The complexity of computing a Tarski fixed point of a monotone function, with applications to games and equilibiria

Kousha Etessami

University of Edinburgh

Simons Institute Games and Equilibria Workshop February, 2021

(This talk is based on joint work with: C. Papadimitriou, A. Rubinstein, and M. Yannakakis, in a paper that appeared at ITCS'2020.)

《曰》 《聞》 《理》 《理》 三世

<u>Recall</u>: A partially ordered set (L, \leq) is a **complete lattice** if every non-empty subset $S \subseteq L$ has both a *least upper bound* (or *supremum* or *join*), and a *greatest lower bound* (or *infimum* or *meet*) in L.

A function $f: L \to L$ is **monotone** if $\forall x, y \in L, x \leq y \Rightarrow f(x) \leq f(y).$

Let $Fix(f) := \{x \in L \mid x = f(x)\}$ denote the set of **fixed points** of *f*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

<u>Recall</u>: A partially ordered set (L, \leq) is a **complete lattice** if every non-empty subset $S \subseteq L$ has both a *least upper bound* (or *supremum* or *join*), and a *greatest lower bound* (or *infimum* or *meet*) in L.

A function $f: L \to L$ is **monotone** if $\forall x, y \in L, x \leq y \Rightarrow f(x) \leq f(y).$

Let $Fix(f) := \{x \in L \mid x = f(x)\}$ denote the set of **fixed points** of *f*.

Theorem [Tarski, 1955]

Every monotone function $f: L \to L$ from a complete lattice (L, \leq) to itself, has a non-empty set Fix(f) of fixed points, which themselves form a complete lattice $(Fix(f), \leq)$ under the same partial order \leq .

(In particular, f has a Least Fixed Point, and a Greatest Fixed Point.)

Question: how hard is it to compute a (any) fixed point of a given monotone function $f : L \to L$ when (L, \leq) is finite?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Question: how hard is it to compute a (any) fixed point of a given monotone function $f : L \to L$ when (L, \leq) is finite?

More specifically, how hard is it when (L, \leq) is the *d*-dimensional *euclidean grid lattice*, $L = \{1, \ldots, N\}^d = [N]^d$, under the standard coordinate-wise partial order \leq on vectors.

In other words, by definition, for $x, y \in [N]^d$:

$$x \leq y \quad \Leftrightarrow \quad x_i \leq y_i, \ \text{ for all } i \in \{1, \dots, d\}.$$

(日) (國) (필) (필) (필) 표

Question: how hard is it to compute a (any) fixed point of a given monotone function $f : L \to L$ when (L, \leq) is finite?

More specifically, how hard is it when (L, \leq) is the *d*-dimensional *euclidean grid lattice*, $L = \{1, \ldots, N\}^d = [N]^d$, under the standard coordinate-wise partial order \leq on vectors.

In other words, by definition, for $x, y \in [N]^d$:

$$x \leq y \quad \Leftrightarrow \quad x_i \leq y_i, \text{ for all } i \in \{1, \ldots, d\}.$$

As we will see, this question has important applications, including for:

- equilibrium computation problems (for *supermodular games*),
- solving (i.e., computing the *value* of) *stochastic games*.

And we will see that this problem has an intriguing computational complexity status....

To find a fixed point of $f : [N]^d \to [N]^d$: start with $\overline{1} = (1, 1, ..., 1)$, the bottom element of $[N]^d$, and compute the sequence: $\overline{1}$, $f(\overline{1})$, $f(f(\overline{1}))$, ..., $f^i(\overline{1})$, ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

To find a fixed point of $f : [N]^d \to [N]^d$: start with $\overline{1} = (1, 1, ..., 1)$, the bottom element of $[N]^d$, and compute the sequence: $\overline{1}$, $f(\overline{1})$, $f(f(\overline{1}))$, ..., $f^i(\overline{1})$, ... From monotonicity of f, it follows that for all $i \ge 0$, $f^i(\overline{1}) \le f^{i+1}(\overline{1})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

To find a fixed point of $f : [N]^d \to [N]^d$: start with $\overline{1} = (1, 1, ..., 1)$, the bottom element of $[N]^d$, and compute the sequence: $\overline{1}$, $f(\overline{1})$, $f(f(\overline{1}))$, ..., $f^i(\overline{1})$, ... From monotonicity of f, it follows that for all $i \ge 0$, $f^i(\overline{1}) \le f^{i+1}(\overline{1})$. Hence, unless we reach a fixed point $f^i(\overline{1}) = f^{i+1}(\overline{1})$, the sum of the coordinates must increase by at least 1 in each iteration.

To find a fixed point of $f: [N]^d \to [N]^d$: start with $\overline{1} = (1, 1, ..., 1)$, the bottom element of $[N]^d$, and compute the sequence: $\overline{1}$, $f(\overline{1})$, $f(f(\overline{1}))$, ..., $f^i(\overline{1})$, ... From monotonicity of f, it follows that for all $i \ge 0$, $f^i(\overline{1}) \le f^{i+1}(\overline{1})$. Hence, unless we reach a fixed point $f^i(\overline{1}) = f^{i+1}(\overline{1})$, the sum of the coordinates must increase by at least 1 in each iteration. Hence, we will reach a fixed point in at most $d \cdot N$ iterations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

To find a fixed point of $f: [N]^d \to [N]^d$: start with $\overline{1} = (1, 1, ..., 1)$, the bottom element of $[N]^d$, and compute the sequence: $\overline{1}$, $f(\overline{1})$, $f(f(\overline{1}))$, ..., $f^i(\overline{1})$, ... From monotonicity of f, it follows that for all $i \ge 0$, $f^i(\overline{1}) \le f^{i+1}(\overline{1})$. Hence, unless we reach a fixed point $f^i(\overline{1}) = f^{i+1}(\overline{1})$, the sum of the coordinates must increase by at least 1 in each iteration. Hence, we will reach a fixed point in at most $d \cdot N$ iterations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The fixed point computed by this is the *least fixed point* (LFP).

To find a fixed point of $f: [N]^d \to [N]^d$: start with $\overline{1} = (1, 1, ..., 1)$, the bottom element of $[N]^d$, and compute the sequence: $\overline{1}$, $f(\overline{1})$, $f(f(\overline{1}))$, ..., $f^i(\overline{1})$, ... From monotonicity of f, it follows that for all $i \ge 0$, $f^i(\overline{1}) \le f^{i+1}(\overline{1})$. Hence, unless we reach a fixed point $f^i(\overline{1}) = f^{i+1}(\overline{1})$, the sum of the coordinates must increase by at least 1 in each iteration. Hence, we will reach a fixed point in at most $d \cdot N$ iterations.

The fixed point computed by this is the *least fixed point* (LFP).

We can similarly compute the greatest fixed point (GFP) within $d \cdot N$ iterations, by starting instead at the top element $\overline{N} = (N, N, \dots, N)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

To find a fixed point of $f : [N]^d \to [N]^d$: start with $\overline{1} = (1, 1, ..., 1)$, the bottom element of $[N]^d$, and compute the sequence: $\overline{1}$, $f(\overline{1})$, $f(f(\overline{1}))$, ..., $f^i(\overline{1})$, ... From monotonicity of f, it follows that for all $i \ge 0$, $f^i(\overline{1}) \le f^{i+1}(\overline{1})$. Hence, unless we reach a fixed point $f^i(\overline{1}) = f^{i+1}(\overline{1})$, the sum of the coordinates must increase by at least 1 in each iteration. Hence, we will reach a fixed point in at most $d \cdot N$ iterations.

The fixed point computed by this is the *least fixed point* (LFP).

We can similarly compute the greatest fixed point (GFP) within $d \cdot N$ iterations, by starting instead at the top element $\overline{N} = (N, N, \dots, N)$.

Question: Suppose we don't care which fixed point we compute. Suppose we just want to compute <u>some</u> fixed point. Can we do better than $d \cdot N$ iterations?

We can compute a fixed point of $f : [N]^d \to [N]^d$, using binary search combined with recursion, in $O(\log^d N)$ queries to the function f.

We can compute a fixed point of $f : [N]^d \to [N]^d$, using binary search combined with recursion, in $O(\log^d N)$ queries to the function f. For $a, b \in [N]^d$, where $a \le b$, let $L(a, b) = \{x \in [N]^d \mid a \le x \le b\}$, denote the sublattice of grid points between a and b. So, $[N]^d = L(\overline{1}, \overline{N})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We can compute a fixed point of $f : [N]^d \to [N]^d$, using binary search combined with recursion, in $O(\log^d N)$ queries to the function f. For $a, b \in [N]^d$, where $a \le b$, let $L(a, b) = \{x \in [N]^d \mid a \le x \le b\}$, denote the sublattice of grid points between a and b. So, $[N]^d = L(\overline{1}, \overline{N})$.

<u>1-dimensional case</u>: for d = 1, suppose we are given a monotone function $f : L(a, b) \rightarrow L(a, b)$, with $1 \le a \le b \le N$. We can compute a fixed point of f by binary search, as follows:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let $mid := \lfloor \frac{a+b}{2} \rfloor$. Evaluate f(mid).

We can compute a fixed point of $f : [N]^d \to [N]^d$, using binary search combined with recursion, in $O(\log^d N)$ queries to the function f. For $a, b \in [N]^d$, where $a \le b$, let $L(a, b) = \{x \in [N]^d \mid a \le x \le b\}$, denote the sublattice of grid points between a and b. So, $[N]^d = L(\overline{1}, \overline{N})$.

<u>1-dimensional case</u>: for d = 1, suppose we are given a monotone function $f : L(a, b) \rightarrow L(a, b)$, with $1 \le a \le b \le N$. We can compute a fixed point of f by binary search, as follows:

Let $mid := \lfloor \frac{a+b}{2} \rfloor$. Evaluate f(mid). If f(mid) = mid, we are done.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We can compute a fixed point of $f : [N]^d \to [N]^d$, using binary search combined with recursion, in $O(\log^d N)$ queries to the function f. For $a, b \in [N]^d$, where $a \le b$, let $L(a, b) = \{x \in [N]^d \mid a \le x \le b\}$, denote the sublattice of grid points between a and b. So, $[N]^d = L(\overline{1}, \overline{N})$.

<u>1-dimensional case</u>: for d = 1, suppose we are given a monotone function $f : L(a, b) \rightarrow L(a, b)$, with $1 \le a \le b \le N$. We can compute a fixed point of f by binary search, as follows:

Let $mid := \lfloor \frac{a+b}{2} \rfloor$. Evaluate f(mid). If f(mid) = mid, we are done. If f(mid) > mid, then $f : L(mid, b) \to L(mid, b)$ is montone and has a fixed point.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We can compute a fixed point of $f : [N]^d \to [N]^d$, using binary search combined with recursion, in $O(\log^d N)$ queries to the function f. For $a, b \in [N]^d$, where $a \le b$, let $L(a, b) = \{x \in [N]^d \mid a \le x \le b\}$, denote the sublattice of grid points between a and b. So, $[N]^d = L(\overline{1}, \overline{N})$.

<u>1-dimensional case</u>: for d = 1, suppose we are given a monotone function $f : L(a, b) \rightarrow L(a, b)$, with $1 \le a \le b \le N$. We can compute a fixed point of f by binary search, as follows:

Let $mid := \lfloor \frac{a+b}{2} \rfloor$. Evaluate f(mid). If f(mid) = mid, we are done. If f(mid) > mid, then $f : L(mid, b) \to L(mid, b)$ is montone and has a fixed point.

Likewise, if f(mid) < mid, then $f : L(a, mid) \rightarrow L(a, mid)$ is monotone and has a fixed point.

We can compute a fixed point of $f : [N]^d \to [N]^d$, using binary search combined with recursion, in $O(\log^d N)$ queries to the function f. For $a, b \in [N]^d$, where $a \le b$, let $L(a, b) = \{x \in [N]^d \mid a \le x \le b\}$, denote the sublattice of grid points between a and b. So, $[N]^d = L(\overline{1}, \overline{N})$.

<u>1-dimensional case</u>: for d = 1, suppose we are given a monotone function $f : L(a, b) \rightarrow L(a, b)$, with $1 \le a \le b \le N$. We can compute a fixed point of f by binary search, as follows:

Let $mid := \lfloor \frac{a+b}{2} \rfloor$. Evaluate f(mid). If f(mid) = mid, we are done. If f(mid) > mid, then $f : L(mid, b) \to L(mid, b)$ is montone and has a fixed point.

Likewise, if f(mid) < mid, then $f : L(a, mid) \rightarrow L(a, mid)$ is monotone and has a fixed point.

So, by repeating, we can find a fixed point of $f : [N] \to [N]$ in log N iterations (i.e., log N function evaluations).

For dimensions d > 1, we procede recursively: For $c \in [N]$, let $f \langle c \rangle : [N]^{d-1} \rightarrow [N]^{d-1}$, be defined as follows: for $x \in [N]^{d-1}$ and $i \in \{1, \ldots, d-1\}$, let $f \langle c \rangle_i(x) := f_i(x, c)$. For dimensions d > 1, we procede recursively: For $c \in [N]$, let $f \langle c \rangle : [N]^{d-1} \to [N]^{d-1}$, be defined as follows: for $x \in [N]^{d-1}$ and $i \in \{1, \ldots, d-1\}$, let $f \langle c \rangle_i(x) := f_i(x, c)$. Note that $f \langle c \rangle : [N]^{d-1} \to [N]^{d-1}$ defines a monotone function. For dimensions d > 1, we procede recursively: For $c \in [N]$, let $f \langle c \rangle : [N]^{d-1} \to [N]^{d-1}$, be defined as follows: for $x \in [N]^{d-1}$ and $i \in \{1, \ldots, d-1\}$, let $f \langle c \rangle_i(x) := f_i(x, c)$. Note that $f \langle c \rangle : [N]^{d-1} \to [N]^{d-1}$ defines a monotone function. Let $c := \lfloor \frac{N+1}{2} \rfloor$.

- $f_d(x^*,c) = c$, in which case $(x^*,c) \in \operatorname{Fix}(f)$ and we are done; or
- f_d(x*, c) > c, in which case f : L((x*, c), N) → L((x*, c), N) is monotone, and we have "halved" the range of values to consider in the last coordinate in our search for a fixed point of f; or,
- $f_d(x^*, c) < c$, in which case $f : L(\overline{1}, (x^*, c)) \to L(\overline{1}, (x^*, c))$, and we have again "halved" the range of values to consider in the last coordinate in our search for a fixed point of f.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- $f_d(x^*,c)=c$, in which case $(x^*,c)\in \operatorname{Fix}(f)$ and we are done; or
- f_d(x*, c) > c, in which case f : L((x*, c), N) → L((x*, c), N) is monotone, and we have "halved" the range of values to consider in the last coordinate in our search for a fixed point of f; or,
- $f_d(x^*, c) < c$, in which case $f : L(\overline{1}, (x^*, c)) \to L(\overline{1}, (x^*, c))$, and we have again "halved" the range of values to consider in the last coordinate in our search for a fixed point of f.

Applying this recursively yields, by induction, an algorithm that requires at most $\log^{d-1} N \cdot \log N = \log^d N$ function evaluations to compute a fixed point of a monotone function $f : [N]^d \to [N]^d$.

- $f_d(x^*,c)=c$, in which case $(x^*,c)\in \operatorname{Fix}(f)$ and we are done; or
- f_d(x*, c) > c, in which case f : L((x*, c), N) → L((x*, c), N) is monotone, and we have "halved" the range of values to consider in the last coordinate in our search for a fixed point of f; or,
- $f_d(x^*, c) < c$, in which case $f : L(\overline{1}, (x^*, c)) \to L(\overline{1}, (x^*, c))$, and we have again "halved" the range of values to consider in the last coordinate in our search for a fixed point of f.

Applying this recursively yields, by induction, an algorithm that requires at most $\log^{d-1} N \cdot \log N = \log^d N$ function evaluations to compute a fixed point of a monotone function $f : [N]^d \to [N]^d$. **Note:** for $d \in o(\frac{\log N}{\log \log N})$, $\log^d N$ is better than $d \cdot N$.

- $f_d(x^*,c)=c$, in which case $(x^*,c)\in \operatorname{Fix}(f)$ and we are done; or
- f_d(x*, c) > c, in which case f : L((x*, c), N) → L((x*, c), N) is monotone, and we have "halved" the range of values to consider in the last coordinate in our search for a fixed point of f; or,
- $f_d(x^*, c) < c$, in which case $f : L(\overline{1}, (x^*, c)) \to L(\overline{1}, (x^*, c))$, and we have again "halved" the range of values to consider in the last coordinate in our search for a fixed point of f.

Applying this recursively yields, by induction, an algorithm that requires at most $\log^{d-1} N \cdot \log N = \log^d N$ function evaluations to compute a fixed point of a monotone function $f : [N]^d \to [N]^d$. **Note:** for $d \in o(\frac{\log N}{\log \log N})$, $\log^d N$ is better than $d \cdot N$. Can we do better?

The Tarski Problem

Let's define our task as an explicit computational problem:

Definition (the Tarski problem)

Input: A function $f : [N]^d \to [N]^d$ with $N = 2^n$ for some $n \ge 1$, given by a <u>boolean circuit</u>, C_f , with $(d \cdot n)$ input gates and $(d \cdot n)$ output gates. **Output:** Either a (any) fixed point $x^* \in Fix(f)$, or else a witness pair of vectors $x, y \in [N]^d$ such that $x \le y$ and $f(x) \le f(y)$.

- Note: Tarski is a <u>total</u> search problem: if f is monotone, it will contain a fixed point in $[N]^d$, and otherwise it will contain such a witness pair of vectors that exhibit non-monotonicity.
- (If *f* is non-monotone it may of course have both witnesses for non-monotonicity and fixed points; either output will do.)

The Tarski Problem

Let's define our task as an explicit computational problem:

Definition (the Tarski problem)

Input: A function $f : [N]^d \to [N]^d$ with $N = 2^n$ for some $n \ge 1$, given by a <u>boolean circuit</u>, C_f , with $(d \cdot n)$ input gates and $(d \cdot n)$ output gates. **Output:** Either a (any) fixed point $x^* \in Fix(f)$, or else a witness pair of vectors $x, y \in [N]^d$ such that $x \le y$ and $f(x) \le f(y)$.

- Note: Tarski is a <u>total</u> search problem: if *f* is monotone, it will contain a fixed point in $[N]^d$, and otherwise it will contain such a witness pair of vectors that exhibit non-monotonicity.
- (If *f* is non-monotone it may of course have both witnesses for non-monotonicity and fixed points; either output will do.)

Question: What is the complexity of this total search problem?

A harder problem: computing the LFP (or the GFP)

Question: What if, instead of the Tarski problem, our task was to compute the LFP, rather than just any fixed point?

A harder problem: computing the LFP (or the GFP)

Question: What if, instead of the Tarski problem, our task was to compute the LFP, rather than just any fixed point?

Proposition

- Given a monotone f : [N] → [N], N = 2ⁿ, by a boolean circuit, (i.e., already for d = 1) it is NP-hard to compute the LFP of f. (Likewise, it is NP-hard to compute the GFP of f.)
- Given a montone $f : [N] \to [N]$ by an oracle, computing the LFP requires $\Omega(N)$ queries to f. (Likewise for the GFP.)

The proofs are easy: (1.) is a simple reduction from SAT. For (2.): let $f : [N] \to [N]$ be the family of monotone functions where f(N) := N, and for all $x \in \{1, ..., N-1\}$, $f(x) \in \{x, x+1\}$. The LFP of such an f is $\neq N$ iff $\exists x \in \{1, ..., N-1\}$ such that f(x) = x. In the oracle model, finding such an x requires trying all $x \in \{1, ..., N-1\}$. \Box

Towards the complexity of Tarski: some standard total search complexity classes.

Two very well-studied discrete total search complexity classes are:

- PLS (Polynomial Local Search) [JPY'88]
- PPAD (Polynomial Parity Argument Directed) [P'94]

PLS consists of discrete local search problems that can be phrased as follows: given a instance $I \in \{0, 1\}^*$, and a start "solution" $x \in \{0, 1\}^{p(|I|)}$, compute a "locally optimal" solution, $x^* \in \{0, 1\}^{p(|I|)}$, with respect to a (P-time computable) objective function $g_I(x)$, and (P-time computable) neighborhood function, $\mathcal{N}_I(x)$.

Towards the complexity of Tarski: some standard total search complexity classes.

Two very well-studied discrete total search complexity classes are:

- PLS (Polynomial Local Search) [JPY'88]
- PPAD (Polynomial Parity Argument Directed) [P'94]

PLS consists of discrete local search problems that can be phrased as follows: given a instance $I \in \{0, 1\}^*$, and a start "solution" $x \in \{0, 1\}^{p(|I|)}$, compute a "locally optimal" solution, $x^* \in \{0, 1\}^{p(|I|)}$, with respect to a (P-time computable) objective function $g_I(x)$, and (P-time computable) neighborhood function, $\mathcal{N}_I(x)$. There are many **PLS**-complete problems. One is: given a boolean circuit, *C*, with *n* input gates and *m* output gates, compute $x^* \in \{0, 1\}^n$ such that $integer(C(x^*)) \ge integer(C(x'))$ for all $x' \in \{0, 1\}^n$ whose hamming distance from x^* is 1.

Towards the complexity of Tarski: some standard total search complexity classes.

Two very well-studied discrete total search complexity classes are:

- PLS (Polynomial Local Search) [JPY'88]
- PPAD (Polynomial Parity Argument Directed) [P'94]

PLS consists of discrete local search problems that can be phrased as follows: given a instance $I \in \{0, 1\}^*$, and a start "solution" $x \in \{0,1\}^{p(|l|)}$, compute a "locally optimal" solution, $x^* \in \{0,1\}^{p(|l|)}$, with respect to a (P-time computable) objective function $g_I(x)$, and (P-time computable) neighborhood function, $\mathcal{N}_{l}(x)$. There are many **PLS**-complete problems. One is: given a boolean circuit, C, with n input gates and m output gates, compute $x^* \in \{0,1\}^n$ such that $integer(C(x^*)) > integer(C(x'))$ for all $x' \in \{0,1\}^n$ whose hamming distance from x^* is 1. **PPAD** can be defined in many ways. One **PPAD**-complete problem ([Chen-Deng'06]) is this: compute a mixed Nash Equilibrium for a given 2-player normal form (bimatrix) game.

$\texttt{Tarski} \in \textbf{PLS} \cap \textbf{PPAD}$

Theorem

$\texttt{Tarski} \in \mathsf{PLS} \cap \mathsf{PPAD}$

Proof sketch that Tarski is in **PLS**: given an instance C_f of Tarski, consider the set of "solutions" to be $S_f = \{x \in [N]^d \mid x \leq f(x)\}$, and define the objective function to be $g_f(x) := \sum_{i=1}^d x_i$, and the neighborhood function to be $\mathcal{N}_f(x) := \{f(x)\}$. It is not hard to show that x^* is a local optimum iff $x^* \in \operatorname{Fix}(f)$.

$\texttt{Tarski} \in \textbf{PLS} \cap \textbf{PPAD}$

Theorem

$\texttt{Tarski} \in \mathsf{PLS} \cap \mathsf{PPAD}$

Proof sketch that Tarski is in **PLS**: given an instance C_f of Tarski, consider the set of "solutions" to be $S_f = \{x \in [N]^d \mid x \leq f(x)\}$, and define the objective function to be $g_f(x) := \sum_{i=1}^d x_i$, and the neighborhood function to be $\mathcal{N}_f(x) := \{f(x)\}$. It is not hard to show that x^* is a local optimum iff $x^* \in \operatorname{Fix}(f)$.

The **proof** that Tarski is in **PPAD** is more involved. It uses: (1.) a characterization of **PPAD** from [E.-Yannakakis'07], (2.) a special simplicial subdivision of the *d*-cube, $[0, 1]^d$ ([Freudenthal,1942]), (3.) a divide-and-conquer algorithm, to show that Tarski $\in P^{\text{PPAD}}$, and (4.) the fact ([Buss-Johnson,2012]) that **PPAD** is closed under P-time Turing reductions.

- Note that no search problem in **PLS** or in **PPAD** can be **NP**-hard, unless NP = co-NP.
- Also, since Tarski \in **PLS** \cap **PPAD**, it cannot be **PLS**-complete (nor **PPAD**-complete), unless **PLS** \subseteq **PPAD** (or **PPAD** \subseteq **PLS**, respectively). Neither of these two inclusions is known, nor widely believed.

Note that no search problem in **PLS** or in **PPAD** can be **NP**-hard, unless NP = co-NP.

Also, since Tarski \in **PLS** \cap **PPAD**, it cannot be **PLS**-complete (nor **PPAD**-complete), unless **PLS** \subseteq **PPAD** (or **PPAD** \subseteq **PLS**, respectively). Neither of these two inclusions is known, nor widely believed.

However, we can provide some tentative "evidence" that Tarski is "somewhat hard"....

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Condon's and Shapley's stochastic games reduce to Tarski

Theorem

The following problems are P-time reducible to Tarski:

- Given an instance, G, of Condon's simple stochastic (reachability) game (SSG), compute the exact value val(G) of G.
- Given an instance, G, of Shapley's original stochastic game, and given ε > 0 (in binary), compute an approximate value, ν', such that |val(G) - ν'| < ε.

Note: It is a long-standing open problem whether the value of SSGs can be computed in P-time. It is at least as hard as solving *parity games* and *mean payoff games*. Approximating the value of Shapley's games is, in turn, at least as hard as computing the value of a SSG.

Proof sketch that solving SSGs is reducible to Tarski: Given a SSG, $G = (V, V_0, V_1, V_2, \delta)$, with vertices $V = \{v_1, \ldots, v_n\}$, with 0-sink v_{n-1} and 1-sink v_n , consider the following system of n equations in n unknowns:

$$x_{i} = \begin{cases} \sum_{\{v_{j} \in V | (v_{i}, p_{v_{i}, v_{j}}, v_{j}) \in \delta\}} p_{v_{i}, v_{j}} x_{j} & \text{if } v_{i} \in V_{0} \\ \max\{x_{j} \mid (v_{i}, \bot, v_{j}) \in \delta\} & \text{if } v_{i} \in V_{1} \\ \min\{x_{j} \mid (v_{i}, \bot, v_{j}) \in \delta\} & \text{if } v_{i} \in V_{2} \\ 0 & \text{if } v_{i} = v_{n-1} \text{ is the } \mathbf{0}\text{-sink} \\ 1 & \text{if } v_{i} = v_{n} \text{ is the } \mathbf{1}\text{-sink} \end{cases}$$

- Denote these equations by x = F(x). F : [0,1]ⁿ → [0,1]ⁿ defines a monotone (continuous) map.
- The *n*-vector of values of the SSG, starting at each vertex v_i, is given by the LFP solution, q^{*} ∈ [0, 1]ⁿ, of x = F(x).
- For β > 0, the β-discounted equations x = (1 − β)F(x) are also monotone, and also a *contraction* map. Hence (by Banach's fixed point theorem) they have a unique fixed point q^β ∈ [0, 1]ⁿ.

- It is possible to choose a small enough $\beta > 0$, such that one can recover the LFP, q^* , of x = F(x), from the unique fixed point q^β of $x = (1 \beta)F(x)$.
- Finally, we can define a discretized monotone function
 H: [M]ⁿ → [M]ⁿ, a discretization of (1 − β)F(x), such that a fixed
 point of H yields a point ε-close to the unique fixed point q^β, for a
 chosen ε > 0, from which we can uniquely recover q^β, and in turn
 uniquely recover q^{*}.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Tarski is P-time equivalent to computing a pure NE for a supermodular game

Supermodular games ([Topkis,1979]), and games with strategic complementarities ([Milgrom-Roberts,1990]), are important classes of games with widespread applications in economics (for modeling oligopolies, markets with search costs, bank runs, arms races,).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Tarski is P-time equivalent to computing a pure NE for a supermodular game

Supermodular games ([Topkis,1979]), and games with strategic complementarities ([Milgrom-Roberts,1990]), are important classes of games with widespread applications in economics (for modeling oligopolies, markets with search costs, bank runs, arms races,). These games always have a **pure** Nash Equilibrium ([Topkis'79]). The proof of existence of a pure NE uses the fact that their (infimum) "best response correspondence" defines a *monotone function*, and applies Tarski's fixed point theorem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Tarski is P-time equivalent to computing a pure NE for a supermodular game

Supermodular games ([Topkis,1979]), and games with strategic complementarities ([Milgrom-Roberts,1990]), are important classes of games with widespread applications in economics (for modeling oligopolies, markets with search costs, bank runs, arms races,). These games always have a **pure** Nash Equilibrium ([Topkis'79]). The proof of existence of a pure NE uses the fact that their (infimum) "best response correspondence" defines a *monotone function*, and applies Tarski's fixed point theorem. We show that:

Theorem

- Computing a pure NE for a given *k*-player discrete supermodular game with strategy space $[N]^{d_i}$ for player *i*, given its (infimum) best response correspondence, is P-time reducible to Tarski.
- Tarski is P-time reducible to computing a pure NE for a given 2-player discrete supermodular games with strategy space $[N]^d$ for each player.

Definition 1: A function $f : L \to \mathbb{R}$, where L is a lattice, is supermodular if $\forall x, y \in L$, $f(x) + f(y) \le f(x \land y) + f(x \lor y)$.

Definition 2: A function $f : L_1 \times L_2 \to \mathbb{R}$ has **increasing differences** in its two arguments if for all $x' \ge x$ in L_1 and $y' \ge y$ in L_2 , $f(x', y') - f(x', y) \ge f(x, y') - f(x, y)$. **Definition:** In a **supermodular game** with *k* players, each player $i \in [k]$ has a complete lattice S_i of strategies. Let $S = \prod_{i=1}^{k} S_i$ be the product lattice of pure strategy profiles. Every player's utility function $u_i : S \to \mathbb{R}$ must satisfy the following conditions:

- C1. u_i(s_i; s_{-i}) is upper semicontinuous in s_i for fixed s_{-i}, and continuous in s_{-i} for fixed s_i, and has a finite upper bound. (This condition holds *trivially* when S_i is a finite subset of ℝ^{m_i}.)
 C2. u_i(s_i; s_{-i}) is supermodular in s_i for fixed s_{-i}.
- C3. $u_i(s_i; s_{-i})$ has increasing differences in s_i and s_{-i} .

Theorem

- Any deterministic black-box (oracle) algorithm for computing a Tarski fixed point of a monotone function $f : [N]^2 \rightarrow [N]^2$ requires $\Omega(\log^2 N)$ queries.
- Any randomized black-box (oracle) algorithm for computing a Tarski fixed point of a monotone function f : [N]² → [N]², requires Ω(log² N) queries in expectation (and w. h. p.).

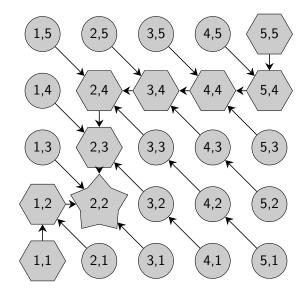
< □ > < @ > < 注 > < 注 > ... 注

Theorem

- Any deterministic black-box (oracle) algorithm for computing a Tarski fixed point of a monotone function $f : [N]^2 \rightarrow [N]^2$ requires $\Omega(\log^2 N)$ queries.
- Any randomized black-box (oracle) algorithm for computing a Tarski fixed point of a monotone function f : [N]² → [N]², requires Ω(log² N) queries in expectation (and w. h. p.).

The lower bound proof uses a family of functions we call "*herringbones*", whose "vector field" looks a bit like a fish bone with a unique fixed point....

An example of a "herringbone" function $f : [5]^2 \rightarrow [5]^2$:



• We have shown that $Tarski \in PLS \cap PPAD$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- We have shown that $Tarski \in PLS \cap PPAD$.
- We have shown that Tarski is at least as hard as solving both simple stochastic games and Shapley's stochastic games; and just as hard as finding a pure NE for supermodular games.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- We have shown that $Tarski \in PLS \cap PPAD$.
- We have shown that Tarski is at least as hard as solving both simple stochastic games and Shapley's stochastic games; and just as hard as finding a pure NE for supermodular games.
- We have shown, in the oracle model, for 2-dimensional monotone functions $f : [N]^2 \rightarrow [N]^2$, a lower bound of $\Omega(\log^2 N)$ for the (expected) number of (randomized) queries required to find a fixed point, which matches the $O(\log^2 N)$ upper bound for d = 2.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- We have shown that $Tarski \in PLS \cap PPAD$.
- We have shown that Tarski is at least as hard as solving both simple stochastic games and Shapley's stochastic games; and just as hard as finding a pure NE for supermodular games.
- We have shown, in the oracle model, for 2-dimensional monotone functions $f : [N]^2 \rightarrow [N]^2$, a lower bound of $\Omega(\log^2 N)$ for the (expected) number of (randomized) queries required to find a fixed point, which matches the $O(\log^2 N)$ upper bound for d = 2.
- Can we do much better than O(log^d N) for small values of d > 2?

We know that for large $d = \omega(\frac{\log N}{\log \log N})$, the $d \cdot N$ upper bound is already better than $\log^d N$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- We have shown that $Tarski \in PLS \cap PPAD$.
- We have shown that Tarski is at least as hard as solving both simple stochastic games and Shapley's stochastic games; and just as hard as finding a pure NE for supermodular games.
- We have shown, in the oracle model, for 2-dimensional monotone functions $f : [N]^2 \rightarrow [N]^2$, a lower bound of $\Omega(\log^2 N)$ for the (expected) number of (randomized) queries required to find a fixed point, which matches the $O(\log^2 N)$ upper bound for d = 2.
- Can we do much better than $O(\log^d N)$ for small values of d > 2?

We know that for large $d = \omega(\frac{\log N}{\log \log N})$, the $d \cdot N$ upper bound is already better than $\log^d N$.

• Very recent result by [Fearnley-Savani, 2021]: For $d \ge 3$, they give a $O(\log^{d-1} N)$ query algorithm for finding a fixed point of a monotone function $f : [N]^d \to [N]^d$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- We have shown that $Tarski \in PLS \cap PPAD$.
- We have shown that Tarski is at least as hard as solving both simple stochastic games and Shapley's stochastic games; and just as hard as finding a pure NE for supermodular games.
- We have shown, in the oracle model, for 2-dimensional monotone functions $f : [N]^2 \rightarrow [N]^2$, a lower bound of $\Omega(\log^2 N)$ for the (expected) number of (randomized) queries required to find a fixed point, which matches the $O(\log^2 N)$ upper bound for d = 2.
- Can we do much better than $O(\log^d N)$ for small values of d > 2?

We know that for large $d = \omega(\frac{\log N}{\log \log N})$, the $d \cdot N$ upper bound is already better than $\log^d N$.

• Very recent result by [Fearnley-Savani, 2021]: For $d \ge 3$, they give a $O(\log^{d-1} N)$ query algorithm for finding a fixed point of a monotone function $f : [N]^d \to [N]^d$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Many, many, questions remain open.