
Rupak Majumdar
Kaushik Mallik

Anne-Kathrin Schmuck
Damien Zufferey

A Negotiation Framework
for Distributed Reactive Synthesis

Max Planck Institute for Software Systems, Germany

Level 0
(L0)

Level 1
(L1)

A Distributed Synthesis Problem for Delivery Robots

2

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Level 0
(L0)

Level 1
(L1)

A Distributed Synthesis Problem for Delivery Robots

2

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Controller

Controller

Level 0
(L0)

Level 1
(L1)

A Distributed Synthesis Problem for Delivery Robots

2

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Controller

Controller

Level 0
(L0)

Level 1
(L1)

A Distributed Synthesis Problem for Delivery Robots

2

Drone

Vehicle

Central
server

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Controller

Controller

Level 0
(L0)

Level 1
(L1)

A Distributed Synthesis Problem for Delivery Robots

2

Drone

Vehicle

Central
server

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Vehicle model
+

Task

Drone model
+

Task

Controller

Controller

Level 0
(L0)

Level 1
(L1)

A Distributed Synthesis Problem for Delivery Robots

2

Plan:
1. Wait for the vehicle to collect the

orange box.
2. Transport the vehicle to L1.
3. Collect and deliver the yellow box.

Plan:
1. Collect the orange box.
2. Wait for the drone to be

picked up.
3. Deliver the orange box.

Drone

Vehicle

Central
server

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Vehicle model
+

Task

Drone model
+

Task

Controller

Controller

Level 0
(L0)

Level 1
(L1)

A Distributed Synthesis Problem for Delivery Robots

2

Plan:
1. Wait for the vehicle to collect the

orange box.
2. Transport the vehicle to L1.
3. Collect and deliver the yellow box.

Plan:
1. Collect the orange box.
2. Wait for the drone to be

picked up.
3. Deliver the orange box.

Drone

Vehicle

Central
server

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Vehicle model
+

Task

Drone model
+

Task
Distributed synthesis methods which use semi-centralized approach:

- Sven Schewe and Bernd Finkbeiner. "Bounded synthesis." ATVA 2007

- Rajeev Alur, Salar Moarref, and Ufuk Topcu. "Compositional and symbolic synthesis of
reactive controllers for multi-agent systems." Information and Computation 2018.

Controller

Controller

Level 0
(L0)

Level 1
(L1)

A Distributed Synthesis Problem for Delivery Robots

2

Plan:
1. Wait for the vehicle to collect the

orange box.
2. Transport the vehicle to L1.
3. Collect and deliver the yellow box.

Plan:
1. Collect the orange box.
2. Wait for the drone to be

picked up.
3. Deliver the orange box.

Drone

Vehicle

Central
server

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Vehicle model
+

Task

Drone model
+

Task

Controller

Controller

Level 0
(L0)

Level 1
(L1)

A Distributed Synthesis Problem for Delivery Robots

2

Plan:
1. Wait for the vehicle to collect the

orange box.
2. Transport the vehicle to L1.
3. Collect and deliver the yellow box.

Plan:
1. Collect the orange box.
2. Wait for the drone to be

picked up.
3. Deliver the orange box.

Drone

Vehicle

Central
server

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Vehicle model
+

Task

Drone model
+

Task

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

A Distributed Synthesis Problem for Delivery Robots

Imperfect
information

exchange

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

A Distributed Synthesis Problem for Delivery Robots

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Imperfect
information

exchange

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Imperfect
information

exchange

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Imperfect
information

exchange

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

I can deliver the
yellow box, but not the

orange one.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

You
deliver

the
orange

box.

I can deliver the
yellow box, but not the

orange one.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

You
deliver

the
orange

box.

Too difficult to
maneuver in L1.

I can deliver the
yellow box, but not the

orange one.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

You
deliver

the
orange

box.

Not
possible!

Too difficult to
maneuver in L1.

I can deliver the
yellow box, but not the

orange one.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

You
deliver

the
orange

box.

Not
possible!

But I can
deliver the yellow

box.

I can deliver the
yellow box, but not the

orange one.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

You
deliver

the
orange

box.

You
deliver

the
orange

box.

But I can
deliver the yellow

box.

I can deliver the
yellow box, but not the

orange one.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

You
deliver

the
orange

box.

You
deliver

the
orange

box.

But I can
deliver the yellow

box.

I can deliver the
yellow box, but not the

orange one.

I can't reach L1.
But the drone can help.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

You
deliver

the
orange

box.

Then, help
me to

reach L1.

But I can
deliver the yellow

box.

I can deliver the
yellow box, but not the

orange one.

I can't reach L1.
But the drone can help.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Then, help
me to

reach L1.

Deal!

But I can
deliver the yellow

box.

I can deliver the
yellow box, but not the

orange one.

I can't reach L1.
But the drone can help.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Negotiation: A Modular Approach

3

Level 0
(L0)

Level 1
(L1)

Drone

Vehicle

Task: Both boxes need to be delivered.

Task: Both boxes need to be delivered.

Deal!

Deal!

But I can
deliver the yellow

box.

I can deliver the
yellow box, but not the

orange one.

I can't reach L1.
But the drone can help.

Distributed reactive synthesis is undecidable
[Pnueli and Rosner, 1990].

Negotiation:
a sound, incomplete, and modular approach.

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

fulfill promise

time

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

fulfill promise
if

vehicle kept its promise in the past

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

time

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

fulfill promise
if

vehicle kept its promise in the past

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

time

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

fulfill promise
if

vehicle kept its promise in the past

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

time

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

fulfill promise
if

vehicle kept its promise in the past

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

time

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

fulfill promise
if

vehicle kept its promise in the past

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

fulfill promise

time

time

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

fulfill promise
if

drone kept its promise in the past

fulfill promise
if

vehicle kept its promise in the past

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

time

time

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

fulfill promise
if

drone kept its promise in the past

fulfill promise
if

vehicle kept its promise in the past

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

time

time

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

fulfill promise
if

drone kept its promise in the past

fulfill promise
if

vehicle kept its promise in the past

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

time

time

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

fulfill promise
if

drone kept its promise in the past

fulfill promise
if

vehicle kept its promise in the past

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

time

time

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Outcome of Negotiation: Assume-Guarantee Contracts

4

Drone

Vehicle

Task: given specification

Task: given specification

You
deliver

the
orange

box.

Then, help
me to

reach L1.

fulfill promise
if

drone kept its promise in the past

fulfill promise
if

vehicle kept its promise in the past

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

time

time

(assumption specification) contract→ ∧

(assumption specification) contract→ ∧

Satisfaction of Contracts

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

Satisfaction of contracts

Satisfaction of guarantees

Satisfaction of assumptions

Satisfaction of specifications

⇒

⇒

⇒

5

Satisfaction of Contracts

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

Satisfaction of contracts

Satisfaction of guarantees

Satisfaction of assumptions

Satisfaction of specifications

⇒

⇒

⇒

5

Related work (one-way interaction):

- Rajeev Alur, Salar Moarref, and Ufuk Topcu. "Pattern-based refinement of assume-
guarantee specifications in reactive synthesis." TACAS 2015.

Satisfaction of Contracts

The assume-guarantee contract for the drone:

(promise made by the vehicle, promise made by the drone)

The assume-guarantee contract for the vehicle:

(promise made by the drone, promise made by the vehicle)

Satisfaction of contracts

Satisfaction of guarantees

Satisfaction of assumptions

Satisfaction of specifications

⇒

⇒

⇒

5

The Problem

The Negotiation Algorithm

Experiments

6

The Problem

The Negotiation Algorithm

Experiments

6

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

Level 0
(L0)

Level 1
(L1)

A B

The Problem

7

φ = ◊(a, b)

ψ = ◊(A, B)

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

Level 0
(L0)

Level 1
(L1)

A B

The Problem

7

φ = ◊(a, b)

ψ = ◊(A, B)

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

Level 0
(L0)

Level 1
(L1)

A B

The Problem

7

φ = ◊(a, b)

ψ = ◊(A, B)

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

Level 0
(L0)

Level 1
(L1)

A B

The Problem

7

φ = ◊(a, b)

ψ = ◊(A, B)

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

Level 0
(L0)

Level 1
(L1)

A B

The Problem

7

φ = ◊(a, b)

ψ = ◊(A, B)

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

Level 0
(L0)

Level 1
(L1)

A B

The Problem

7

φ = ◊(a, b)

ψ = ◊(A, B)

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Problem

7

φ = ◊(a, b)

ψ = ◊(A, B)

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Problem

7

φ = ◊(a, b)

ψ = ◊(A, B)

φ

ψ

(assumption, guarantee)

(assumption, guarantee)

The Problem

The Negotiation Algorithm

Experiments

8

The Problem

The Negotiation Algorithm

Experiments

8

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

Negotiation rounds

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

Negotiation rounds

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

◯2 ¬idle

ψ′ = ◊(A, B) ∧ (⊤ , ◯2 ¬idle)

Safe sufficient assumption:

Negotiation rounds

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

*Krishnendu Chatterjee, Thomas A. Henzinger, and
Barbara Jobstmann. "Environment assumptions for
synthesis." CONCUR, 2008.

◯2 ¬idle

ψ′ = ◊(A, B) ∧ (⊤ , ◯2 ¬idle)

Safe sufficient assumption:

Negotiation rounds

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

◯2 ¬wait
∧

□ (lift → ◯2 ¬wait)

*Krishnendu Chatterjee, Thomas A. Henzinger, and
Barbara Jobstmann. "Environment assumptions for
synthesis." CONCUR, 2008.

◯2 ¬idle

ψ′ = ◊(A, B) ∧ (⊤ , ◯2 ¬idle)

Safe sufficient assumption:

Negotiation rounds

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

◯2 ¬wait
∧

□ (lift → ◯2 ¬wait)

*Krishnendu Chatterjee, Thomas A. Henzinger, and
Barbara Jobstmann. "Environment assumptions for
synthesis." CONCUR, 2008.

◯2 ¬idle

ψ′ = ◊(A, B) ∧ (⊤ , ◯2 ¬idle)

Safe sufficient assumption:

Negotiation rounds

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

◯2 ¬wait
∧

□ (lift → ◯2 ¬wait)

*Krishnendu Chatterjee, Thomas A. Henzinger, and
Barbara Jobstmann. "Environment assumptions for
synthesis." CONCUR, 2008.

◯2 ¬idle

ψ′ = ◊(A, B) ∧ (⊤ , ◯2 ¬idle)

Safe sufficient assumption:

λ

Negotiation rounds

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

◯2 ¬wait
∧

□ (lift → ◯2 ¬wait)

φ′ = (◯2 ¬idle → ◊(a, b)) ∧ (◯2 ¬idle, λ)

*Krishnendu Chatterjee, Thomas A. Henzinger, and
Barbara Jobstmann. "Environment assumptions for
synthesis." CONCUR, 2008.

◯2 ¬idle

ψ′ = ◊(A, B) ∧ (⊤ , ◯2 ¬idle)

Safe sufficient assumption:

λ

Negotiation rounds

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

◯2 ¬wait
∧

□ (lift → ◯2 ¬wait)

φ′ = (◯2 ¬idle → ◊(a, b)) ∧ (◯2 ¬idle, λ)

*Krishnendu Chatterjee, Thomas A. Henzinger, and
Barbara Jobstmann. "Environment assumptions for
synthesis." CONCUR, 2008.

◯2 ¬idle

ψ′ = ◊(A, B) ∧ (⊤ , ◯2 ¬idle)

Safe sufficient assumption:

λ

Negotiation rounds

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

◯2 ¬wait
∧

□ (lift → ◯2 ¬wait)

φ′ = (◯2 ¬idle → ◊(a, b)) ∧ (◯2 ¬idle, λ)

ψ′ ′ = (λ → ◊(A, B)) ∧ (λ,◯¬idle)

⊤

*Krishnendu Chatterjee, Thomas A. Henzinger, and
Barbara Jobstmann. "Environment assumptions for
synthesis." CONCUR, 2008.

◯2 ¬idle

ψ′ = ◊(A, B) ∧ (⊤ , ◯2 ¬idle)

Safe sufficient assumption:

λ

Negotiation rounds

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

Output contracts

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

◯2 ¬wait
∧

□ (lift → ◯2 ¬wait)

φ′ = (◯2 ¬idle → ◊(a, b)) ∧ (◯2 ¬idle, λ)

ψ′ ′ = (λ → ◊(A, B)) ∧ (λ,◯¬idle)

⊤

*Krishnendu Chatterjee, Thomas A. Henzinger, and
Barbara Jobstmann. "Environment assumptions for
synthesis." CONCUR, 2008.

◯2 ¬idle

ψ′ = ◊(A, B) ∧ (⊤ , ◯2 ¬idle)

Safe sufficient assumption:

λ

Negotiation rounds

A,B

idle

A

b
a

lift
idle

wait

A

idle

wait

init

a,b

a

a

crash

idle

A

A

idle

wait

lift

to
A

Output contracts

The Negotiation Algorithm

9

φ = ◊(a, b)

ψ = ◊(A, B)

φ = ◊(a, b) ∧ (⊤ , ⊤)

◯2 ¬wait
∧

□ (lift → ◯2 ¬wait)

φ′ = (◯2 ¬idle → ◊(a, b)) ∧ (◯2 ¬idle, λ)

ψ′ ′ = (λ → ◊(A, B)) ∧ (λ,◯¬idle)

⊤

Features:
 Sound
 Incomplete

*Krishnendu Chatterjee, Thomas A. Henzinger, and
Barbara Jobstmann. "Environment assumptions for
synthesis." CONCUR, 2008.

◯2 ¬idle

ψ′ = ◊(A, B) ∧ (⊤ , ◯2 ¬idle)

Safe sufficient assumption:

λ

Negotiation rounds

The Problem

The Negotiation Algorithm

Experiments

10

The Problem

The Negotiation Algorithm

Experiments

10

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

Contracts need to ensure that the processes
do not write at the same time.

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The assume-guarantee contract for the Process A:

(Pr. B does not write at even time steps, do not write at odd time steps)

Contracts need to ensure that the processes
do not write at the same time.

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The assume-guarantee contract for the Process A:

(Pr. B does not write at even time steps, do not write at odd time steps)

The assume-guarantee contract for the Process B:

(Pr. A does not write at odd time steps, do not write at even time steps)

Contracts need to ensure that the processes
do not write at the same time.

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

The Mutual Exclusion Example

Process A Process B

Shared bus

Transmission end

Receive end

11

C
om

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

0

1/8

1/4

3/8

1/2

Product of number of states of two processes
(parameters: number of data packets, deadline)

21 63 315 387 ~2K ~17K ~34K

~42

~19

Summary

12

• Negotiation: a modular, sound, and incomplete approach for distributed synthesis.

• Input:

- The systems' models + omega-regular local specifications.

- Systems have partial view of each other.

• Output: Assume-Guarantee Contracts.

• Optimization heuristics for faster computation.

• Implemented in the tool called Agnes (https://github.com/kmallik/Agnes).

https://github.com/kmallik/Agnes

Summary

12

• Negotiation: a modular, sound, and incomplete approach for distributed synthesis.

• Input:

- The systems' models + omega-regular local specifications.

- Systems have partial view of each other.

• Output: Assume-Guarantee Contracts.

• Optimization heuristics for faster computation.

• Implemented in the tool called Agnes (https://github.com/kmallik/Agnes).

Thank you for listening!

https://github.com/kmallik/Agnes

