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Distributed synthesis methods which use semi-centralized approach:  

- Sven Schewe and Bernd Finkbeiner. "Bounded synthesis." ATVA 2007 

- Rajeev Alur, Salar Moarref, and Ufuk Topcu. "Compositional and symbolic synthesis of 
reactive controllers for multi-agent systems." Information and Computation 2018. 
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Related work (one-way interaction):  

- Rajeev Alur, Salar Moarref, and Ufuk Topcu. "Pattern-based refinement of assume-
guarantee specifications in reactive synthesis." TACAS 2015.
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The assume-guarantee contract for the Process A:  

(Pr. B does not write at even time steps, do not write at odd time steps)

The assume-guarantee contract for the Process B:  

(Pr. A does not write at odd time steps, do not write at even time steps)

Contracts need to ensure that the processes  
do not write at the same time.
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• Negotiation: a modular, sound, and incomplete approach for distributed synthesis. 

• Input: 

- The systems' models + omega-regular local specifications. 

- Systems have partial view of each other. 

• Output: Assume-Guarantee Contracts. 

• Optimization heuristics for faster computation. 

• Implemented in the tool called Agnes (https://github.com/kmallik/Agnes). 
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Thank you for listening!
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