Queries and Concept Learning. Angluin

[ML'95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt
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Exact learning :
DNF formulas
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From Learning to Inference

Inferring

Exact learning :
DNF invariants

DNF formulas

Equivalence () > Inductive(I)
Membership(o')=V > BMC(o',k)n Bad = @
[CACM’84] A Theory of the Learnable. Valiant [CAV’03] Interpolation and SAT-Based Model Checking,
[ML'87] Queries and Concept Learning. Angluin McMillan
[ML'95] On the Learnability of Disjunctive Normal Form [HVC’12] Computing Interpolants without Proofs.

Formulas. Aizenstein and Pitt Chockler, lvrii, Matsliah



From Learning to Inference
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DNF invariants
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[ML'87] Queries and Concept Learning. Angluin
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[HVC’12] Computing Interpolants without Proofs.
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k-Fenced Invariants

(1,1,1)

All the statesin g~ (1*)
can get to a bad state in at most k steps



Complexity Upper Bounds

Thm. Interpolation-based inference finds an invariant in a
polynomial number of SAT queries when

Fence condition: the Hamming boundary of I*
reaches bad states in k steps

No negated variables
+ g

I" is a short monotone DNF (via Angluin)
or

I" is a short almost-monotone DNF (via Bshouty)
O(1) terms with

negated variables

[POPL'21] Learning the Boundary of Inductive Invariants. Feldman, Sagiv, Shoham, Wilcox



Conclusion

Invariant Inference Exact Concept Learning

VS.

- Query-based learning models for invariant inference

- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from classification algorithms



