Subgame perfect equilibrium with an algorithmic perspective

Jean -Francois Raskin (Universite' libre de Breaelles) joint work with Marie Vanden Bogard (Universite Gustav Eiffel) Leonard Brice (ENS Paris - Saclay)

March ²⁶ , 202L.

Simons Institute for the Theory of computing (Berkeley)

Objectives of the talk

^ Recall SPE for sequential games ² Expose some recent progresses in algorithms to handle SPE^s (for mean payoff objectives) [→] leftopen in the literature - - → Won credible threats ! - = • Q : SPE how to obtain our . effective representation of ^s - all possible outcomes g ← producedby rational flayers .

N player turn-based graph games

Verlies are
$$
\mu
$$
 (div $V_{\ell} \oplus ... \oplus V_{\ell}$

\n
$$
V_{\lambda} = \text{over/ice} s \text{ of } \mathbb{P}_{\text{cycle}} \text{ is } [1, \sqrt{1 - \frac{1}{2}}]
$$
\n
$$
E \subseteq V \times V \text{ so } E \to \mathbb{Z}^N
$$
\nThen by $\mu_{\ell} : V^{\omega} \to \mathbb{R}, \text{ is } [1, \sqrt{1 - \frac{1}{2}}]$

\n
$$
\frac{1}{\sqrt{1 - \frac{1}{2}}}
$$

N player turn-based graph games

Strategies, profiles, outcomes

$$
\begin{array}{ccc}\n\sigma_{i} & \cdots & \sigma_{i} \\
\sigma_{i} & \cdots & \sigma_{i} \\
\sigma_{i} & \sigma_{i} & \sigma_{i} \\
\sigma_{i} & \sigma_{i} & \sigma_{i} \\
\sigma_{i} & \sigma_{i} & \sigma_{i}\n\end{array}
$$

 2_i = set of strategy of Pl. i E[1, N]

Strategies, profiles, outcomes

$$
\begin{array}{ccc}\n\sigma_{\underline{i}} & \cdots & \sigma_{\underline{k}} \\
\sigma_{\underline{k}} & \cdots & \sigma_{\underline{k}} \\
\sigma_{\underline{k}} & \sigma_{\underline{k}} &
$$

 $2i = sofofsholeg of P. i \in [1, n]$

<u> Profiles :</u> $(\sigma_1, \sigma_2, ..., \sigma_N) \in \mathcal{L}_1 \times \mathcal{L}_2 \times ... \times \mathcal{L}_N$ $= (\sigma_{i}, \overline{\sigma}_{i})$ s all strategies but σ_i $\sigma_{\! \mathbf{A}}$ $=$ $\mathcal{O}_{\mathcal{L}_{\mathcal{A}}}(\sigma_{\mathbf{1}},\sigma_{\mathbf{2}},...,\sigma_{\mathcal{N}})=$ $\mathcal{C} \in V^{\omega}$ $Q_{\mathcal{A}_{\sigma_{a}}}(\bar{\sigma})$ = σ_{o} σ_{1} σ_{2} ... σ_{n} ... = ρ s.t. $\sigma_{0} = \sigma_{1} \forall j \ge 0 : i \nmid \beta(j) \in V_{i}: \sigma_{j+1} = \sigma_{i} \left(\beta(o_{i,j}) \right)$

A pofile of strategies ($\sigma_{\alpha_1}\sigma_{\alpha_2}$, ..., σ_{α}) is a Nash equilibrium (NE) in v_{α} , if for all *i* ϵ [1,0], for all σ_i ' $\epsilon\zeta_{i}$: μ_{i} (θ $\int_{\sigma_{\bullet}^{\epsilon}}\left(\bar{\sigma_{i}},\bar{\sigma_{i}}\right)$) \leqslant μ_{i} ($\theta\int_{\sigma_{\bullet}^{\epsilon}}\left(\bar{\sigma_{i}},\bar{\sigma_{i}}\right)$) ⁼ No player has an incentive to deviate unitarily .

A profile of strategies ($\sigma_{\alpha_1}\sigma_{\alpha_2}$, ..., σ_{α}) is a Nash equilibrium (NE) in v_{α} , if for all $i \in [1, 5]$, for all σ_i ' ϵ 2 : μ (av σ_{ϵ} , σ_{i} $)$ \leqslant μ _i $\left(\bigoplus_{\sigma_{o}}\sigma_{\sigma_{c}}\right)$, $\sigma_{\sigma_{c}}$) = No player has an incentive to deviate unitarily.

A profile of strategies ($\sigma_{\alpha_1}\sigma_{\alpha_2}$, ..., σ_{α}) is a Nash equilibrium (NE) in v_{α} , if for all $i \in [1, 5]$, for all σ_i ' ϵ $\epsilon_{_{\boldsymbol{\mathcal{L}}}}$: $\mu_{_{\boldsymbol{\mathcal{L}}}}$ (θ $\int_{\sigma_{\!\!\mathcal{L}}}^{\tau}$ $(\bar{\sigma}_{_{\!\!-\!{\boldsymbol{\mathcal{L}}}}},\bar{\sigma}_{_{\!\!\mathcal{L}}}^{})$ $\mathcal{Y}\left(\ \overline{\sigma}_{\dot{-}\dot{\iota}},\ \overline{\sigma}_{\dot{\iota}}\ \right)\ \leqslant\ \mu_{\dot{\iota}}\left(\ \mathcal{Q}\mathcal{Y}\left(\ \overline{\sigma}_{\dot{-}\dot{\iota}},\ \overline{\sigma}_{\dot{\iota}}\ \right)\right)$ ⁼ No player has an incentive to deviate unitarily .

A pofile of shabogies
$$
(\sigma_1, \sigma_2, ..., \sigma_N)
$$
 is a subgame period equivalent (SPE)
if for all subgames $G_{\mu} \notin (G, \text{ for all } P. \text{ is } E[1,1,1], \text{ for all } \sigma_i^U \in \mathcal{L}_i$:
 $\mu_i (Q_{\mu}(\sigma_i^A, \sigma_i^U)) \leq \mu_i (Q_{\mu}(\sigma_i^L, \sigma_i^A))$.

A pofile of shabogies
$$
(\sigma_1, \sigma_2, ..., \sigma_N)
$$
 is a subgame period equivalent (SPE)
if for all subgames $G_{\mu} \notin (G, \text{ for all } P. \text{ is } E[1,1,1], \text{ for all } \sigma_i^U \in \mathcal{L}_i$:
 $\mu_i (Q_{\mu}(\sigma_i^A, \sigma_i^U)) \leq \mu_i (Q_{\mu}(\sigma_i^L, \sigma_i^A))$.

A pofile of shabogies
$$
(\sigma_1, \sigma_2, ..., \sigma_N)
$$
 is a subgame period equivalent (SPE)
if for all subgames $G_{\mu} \notin (G, \text{ for all } P. \text{ is } E[1,1,1], \text{ for all } \sigma_i^U \in \mathcal{L}_i$:
 $\mu_i (Q_{\mu}(\sigma_i^A, \sigma_i^U)) \leq \mu_i (Q_{\mu}(\sigma_i^L, \sigma_i^A))$.

Outcomes supported by equilibria

QUNIE (G) = U {Quksome_{to} (F)}

\n
$$
GUSPE(G) = U_{SPE}
$$

Existence	guananlead when (u_i)	are continuous $(ex:discanued, ex)$
Can be extended to lower semi-orthicons		
en $(u_i)_{i \in [n,n]}$ are Bomega-regular objects $(ex:purf)$		
en $(u_i)_{i \in [n,n]}$ are Bomega-regular objects $(ex:purf)$		
en $(u_i)_{i \in [n,n]}$ are Bomega-regular objects $(ex:purf)$		
combeal or (x_i) are also defined by l numbers (2006)		
combeal or (x_i) are also defined by l numbers (2006)		

Effective Representation

 $QWSPE(G)$

 for quantitative readability [concerted alternating tree automata - - " also for ^Bomega regular obj . (ee : fairy) [limnetic] - TODAY : mean payoff objectives [arXiv : ²¹⁰¹ . 10685T

O Exisbece poblem for sfe : OurSPE(G) ?
$$
\phi
$$

$$
\frac{1}{3}
$$

How to reason on SPE?

How to reason on SPE ?

\nThus,
$$
2 \times 3
$$
 and 3×4 and $40, 2$.

\nThus, 2×3 and 3×4 and $40, 2$.

\nThus, 3×3 and $40, 2$.

\nThus, 3×3 and $40, 2$ and $40, 2$.

\nThus, 2×3 and $40, 2$ and $40, 2$.

\nThus, 4×3 and $40, 2$ and $40, 2$.

\nThus, 4×3 and $40, 2$ and $40, 2$.

\nThus, 4×3 and $40, 2$ and $40, 2$.

\nThus, 4×3 and $40, 2$ are $40, 2$.

\nThus, 4×3 and $40, 2$ are $40, 2$.

\nThus, 4×3 and $40, 2$ are $40, 2$.

\nThus, 4×3 and $40, 2$ are $40, 2$.

→ infinite trees : backward induction does not generalize well . . .

Starting point: NE in infinite duration games

NE - Deviation - Punishment

Set of outcomes supported by NE - MP

$$
\Rightarrow \text{ requirement:} \quad \lambda : V \Rightarrow \mathbb{R} \cup \{-\infty, +\infty\}
$$
\n
$$
\Rightarrow A \text{ path } \rho = \sigma_{\sigma} \sigma_{1} \dots \sigma_{n} \dots \text{ is } \lambda \cdot \text{constant if}
$$
\n
$$
\forall i \in [1, n]: \quad \underline{HP}_{i}(\rho) \geq \text{ (max of } \lambda \cdot \sigma_{i})
$$
\n
$$
\text{over } \forall i \in [1, n] : \quad \underline{HP}_{i}(\rho) \geq \text{ (max of } \lambda \cdot \sigma_{i})
$$

$$
\begin{array}{ccc}\n & \sqrt{14} & 9 \\
 & \sqrt{2} & 3 \\
 & \sqrt{3} & 2 \\
 & \sqrt{2} & 3 \\
 & \sqrt{2} & 3\n\end{array}
$$

Set of outcomes supported by NE - MP

$$
\Rightarrow
$$

$$
\Rightarrow
$$
 $$

$Set of outcomes supported by NE - MP$ - on example

A MP game without SPE

→ 19.0 cm secure 1 from a (a → c)

\n→ 19.0 cm secure 2 from b (b → d)

\n→ 50. Here is no
$$
NE
$$
 in which a → b is $Table 16$ even as 19.0 would have on $Number$ be 16 (a → c) but then 19.0 are 10.0 cm, the sum of 19.0 cm, the sum

A MP game without SPE

→ PP. O can secure 1 from de la →c) → Pf. Can secure ² from ^b (^b [→] d) → So there is no NE in which a b is taken for ever
as PP. O would have an incentive to leave (a → c) but then Pe . would prefer to leave before Pl. So → From a FP. O knows that FP. I will leave, FP. O has then
no incentive to do it before (as he will then get 2 intered of 1) \mathbb{B} u \rightarrow then \mathbb{P} . \Box has no interest to leave as he receives β on the cycle. → Need to iterate the reasoning on worst-case Value.

Generalization : The negotiation function ! : Given λ_1 and ∞ , can the player that controls v impove the value that she can obtain against the other players if the other players are \sim willing to give away their worst-cake value $(\lambda_4)'$

The negotiation function

$$
\frac{?}{?}
$$
 Given λ_1 and ∞_2 can the player if ∞ for ∞ where ∞ be the value
that she can obtain again ∞ if ∞ then $\int \text{Cayors are}$ are
and $\int \text{Cay} = \int \text$

How to compute Nego(.) ?

\n $\text{Neger}(\lambda)(v) = \int_{\overline{v} - i}^{v \in V} \$

P	O	Game	Is deformine	Nogor	(λ) $(\sigma) \leq \alpha$?													
P	Propotes outcomes $P = \sigma_{\sigma} \sigma_{4...} \sigma_{m...} \in \lambda$ -onisvol	if this is possible																
C	either accepts and the game and is (accept)	(if not profile FalIL)																
C	allher accepts and the game and is (accept)	(if not profile FalIL)																
D	allher are $\sigma_{\sigma} \sigma_{\sigma} \dots \sigma_{\mu} \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \sigma_{\mu}$	then $\sigma_{\sigma} \sigma_{\mu} \dots \$

gating the following conditions:

\n
$$
\frac{P}{C} = \frac{P}{C} = \frac{P}{C}
$$
\nwith an end to derivatives:

\n
$$
\frac{P}{C} = \frac{P}{C}
$$
\

How to compute Nego(.) ? -an example - Nego (λ_1)

$$
11 C
$$
\n
$$
11 C
$$
\n
$$
11 C
$$
\n
$$
12 C
$$

$$
\mathbb{P}: a.c^{0}, a.c^{0} \rightarrow \lambda_{1}=\text{conrich and } \mathbb{H}_{0}^{p}(a.c^{0})=1
$$
\n
$$
\mathbb{P}: \text{form } b, \text{ the only } \lambda_{1}=\text{conrich and } \mathbb{H}_{0}^{p}(a.c^{0})=1
$$
\n
$$
\mathbb{P}: \text{ from } b, \text{ the only } \lambda_{1}=\text{conrich and } \mathbb{H}_{0}^{p} \text{ as } \mathbb{I}_{0}^{+} \text{ as } \mathbb{I}_{0}^{+}
$$
\n
$$
\text{and } \mathbb{I}_{1}^{p}(a_{0})^{*}d^{0}=2 \Rightarrow \mathbb{C} \text{ turns } \mathbb{I}_{0}^{p} \text{ is } \mathbb{I}_{0}^{p}
$$
\n
$$
\rightarrow \text{generalisation}: \text{Negr}(\lambda_{1})(a) = 2 \qquad \text{for } \lambda_{1}^{p} \text{ is } 2 \qquad \text{for } \lambda_{2}^{p} \text{ is } 2 \qquad \text{for } \lambda_{1}^{p} \text{ is } 2 \qquad \text{for } \lambda_{2}^{p} \text{ is } 2 \qquad \text{for } \lambda_{1}^{p} \text{ is } 2 \qquad \text{for } \lambda_{2}^{p} \text{ is } 2 \q
$$

How to compute Nego(.) ?

- an
$$
oxample - Nego(\lambda_2)
$$

$$
\begin{array}{c}\n\begin{array}{c}\n11 \quad \text{C}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array
$$

$$
\mathbb{T}: b.d^{d}
$$

\nC: decralcon b \rightarrow a
\n
$$
\mathbb{C}: (a.b)^{*}d^{d}
$$

\n
$$
\mathbb{C}: decralcon b \rightarrow a
$$

$$
\Rightarrow \text{volume : } (b\text{a})^{\circ} \text{ and } \text{MP}_{\square} (b\text{a})^{\circ} = 3
$$

$$
\Rightarrow \text{N}_{\square} (\lambda_{1}) (b) \leq 2
$$

$$
\Rightarrow \text{generalisation : N_{\square} (\lambda_{1}) (b) = 3
$$

How to compute Nego(.) ?

Properties of the negociation function

$$
f_{\text{max}} \wedge f_{\text{max}} = \frac{1}{2} \int_{\mathcal{A}} f_{\text{max}} = -\infty \quad \text{if } \pi \in \mathcal{A}.
$$
\n
$$
f_{\text{max}} \wedge f_{\text{max}} = \frac{1}{2} \int_{\mathcal{A}} f_{\text
$$

Properties of the negociation function

For
$$
\lambda^*
$$
 be s.t. Négo $(\lambda^*) = \lambda^*$, i.e. λ^* is a **fixed pair** of Négo.

\nLemma 2. $\forall \lambda^*$ (orreflor paths ρ , $\exists \overline{\sigma} \in \mathcal{S} \in \mathbb{F}$: $\rho = \text{Out}(\overline{\sigma})$.

\nLemma 2. $\forall \overline{\sigma} \in \mathcal{S} \in \mathbb{F}$: $\exists \lambda^*$ s.t. Négo $(\lambda) = \lambda^*$ and

\nOur $(\overline{\sigma})$ is λ^* -conrichen.

\nThe se of fixed points of the function Négo is a

\nchaodorization of axioms of sets.

\nBecause Négo is **nonofone** and the a of λ -continuous of them, as **complete lattice** and **in** odd form the a of λ -onfull paths is **upright**-closed then we have the following range result?

\nCorollary. The feV of axioms of SEG is denotezized by the **LFP** of Négo.

Additional properties
① We can transform the <code>P C</code> game who a finite sole (multi- (mom payoff) gave
② This <code>multi-</code> <code>mean</code> <code>payoff</code> <code>game</code> allows us for effectively <code>ample</code> <code>Nego()</code>
③ λ^* <code>many not be reached</code> from λ_0 by <code>Homea-</code> <code>Just</code> <code>ideal</code> <code>in</code>
4. λ^* <code>big</code> <code>map</code> <code>step</code>
5. λ^* <code>big</code> <code>map</code> <code>step</code>

Non finite convergence

 $^{220}_{\triangle}$

 010

220

 $\overline{y^{n+1}}$

 α

 \lceil 100

 $\overline{9^{n-2}}$

$$
N_{eq\sigma}(\lambda_a)(a) = 1 \frac{1}{2}
$$

\n11 cannot probe for go 16.11e legV will a value
$$
\leq x \leq 19
$$
.\n

\n\n21 a value $\leq x \leq 19$.\n

\n\n22 a value $\leq x \leq 19$.\n

\n\n23 a value of the right half of 192.\n

\n\n24 a value of the right half of 192.\n

\n\n25 a value of the right half of 192.\n

60

 $\rightarrow \dots$

 $\overset{220}{\cap}$ $\ddot{}$

010

 $\langle a \rangle = 220$

$$
\mathbf{mmeTrac}
$$

δy

Additional properties C ^ We can beansform the into a finite skate Melek-P C Mean payoff game game (ie 's5) allows us to effectively compare 2 This multi - Nego(.) mean payoff game ³ it not be reached from ko by Kleene -Tarski iteration in may finitely many steps But thanks to good properties of felt we can show that 4 . . . mean payoff games , is effectively piecewise linear and ¥ can be obtained using Nego(.) linear algebraic techniques .

Conclusions and perspectives

→ SPE provides ^a natural potion of rational behaviors in infinite duration games played on graphs \longrightarrow Worst-case value relative to rational adversary formalized by the fined pink of Rego (^o) leads to an effective representation of CursPE (G) for MP ganes (multi mean - payoff automata) ÷ . . - ₇ Non cre<mark>d</mark>ible threats characterized 15 of Nego (.)
for II games b_j wort. cate value $\bigwedge_{S \in C} c_j$ $SPE \times$ characterized by fixed. J'e point de la po

Conclusions and perspectives

→ Rego (^o) is also applicable to parity games (omega regular obj) ↳ useful to close complexity gaps ex : Constrained existence for SPE is in ExpTime (emptiness automata of alternating) and NP-hand . [Uummels ' ⁰⁶] → Our previous algorithm for quantitative readability can be rephrased with Tego ^L .) [concur⁴⁹³ → Rego 6) provides a new algorithmic basis to do rational verification and synthesis based on SPE ^s .