

Liquid Time-Constant Network

Ramin Hasani CSAIL, Massachusetts Institute of Technology, USA

> Simons SMS Workshop, UC Berkeley March 22th, 2021

What is a time-continuous neural network?

What is a time-continuous neural network?

Standard Recurrent Neural Network (RNN) Hopfield 1982

$$x(t+1) = f(x(t), I(t), t; \theta)$$

(a) Recurrent Neural Network

(b) Latent Neural Ordinary Differential Equation

Figure Credit: Chen et al. NeurIPS 2018

Neural ODE Chen et al. NeurIPS, 2018

$$\frac{dx(t)}{dt} = f(x(t), I(t), t; \theta)$$

Continuous-time (CT) RNN Funahashi et al. 1993

$$\frac{dx(t)}{dt} = -\frac{x(t)}{\tau} + f(x(t), I(t), t; \theta)$$

Time-continuous neural networks How to implement them?

$$d\mathbf{x}(t)/dt = f(\mathbf{x}(t), t, \theta)$$

Numerical ODE solvers

$$\frac{d\mathbf{x}(t)}{dt} \approx \frac{\mathbf{x}(t+\delta t) - \mathbf{x}(t)}{\delta t} \approx f(\mathbf{x}(t), t, \theta)$$

Forward-pass
$$\mathbf{x}(t + \delta t) = \mathbf{x}(t) + \delta t f(\mathbf{x}(t), t, \theta)$$

Choice of the way we do an integration step determines forward pass complexity

Time-continuous neural networks How to train them?

Adjoint Sensitivity Method [Pontryagin et al. 1962, Chen et al. NeurIPS, 2018]

Loss function

$$L(\boldsymbol{x}(t_1)) = L(\text{ODESolve}(\boldsymbol{x}(t_0), f, t_0, t_1, \theta))$$

Neural ODE

$$\frac{d\boldsymbol{x}(t)}{dt} = f(\boldsymbol{x}(t), t, \theta)$$

Adjoint State

$$\frac{dt}{dt} = f(\mathbf{x}(t), t, \theta)$$
$$\mathbf{a}(t) = \frac{\partial L}{\partial x(t)}$$

$$\frac{d\boldsymbol{a}(t)}{dt} = -\boldsymbol{a}(t)^{\mathrm{T}} \; \frac{\partial f(\boldsymbol{x}(t), t, \theta)}{\partial \boldsymbol{x}}$$

Time-continuous neural networks How to train them?

Memory Complexity O(L * T) Per layer of fDepth sequence length

Backpropagation through-time (BPTT) [Werbos, 1990, Gholami et. al, 2019, Lechner et al. 2019, Lechner et al. 2020, Hasani et al. 2020]

Perform a forward-pass

 $\mathbf{x}(t + \delta t) = \mathbf{x}(t) + \delta t f(\mathbf{x}(t), t, \theta)$

Compute gradients through the ODE solver

$$d\Theta = \left[\frac{dL}{dx(t+\delta t)}, \frac{dx(t+\delta t)}{dx(t)}, \frac{dx(t+\delta t)}{df}, \frac{df}{dx(t)}, \frac{df}{dt}, \frac{df}{d\theta}\right]$$

Update parameters

$$\Theta_{new} \leftarrow \Theta_{old} + \gamma \, \mathrm{d}\Theta$$

Time-continuous neural networks Better Stay with BPTT

Table 1: Complexity of the vanilla BPTT algorithm compared to the adjoint method, for a single layer neural network f

	Vanilla BPTT	Adjoint
Time	$O(L \times T \times 2)$	$O((L_f + L_b) \times T)$
Memory	$O(L \times T)$	O (1)
Depth	O(L)	$O(L_b)$
FWD acc	High	High
BWD acc	High	Low

Note: L = number of discretization steps, $L_f = L$ during forward-pass. $L_b = L$ during backward-pass. T = length of sequence, Depth = computational graph depth.

Can Neural ODEs be as expressive as advanced

Liquid Time-Constant Networks

$$d\mathbf{x}(t)/dt = -\mathbf{x}(t)/\tau + \mathbf{S}(t) \qquad \mathbf{S}(t) \in \mathbb{R}^{M}$$

$$\mathbf{S}(t) = f(\mathbf{x}(t), \mathbf{I}(t), t, \theta)(A - \mathbf{x}(t))$$

$$\frac{d\mathbf{x}(t)}{dt} = -\left[\frac{1}{\tau} + f(\mathbf{x}(t), \mathbf{I}(t), t, \theta)\right]\mathbf{x}(t) + f(\mathbf{x}(t), \mathbf{I}(t), t, \theta)A$$

"Liquid" = variable

LTCs have stable state and time-constant

System time-constant

$$\frac{d\mathbf{x}(t)}{dt} = -\left[\frac{1}{\tau} + f(\mathbf{x}(t), \mathbf{I}(t), t, \theta)\right] \mathbf{x}(t) + f(\mathbf{x}(t), \mathbf{I}(t), t, \theta) A \qquad \tau_{sys} = \frac{\tau}{1 + \tau f(\mathbf{x}(t), \mathbf{I}(t), t, \theta)}$$

Theorem 1. Let x_i denote the state of a neuron *i* within an LTC network identified by Eq. 1, and let neuron *i* receive M incoming connections. Then, the time-constant of the neuron, τ_{sys_i} , is bounded to the following range:

$$\tau_i / (1 + \tau_i W_i) \le \tau_{sys_i} \le \tau_i, \tag{4}$$

Theorem 2. Let x_i denote the state of a neuron *i* within an *LTC*, identified by Eq. 1, and let neuron *i* receive *M* incoming connections. Then, the hidden state of any neuron *i*, on a finite interval $Int \in [0, T]$, is bounded as follows:

$$\min(0, A_i^{\min}) \le x_i(t) \le \max(0, A_i^{\max}), \tag{5}$$

Liquid Time-Constant Networks are Universal Approximators

$$\frac{d\mathbf{x}(t)}{dt} = -\left[\frac{1}{\tau} + f(\mathbf{x}(t), \mathbf{I}(t), t, \theta)\right]\mathbf{x}(t) + f(\mathbf{x}(t), \mathbf{I}(t), t, \theta)A$$

Theorem 3. Let $\mathbf{x} \in \mathbb{R}^n$, $S \subset \mathbb{R}^n$ and $\dot{\mathbf{x}} = F(\mathbf{x})$ be an autonomous ODE with $F : S \to \mathbb{R}^n$ a C^1 -mapping on S. Let D denote a compact subset of S and assume that the simulation of the system is bounded in the interval I = [0, T]. Then, for a positive ϵ , there exist an LTC network with N hidden units, n output units, and an output internal state $\mathbf{u}(t)$, described by Eq. 1, such that for any rollout $\{\mathbf{x}(t) | t \in I\}$ of the system with initial value $x(0) \in D$, and a proper network initialization,

$$max_{t \in I} |\mathbf{x}(t) - \mathbf{u}(t)| < \epsilon \tag{6}$$

Expressivity Defining a better measure

Expressivity Trajectory length as a measure of expressivity

1st Latent Dimension

1st Latent Dimension

Let's implement the trajectory space for time-continuous models

PCA = Principle Component Analysis

1st Latent Dimension

Expressivity

Trajectory length as a measure of expressivity

Expressivity
Trajectory length lower bound
Neural ODE:
$$\mathbb{E}\left[l(z^{(d)}(t))\right] \ge O\left(\frac{\sigma_w\sqrt{k}}{\sqrt{\sigma_w^2 + \sigma_b^2} + k\sqrt{\sigma_w^2 + \sigma_b^2}}\right)^{d \times L} l(I(t))$$

CT-RNN: $\mathbb{E}\left[l(z^{(d)}(t))\right] \ge O\left(\frac{(\sigma_w - \sigma_b)\sqrt{k}}{\sqrt{\sigma_w^2 + \sigma_b^2} + k\sqrt{\sigma_w^2 + \sigma_b^2}}\right)^{d \times L} l(I(t))$
LTC: $\mathbb{E}\left[l(z^{(d)}(t))\right] \ge O\left(\left(\frac{\sigma_w\sqrt{k}}{\sqrt{\sigma_w^2 + \sigma_b^2 + k\sqrt{\sigma_w^2 + \sigma_b^2}}}\right)^{d \times L} (\sigma_w + \frac{\|z^{(d)}\|}{\min(\delta t, L)})\right) l(I(t))$
System's dynamic time-scale

Performance

LTCs in modeling physical dynamics

17 input observations | 6 control outputs | ϕ = joint angle

Table 6:Sequence modelingHalf-Cheetah dynamics n=5

Algorithm	MSE
LSTM	2.500 ± 0.140
CT-RNN	$2.838 {\pm}~0.112$
Neural ODE	3.805 ± 0.313
CT-GRU	3.014 ± 0.134
LTC (ours)	2.308 ± 0.015

Performance LTCs in modeling irregularly sampled data

Algorithm	Accuracy
RNN $\Delta_t $ * [47]	$0.797 {\pm}\ 0.003$
RNN-Decay* [38]	0.800 ± 0.010
RNN GRU-D $*$ [5]	$0.806 {\pm}~0.007$
RNN-VAE* [47]	0.343 ± 0.040
Latent ODE $(D enc.)^*$	$0.835 {\pm}~0.010$
ODE-RNN *	0.829 ± 0.016
Latent ODE(C enc.)*	0.846 ± 0.013
LTC (ours)	0.882 ± 0.005

 Table 5: Person activity, 2nd setting

Note: Accuracy values for algorithms indicated by *, are taken directly from [47]. RNN Δ_t = classic RNN + input delays. RNN-Decay = RNN with exponential decay on the hidden states. GRU-D = gated recurrent unit + exponential decay + input imputation. D-enc. = RNN encoder. C-enc = ODE encoder. n=5

[5] Che et al. Nature Scientific Reports, 2018[38] Moser et al. Arxiv, 2017[47] Rubanova et al. NeurIPS 2019

Performance LTCs in modeling real-life time series data

Table 3: Time series prediction	Mean and	standard	deviation, n=5
---------------------------------	----------	----------	----------------

Dataset	Metric	LSTM [28]	CT-RNN [47]	Neural ODE [6]	CT-GRU [38]	LTC (ours)
Gesture	(accuracy)	$64.57\% \pm 0.59$	$59.01\% \pm 1.22$	$46.97\% \pm 3.03$	$68.31\% \pm 1.78$	$69.55\% \pm 1.13$
Occupancy	(accuracy)	$93.18\% \pm 1.66$	$94.54\% \pm 0.54$	$90.15\% \pm 1.71$	$91.44\% \pm 1.67$	$94.63\%\pm0.17$
Activity recognition	(accuracy)	$95.85\% \pm 0.29$	$95.73\% \pm 0.47$	97.26 % ± 0.10	$96.16\% \pm 0.39$	$95.67\% \pm 0.575$
Sequential MNIST	(accuracy)	98.41 % ± 0.12	$96.73\% \pm 0.19$	$97.61\% \pm 0.14$	$98.27\% \pm 0.14$	$97.57\% \pm 0.18$
Traffic	(squared error)	0.169 ± 0.004	0.224 ± 0.008	1.512 ± 0.179	0.389 ± 0.076	0.099 ± 0.0095
Power	(squared-error)	0.628 ± 0.003	0.742 ± 0.005	1.254 ± 0.149	0.586 ± 0.003	0.642 ± 0.021
Ozone	(F1-score)	0.284 ± 0.025	0.236 ± 0.011	0.168 ± 0.006	0.260 ± 0.024	$\textbf{0.302} \pm 0.0155$

[28] Hochreiter et al. 1997 [6] Chen et al. NeurIPS, 2018 [38] Moser et al. Arxiv, 2017 [47] Rubanova et al. NeurIPS 2019

Summary

 \checkmark A novel time-continuous neural networks for efficient time-series modelling

- LTCs are universal approximators
- LTCs are stable dynamical systems
- LTCs show better degrees of expressivity
- They can vary their behavior even post-training
- Learning irregularly-sampled data
- Their effectiveness in modeling continuous-time processes.

What can we do with LTCs in real world?

Performance High-fidelity autonomy by LTCs end-to-end learning

LTCs: Performance High-fidelity autonomy by LTCs - end-to-end learning

LTCs: Performance

High-fidelity autonomy by LTCs

end-to-end learning of Neural Circuit Policies (NCP)

Now we compare properties of NCPs with a number of other models

Liquid Time-Constant Networks (LTCs) Hasani et al. AAAI 2021

LTCs: Performance High-fidelity autonomy by LTCs Parameter efficiency

Model	Conv layers Param	RNN neurons	RNN synapses	RNN trainable param
CNN	5,068,900	-	-	-
CT-RNN	79,420	64	6112	6273
LSTM	79,420	64	24640	24897
NCP	79,420	19	253	1065

CNN driving performance

Camera input stream

Attention map

-1

0

+1

CNN driving performance under $\sigma^2{=}0.1$ pertubation

Camera input stream

Attention map

🛑 Mode: 🛛 Manual

-1

0

+1

NCP driving performance

LTCs: Performance High-fidelity autonomy by LTCs

LTCs: Performance High-fidelity autonomy by LTCs – Robustness

Noise Robustness (Interventions)

Input noise variance

Neural Circuit Policies are Dynamic Causal Models

Dynamic causal model

- **A** intrinsic coupling
- **B** dynamic modulator
- **C** input regulator

Neural Circuit Policies

Performance – Attention

Flying Performance

Visual Backprop Attention Map

Neural Circuit Policies

Leader Following task

Neural Circuit Policies

Leader Following task

Thank you!

Mathias Lechner

Alexander Amini

Daniela Rus

Radu Grosu

Feel free to

Check out our latest repositories

https://github.com/raminmh/liquid_time_constant_networks

https://github.com/mlech261/keras-ncp

https://github.com/mlech261/ode-lstms

and to reach out: rhasani@mit.edu

