
The complexity of computing a Tarski fixed point of a
monotone function,

with applications to games and equilibiria

Kousha Etessami

University of Edinburgh

Simons Institute
Games and Equilibria Workshop

February, 2021

(This talk is based on joint work with:
C. Papadimitriou, A. Rubinstein, and M. Yannakakis,

in a paper that appeared at ITCS’2020.)

Tarski’s Fixed Point Theorem

Recall: A partially ordered set (L,≤) is a complete lattice if every
non-empty subset S ⊆ L has both a least upper bound (or supremum
or join), and a greatest lower bound (or infimum or meet) in L.

A function f : L→ L is monotone if
∀x , y ∈ L, x ≤ y ⇒ f (x) ≤ f (y).

Let Fix(f) := {x ∈ L | x = f (x)} denote the set of fixed points of f .

Theorem [Tarski, 1955]

Every monotone function f : L→ L from a complete lattice (L,≤) to
itself, has a non-empty set Fix(f) of fixed points, which themselves
form a complete lattice (Fix(f),≤) under the same partial order ≤.

(In particular, f has a Least Fixed Point, and a Greatest Fixed Point.)

Tarski’s Fixed Point Theorem

Recall: A partially ordered set (L,≤) is a complete lattice if every
non-empty subset S ⊆ L has both a least upper bound (or supremum
or join), and a greatest lower bound (or infimum or meet) in L.

A function f : L→ L is monotone if
∀x , y ∈ L, x ≤ y ⇒ f (x) ≤ f (y).

Let Fix(f) := {x ∈ L | x = f (x)} denote the set of fixed points of f .

Theorem [Tarski, 1955]

Every monotone function f : L→ L from a complete lattice (L,≤) to
itself, has a non-empty set Fix(f) of fixed points, which themselves
form a complete lattice (Fix(f),≤) under the same partial order ≤.

(In particular, f has a Least Fixed Point, and a Greatest Fixed Point.)

Question: how hard is it to compute a (any) fixed point of a given
monotone function f : L→ L when (L,≤) is finite?

More specifically, how hard is it when (L,≤) is the d-dimensional
euclidean grid lattice, L = {1, . . . ,N}d = [N]d , under the standard
coordinate-wise partial order ≤ on vectors.

In other words, by definition, for x , y ∈ [N]d :

x ≤ y ⇔ xi ≤ yi , for all i ∈ {1, . . . , d}.

As we will see, this question has important applications, including for:

equilibrium computation problems (for supermodular games),

solving (i.e., computing the value of) stochastic games.

And we will see that this problem has an intriguing computational
complexity status....

Question: how hard is it to compute a (any) fixed point of a given
monotone function f : L→ L when (L,≤) is finite?

More specifically, how hard is it when (L,≤) is the d-dimensional
euclidean grid lattice, L = {1, . . . ,N}d = [N]d , under the standard
coordinate-wise partial order ≤ on vectors.

In other words, by definition, for x , y ∈ [N]d :

x ≤ y ⇔ xi ≤ yi , for all i ∈ {1, . . . , d}.

As we will see, this question has important applications, including for:

equilibrium computation problems (for supermodular games),

solving (i.e., computing the value of) stochastic games.

And we will see that this problem has an intriguing computational
complexity status....

Question: how hard is it to compute a (any) fixed point of a given
monotone function f : L→ L when (L,≤) is finite?

More specifically, how hard is it when (L,≤) is the d-dimensional
euclidean grid lattice, L = {1, . . . ,N}d = [N]d , under the standard
coordinate-wise partial order ≤ on vectors.

In other words, by definition, for x , y ∈ [N]d :

x ≤ y ⇔ xi ≤ yi , for all i ∈ {1, . . . , d}.

As we will see, this question has important applications, including for:

equilibrium computation problems (for supermodular games),

solving (i.e., computing the value of) stochastic games.

And we will see that this problem has an intriguing computational
complexity status....

First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?

First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?

First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.

Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?

First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?

First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?

First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?

First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?

An O(logd N) algorithm ([Dang-Qi-Ye,2012])

We can compute a fixed point of f : [N]d → [N]d , using binary search
combined with recursion, in O(logd N) queries to the function f .

For a, b ∈ [N]d , where a ≤ b, let L(a, b) = {x ∈ [N]d | a ≤ x ≤ b},
denote the sublattice of grid points between a and b. So,
[N]d = L(1̄,N).

1-dimensional case: for d = 1, suppose we are given a monotone
function f : L(a, b)→ L(a, b), with 1 ≤ a ≤ b ≤ N .
We can compute a fixed point of f by binary search, as follows:

Let mid := ba+b
2
c. Evaluate f (mid). If f (mid) = mid , we are done.

If f (mid) > mid , then f : L(mid , b)→ L(mid , b) is montone and has
a fixed point.

Likewise, if f (mid) < mid , then f : L(a,mid)→ L(a,mid) is
monotone and has a fixed point.

So, by repeating, we can find a fixed point of f : [N]→ [N] in logN
iterations (i.e., logN function evaluations).

An O(logd N) algorithm ([Dang-Qi-Ye,2012])

We can compute a fixed point of f : [N]d → [N]d , using binary search
combined with recursion, in O(logd N) queries to the function f .

For a, b ∈ [N]d , where a ≤ b, let L(a, b) = {x ∈ [N]d | a ≤ x ≤ b},
denote the sublattice of grid points between a and b. So,
[N]d = L(1̄,N).

1-dimensional case: for d = 1, suppose we are given a monotone
function f : L(a, b)→ L(a, b), with 1 ≤ a ≤ b ≤ N .
We can compute a fixed point of f by binary search, as follows:

Let mid := ba+b
2
c. Evaluate f (mid). If f (mid) = mid , we are done.

If f (mid) > mid , then f : L(mid , b)→ L(mid , b) is montone and has
a fixed point.

Likewise, if f (mid) < mid , then f : L(a,mid)→ L(a,mid) is
monotone and has a fixed point.

So, by repeating, we can find a fixed point of f : [N]→ [N] in logN
iterations (i.e., logN function evaluations).

An O(logd N) algorithm ([Dang-Qi-Ye,2012])

We can compute a fixed point of f : [N]d → [N]d , using binary search
combined with recursion, in O(logd N) queries to the function f .

For a, b ∈ [N]d , where a ≤ b, let L(a, b) = {x ∈ [N]d | a ≤ x ≤ b},
denote the sublattice of grid points between a and b. So,
[N]d = L(1̄,N).

1-dimensional case: for d = 1, suppose we are given a monotone
function f : L(a, b)→ L(a, b), with 1 ≤ a ≤ b ≤ N .
We can compute a fixed point of f by binary search, as follows:

Let mid := ba+b
2
c. Evaluate f (mid).

If f (mid) = mid , we are done.

If f (mid) > mid , then f : L(mid , b)→ L(mid , b) is montone and has
a fixed point.

Likewise, if f (mid) < mid , then f : L(a,mid)→ L(a,mid) is
monotone and has a fixed point.

So, by repeating, we can find a fixed point of f : [N]→ [N] in logN
iterations (i.e., logN function evaluations).

An O(logd N) algorithm ([Dang-Qi-Ye,2012])

We can compute a fixed point of f : [N]d → [N]d , using binary search
combined with recursion, in O(logd N) queries to the function f .

For a, b ∈ [N]d , where a ≤ b, let L(a, b) = {x ∈ [N]d | a ≤ x ≤ b},
denote the sublattice of grid points between a and b. So,
[N]d = L(1̄,N).

1-dimensional case: for d = 1, suppose we are given a monotone
function f : L(a, b)→ L(a, b), with 1 ≤ a ≤ b ≤ N .
We can compute a fixed point of f by binary search, as follows:

Let mid := ba+b
2
c. Evaluate f (mid). If f (mid) = mid , we are done.

If f (mid) > mid , then f : L(mid , b)→ L(mid , b) is montone and has
a fixed point.

Likewise, if f (mid) < mid , then f : L(a,mid)→ L(a,mid) is
monotone and has a fixed point.

So, by repeating, we can find a fixed point of f : [N]→ [N] in logN
iterations (i.e., logN function evaluations).

An O(logd N) algorithm ([Dang-Qi-Ye,2012])

We can compute a fixed point of f : [N]d → [N]d , using binary search
combined with recursion, in O(logd N) queries to the function f .

For a, b ∈ [N]d , where a ≤ b, let L(a, b) = {x ∈ [N]d | a ≤ x ≤ b},
denote the sublattice of grid points between a and b. So,
[N]d = L(1̄,N).

1-dimensional case: for d = 1, suppose we are given a monotone
function f : L(a, b)→ L(a, b), with 1 ≤ a ≤ b ≤ N .
We can compute a fixed point of f by binary search, as follows:

Let mid := ba+b
2
c. Evaluate f (mid). If f (mid) = mid , we are done.

If f (mid) > mid , then f : L(mid , b)→ L(mid , b) is montone and has
a fixed point.

Likewise, if f (mid) < mid , then f : L(a,mid)→ L(a,mid) is
monotone and has a fixed point.

So, by repeating, we can find a fixed point of f : [N]→ [N] in logN
iterations (i.e., logN function evaluations).

An O(logd N) algorithm ([Dang-Qi-Ye,2012])

We can compute a fixed point of f : [N]d → [N]d , using binary search
combined with recursion, in O(logd N) queries to the function f .

For a, b ∈ [N]d , where a ≤ b, let L(a, b) = {x ∈ [N]d | a ≤ x ≤ b},
denote the sublattice of grid points between a and b. So,
[N]d = L(1̄,N).

1-dimensional case: for d = 1, suppose we are given a monotone
function f : L(a, b)→ L(a, b), with 1 ≤ a ≤ b ≤ N .
We can compute a fixed point of f by binary search, as follows:

Let mid := ba+b
2
c. Evaluate f (mid). If f (mid) = mid , we are done.

If f (mid) > mid , then f : L(mid , b)→ L(mid , b) is montone and has
a fixed point.

Likewise, if f (mid) < mid , then f : L(a,mid)→ L(a,mid) is
monotone and has a fixed point.

So, by repeating, we can find a fixed point of f : [N]→ [N] in logN
iterations (i.e., logN function evaluations).

An O(logd N) algorithm ([Dang-Qi-Ye,2012])

We can compute a fixed point of f : [N]d → [N]d , using binary search
combined with recursion, in O(logd N) queries to the function f .

For a, b ∈ [N]d , where a ≤ b, let L(a, b) = {x ∈ [N]d | a ≤ x ≤ b},
denote the sublattice of grid points between a and b. So,
[N]d = L(1̄,N).

1-dimensional case: for d = 1, suppose we are given a monotone
function f : L(a, b)→ L(a, b), with 1 ≤ a ≤ b ≤ N .
We can compute a fixed point of f by binary search, as follows:

Let mid := ba+b
2
c. Evaluate f (mid). If f (mid) = mid , we are done.

If f (mid) > mid , then f : L(mid , b)→ L(mid , b) is montone and has
a fixed point.

Likewise, if f (mid) < mid , then f : L(a,mid)→ L(a,mid) is
monotone and has a fixed point.

So, by repeating, we can find a fixed point of f : [N]→ [N] in logN
iterations (i.e., logN function evaluations).

For dimensions d > 1, we procede recursively:
For c ∈ [N], let f 〈c〉 : [N]d−1 → [N]d−1, be defined as follows:
for x ∈ [N]d−1 and i ∈ {1, . . . , d − 1}, let f 〈c〉i(x) := fi(x , c).

Note that f 〈c〉 : [N]d−1 → [N]d−1 defines a monotone function.
Let c := bN+1

2
c. If we (recursively) compute x∗ ∈ Fix(f 〈c〉), then

either:

fd(x∗, c) = c , in which case (x∗, c) ∈ Fix(f) and we are done; or

fd(x∗, c) > c , in which case f : L((x∗, c),N)→ L((x∗, c),N) is
monotone, and we have “halved” the range of values to consider
in the last coordinate in our search for a fixed point of f ; or,

fd(x∗, c) < c , in which case f : L(1̄, (x∗, c))→ L(1̄, (x∗, c)), and
we have again “halved” the range of values to consider in the
last coordinate in our search for a fixed point of f .

Applying this recursively yields, by induction, an algorithm that
requires at most logd−1 N · logN = logd N function evaluations to
compute a fixed point of a monotone function f : [N]d → [N]d .

Note: for d ∈ o(logN
log logN

), logd N is better than d · N .
Can we do better?

For dimensions d > 1, we procede recursively:
For c ∈ [N], let f 〈c〉 : [N]d−1 → [N]d−1, be defined as follows:
for x ∈ [N]d−1 and i ∈ {1, . . . , d − 1}, let f 〈c〉i(x) := fi(x , c).
Note that f 〈c〉 : [N]d−1 → [N]d−1 defines a monotone function.

Let c := bN+1
2
c. If we (recursively) compute x∗ ∈ Fix(f 〈c〉), then

either:

fd(x∗, c) = c , in which case (x∗, c) ∈ Fix(f) and we are done; or

fd(x∗, c) > c , in which case f : L((x∗, c),N)→ L((x∗, c),N) is
monotone, and we have “halved” the range of values to consider
in the last coordinate in our search for a fixed point of f ; or,

fd(x∗, c) < c , in which case f : L(1̄, (x∗, c))→ L(1̄, (x∗, c)), and
we have again “halved” the range of values to consider in the
last coordinate in our search for a fixed point of f .

Applying this recursively yields, by induction, an algorithm that
requires at most logd−1 N · logN = logd N function evaluations to
compute a fixed point of a monotone function f : [N]d → [N]d .

Note: for d ∈ o(logN
log logN

), logd N is better than d · N .
Can we do better?

For dimensions d > 1, we procede recursively:
For c ∈ [N], let f 〈c〉 : [N]d−1 → [N]d−1, be defined as follows:
for x ∈ [N]d−1 and i ∈ {1, . . . , d − 1}, let f 〈c〉i(x) := fi(x , c).
Note that f 〈c〉 : [N]d−1 → [N]d−1 defines a monotone function.
Let c := bN+1

2
c.

If we (recursively) compute x∗ ∈ Fix(f 〈c〉), then
either:

fd(x∗, c) = c , in which case (x∗, c) ∈ Fix(f) and we are done; or

fd(x∗, c) > c , in which case f : L((x∗, c),N)→ L((x∗, c),N) is
monotone, and we have “halved” the range of values to consider
in the last coordinate in our search for a fixed point of f ; or,

fd(x∗, c) < c , in which case f : L(1̄, (x∗, c))→ L(1̄, (x∗, c)), and
we have again “halved” the range of values to consider in the
last coordinate in our search for a fixed point of f .

Applying this recursively yields, by induction, an algorithm that
requires at most logd−1 N · logN = logd N function evaluations to
compute a fixed point of a monotone function f : [N]d → [N]d .

Note: for d ∈ o(logN
log logN

), logd N is better than d · N .
Can we do better?

For dimensions d > 1, we procede recursively:
For c ∈ [N], let f 〈c〉 : [N]d−1 → [N]d−1, be defined as follows:
for x ∈ [N]d−1 and i ∈ {1, . . . , d − 1}, let f 〈c〉i(x) := fi(x , c).
Note that f 〈c〉 : [N]d−1 → [N]d−1 defines a monotone function.
Let c := bN+1

2
c. If we (recursively) compute x∗ ∈ Fix(f 〈c〉), then

either:

fd(x∗, c) = c , in which case (x∗, c) ∈ Fix(f) and we are done; or

fd(x∗, c) > c , in which case f : L((x∗, c),N)→ L((x∗, c),N) is
monotone, and we have “halved” the range of values to consider
in the last coordinate in our search for a fixed point of f ; or,

fd(x∗, c) < c , in which case f : L(1̄, (x∗, c))→ L(1̄, (x∗, c)), and
we have again “halved” the range of values to consider in the
last coordinate in our search for a fixed point of f .

Applying this recursively yields, by induction, an algorithm that
requires at most logd−1 N · logN = logd N function evaluations to
compute a fixed point of a monotone function f : [N]d → [N]d .

Note: for d ∈ o(logN
log logN

), logd N is better than d · N .
Can we do better?

For dimensions d > 1, we procede recursively:
For c ∈ [N], let f 〈c〉 : [N]d−1 → [N]d−1, be defined as follows:
for x ∈ [N]d−1 and i ∈ {1, . . . , d − 1}, let f 〈c〉i(x) := fi(x , c).
Note that f 〈c〉 : [N]d−1 → [N]d−1 defines a monotone function.
Let c := bN+1

2
c. If we (recursively) compute x∗ ∈ Fix(f 〈c〉), then

either:

fd(x∗, c) = c , in which case (x∗, c) ∈ Fix(f) and we are done; or

fd(x∗, c) > c , in which case f : L((x∗, c),N)→ L((x∗, c),N) is
monotone, and we have “halved” the range of values to consider
in the last coordinate in our search for a fixed point of f ; or,

fd(x∗, c) < c , in which case f : L(1̄, (x∗, c))→ L(1̄, (x∗, c)), and
we have again “halved” the range of values to consider in the
last coordinate in our search for a fixed point of f .

Applying this recursively yields, by induction, an algorithm that
requires at most logd−1 N · logN = logd N function evaluations to
compute a fixed point of a monotone function f : [N]d → [N]d .

Note: for d ∈ o(logN
log logN

), logd N is better than d · N .
Can we do better?

For dimensions d > 1, we procede recursively:
For c ∈ [N], let f 〈c〉 : [N]d−1 → [N]d−1, be defined as follows:
for x ∈ [N]d−1 and i ∈ {1, . . . , d − 1}, let f 〈c〉i(x) := fi(x , c).
Note that f 〈c〉 : [N]d−1 → [N]d−1 defines a monotone function.
Let c := bN+1

2
c. If we (recursively) compute x∗ ∈ Fix(f 〈c〉), then

either:

fd(x∗, c) = c , in which case (x∗, c) ∈ Fix(f) and we are done; or

fd(x∗, c) > c , in which case f : L((x∗, c),N)→ L((x∗, c),N) is
monotone, and we have “halved” the range of values to consider
in the last coordinate in our search for a fixed point of f ; or,

fd(x∗, c) < c , in which case f : L(1̄, (x∗, c))→ L(1̄, (x∗, c)), and
we have again “halved” the range of values to consider in the
last coordinate in our search for a fixed point of f .

Applying this recursively yields, by induction, an algorithm that
requires at most logd−1 N · logN = logd N function evaluations to
compute a fixed point of a monotone function f : [N]d → [N]d .

Note: for d ∈ o(logN
log logN

), logd N is better than d · N .

Can we do better?

For dimensions d > 1, we procede recursively:
For c ∈ [N], let f 〈c〉 : [N]d−1 → [N]d−1, be defined as follows:
for x ∈ [N]d−1 and i ∈ {1, . . . , d − 1}, let f 〈c〉i(x) := fi(x , c).
Note that f 〈c〉 : [N]d−1 → [N]d−1 defines a monotone function.
Let c := bN+1

2
c. If we (recursively) compute x∗ ∈ Fix(f 〈c〉), then

either:

fd(x∗, c) = c , in which case (x∗, c) ∈ Fix(f) and we are done; or

fd(x∗, c) > c , in which case f : L((x∗, c),N)→ L((x∗, c),N) is
monotone, and we have “halved” the range of values to consider
in the last coordinate in our search for a fixed point of f ; or,

fd(x∗, c) < c , in which case f : L(1̄, (x∗, c))→ L(1̄, (x∗, c)), and
we have again “halved” the range of values to consider in the
last coordinate in our search for a fixed point of f .

Applying this recursively yields, by induction, an algorithm that
requires at most logd−1 N · logN = logd N function evaluations to
compute a fixed point of a monotone function f : [N]d → [N]d .

Note: for d ∈ o(logN
log logN

), logd N is better than d · N .
Can we do better?

The Tarski Problem

Let’s define our task as an explicit computational problem:

Definition (the Tarski problem)

Input: A function f : [N]d → [N]d with N = 2n for some n ≥ 1,
given by a boolean circuit, Cf , with (d · n) input gates and (d · n)
output gates.
Output: Either a (any) fixed point x∗ ∈ Fix(f), or else a witness pair
of vectors x , y ∈ [N]d such that x ≤ y and f (x) 6≤ f (y).

Note: Tarski is a total search problem: if f is monotone, it will
contain a fixed point in [N]d , and otherwise it will contain such a
witness pair of vectors that exhibit non-monotonicity.

(If f is non-monotone it may of course have both witnesses for
non-monotonicity and fixed points; either output will do.)

Question: What is the complexity of this total search problem?

The Tarski Problem

Let’s define our task as an explicit computational problem:

Definition (the Tarski problem)

Input: A function f : [N]d → [N]d with N = 2n for some n ≥ 1,
given by a boolean circuit, Cf , with (d · n) input gates and (d · n)
output gates.
Output: Either a (any) fixed point x∗ ∈ Fix(f), or else a witness pair
of vectors x , y ∈ [N]d such that x ≤ y and f (x) 6≤ f (y).

Note: Tarski is a total search problem: if f is monotone, it will
contain a fixed point in [N]d , and otherwise it will contain such a
witness pair of vectors that exhibit non-monotonicity.

(If f is non-monotone it may of course have both witnesses for
non-monotonicity and fixed points; either output will do.)

Question: What is the complexity of this total search problem?

A harder problem: computing the LFP (or the GFP)

Question: What if, instead of the Tarski problem, our task was to
compute the LFP, rather than just any fixed point?

Proposition

1 Given a monotone f : [N]→ [N], N = 2n, by a boolean circuit,
(i.e., already for d = 1) it is NP-hard to compute the LFP of f .
(Likewise, it is NP-hard to compute the GFP of f .)

2 Given a montone f : [N]→ [N] by an oracle, computing the LFP
requires Ω(N) queries to f . (Likewise for the GFP.)

The proofs are easy: (1.) is a simple reduction from SAT.
For (2.): let f : [N]→ [N] be the family of monotone functions where
f (N) := N , and for all x ∈ {1, . . . ,N − 1}, f (x) ∈ {x , x + 1}. The
LFP of such an f is 6= N iff ∃x ∈ {1, . . . ,N − 1} such that f (x) = x .
In the oracle model, finding such an x requires trying all
x ∈ {1, . . . ,N − 1}. �

A harder problem: computing the LFP (or the GFP)

Question: What if, instead of the Tarski problem, our task was to
compute the LFP, rather than just any fixed point?

Proposition

1 Given a monotone f : [N]→ [N], N = 2n, by a boolean circuit,
(i.e., already for d = 1) it is NP-hard to compute the LFP of f .
(Likewise, it is NP-hard to compute the GFP of f .)

2 Given a montone f : [N]→ [N] by an oracle, computing the LFP
requires Ω(N) queries to f . (Likewise for the GFP.)

The proofs are easy: (1.) is a simple reduction from SAT.
For (2.): let f : [N]→ [N] be the family of monotone functions where
f (N) := N , and for all x ∈ {1, . . . ,N − 1}, f (x) ∈ {x , x + 1}. The
LFP of such an f is 6= N iff ∃x ∈ {1, . . . ,N − 1} such that f (x) = x .
In the oracle model, finding such an x requires trying all
x ∈ {1, . . . ,N − 1}. �

Towards the complexity of Tarski:
some standard total search complexity classes.

Two very well-studied discrete total search complexity classes are:

PLS (Polynomial Local Search) [JPY’88]

PPAD (Polynomial Parity Argument – Directed) [P’94]

PLS consists of discrete local search problems that can be phrased as
follows: given a instance I ∈ {0, 1}∗, and a start “solution”
x ∈ {0, 1}p(|I |), compute a “locally optimal” solution, x∗ ∈ {0, 1}p(|I |),
with respect to a (P-time computable) objective function gI (x), and
(P-time computable) neighborhood function, NI (x).

There are many PLS-complete problems. One is: given a boolean
circuit, C , with n input gates and m output gates, compute
x∗ ∈ {0, 1}n such that integer(C (x∗)) ≥ integer(C (x ′)) for all
x ′ ∈ {0, 1}n whose hamming distance from x∗ is 1.
PPAD can be defined in many ways. One PPAD-complete problem
([Chen-Deng’06]) is this: compute a mixed Nash Equilibrium for a
given 2-player normal form (bimatrix) game.

Towards the complexity of Tarski:
some standard total search complexity classes.

Two very well-studied discrete total search complexity classes are:

PLS (Polynomial Local Search) [JPY’88]

PPAD (Polynomial Parity Argument – Directed) [P’94]

PLS consists of discrete local search problems that can be phrased as
follows: given a instance I ∈ {0, 1}∗, and a start “solution”
x ∈ {0, 1}p(|I |), compute a “locally optimal” solution, x∗ ∈ {0, 1}p(|I |),
with respect to a (P-time computable) objective function gI (x), and
(P-time computable) neighborhood function, NI (x).
There are many PLS-complete problems. One is: given a boolean
circuit, C , with n input gates and m output gates, compute
x∗ ∈ {0, 1}n such that integer(C (x∗)) ≥ integer(C (x ′)) for all
x ′ ∈ {0, 1}n whose hamming distance from x∗ is 1.

PPAD can be defined in many ways. One PPAD-complete problem
([Chen-Deng’06]) is this: compute a mixed Nash Equilibrium for a
given 2-player normal form (bimatrix) game.

Towards the complexity of Tarski:
some standard total search complexity classes.

Two very well-studied discrete total search complexity classes are:

PLS (Polynomial Local Search) [JPY’88]

PPAD (Polynomial Parity Argument – Directed) [P’94]

PLS consists of discrete local search problems that can be phrased as
follows: given a instance I ∈ {0, 1}∗, and a start “solution”
x ∈ {0, 1}p(|I |), compute a “locally optimal” solution, x∗ ∈ {0, 1}p(|I |),
with respect to a (P-time computable) objective function gI (x), and
(P-time computable) neighborhood function, NI (x).
There are many PLS-complete problems. One is: given a boolean
circuit, C , with n input gates and m output gates, compute
x∗ ∈ {0, 1}n such that integer(C (x∗)) ≥ integer(C (x ′)) for all
x ′ ∈ {0, 1}n whose hamming distance from x∗ is 1.
PPAD can be defined in many ways. One PPAD-complete problem
([Chen-Deng’06]) is this: compute a mixed Nash Equilibrium for a
given 2-player normal form (bimatrix) game.

Tarski ∈ PLS ∩ PPAD

Theorem

Tarski ∈ PLS ∩ PPAD

Proof sketch that Tarski is in PLS: given an instance Cf of
Tarski, consider the set of “solutions” to be
Sf = {x ∈ [N]d | x ≤ f (x)}, and define the objective function to be

gf (x) :=
∑d

i=1 xi , and the neighborhood function to be
Nf (x) := {f (x)}. It is not hard to show that x∗ is a local optimum iff
x∗ ∈ Fix(f).

The proof that Tarski is in PPAD is more involved. It uses: (1.) a
characterization of PPAD from [E.-Yannakakis’07], (2.) a special
simplicial subdivision of the d-cube, [0, 1]d ([Freudenthal,1942]), (3.)
a divide-and-conquer algorithm, to show that Tarski ∈ PPPAD, and
(4.) the fact ([Buss-Johnson,2012]) that PPAD is closed under
P-time Turing reductions.

Tarski ∈ PLS ∩ PPAD

Theorem

Tarski ∈ PLS ∩ PPAD

Proof sketch that Tarski is in PLS: given an instance Cf of
Tarski, consider the set of “solutions” to be
Sf = {x ∈ [N]d | x ≤ f (x)}, and define the objective function to be

gf (x) :=
∑d

i=1 xi , and the neighborhood function to be
Nf (x) := {f (x)}. It is not hard to show that x∗ is a local optimum iff
x∗ ∈ Fix(f).

The proof that Tarski is in PPAD is more involved. It uses: (1.) a
characterization of PPAD from [E.-Yannakakis’07], (2.) a special
simplicial subdivision of the d-cube, [0, 1]d ([Freudenthal,1942]), (3.)
a divide-and-conquer algorithm, to show that Tarski ∈ PPPAD, and
(4.) the fact ([Buss-Johnson,2012]) that PPAD is closed under
P-time Turing reductions.

Is Tarski “hard”?

Note that no search problem in PLS or in PPAD can be NP-hard,
unless NP = co-NP.

Also, since Tarski ∈ PLS ∩ PPAD, it cannot be PLS-complete
(nor PPAD-complete), unless PLS ⊆ PPAD (or PPAD ⊆ PLS,
respectively). Neither of these two inclusions is known, nor widely
believed.

However, we can provide some tentative “evidence” that Tarski is
“somewhat hard”....

Is Tarski “hard”?

Note that no search problem in PLS or in PPAD can be NP-hard,
unless NP = co-NP.

Also, since Tarski ∈ PLS ∩ PPAD, it cannot be PLS-complete
(nor PPAD-complete), unless PLS ⊆ PPAD (or PPAD ⊆ PLS,
respectively). Neither of these two inclusions is known, nor widely
believed.

However, we can provide some tentative “evidence” that Tarski is
“somewhat hard”....

Condon’s and Shapley’s stochastic games reduce to
Tarski

Theorem

The following problems are P-time reducible to Tarski:

Given an instance, G , of Condon’s simple stochastic
(reachability) game (SSG), compute the exact value val(G) of G .

Given an instance, G , of Shapley’s original stochastic game, and
given ε > 0 (in binary), compute an approximate value, v ′, such
that |val(G)− v ′| < ε.

Note: It is a long-standing open problem whether the value of SSGs
can be computed in P-time. It is at least as hard as solving parity
games and mean payoff games. Approximating the value of Shapley’s
games is, in turn, at least as hard as computing the value of a SSG.

Proof sketch that solving SSGs is reducible to Tarski:
Given a SSG, G = (V ,V0,V1,V2, δ), with vertices V = {v1, . . . , vn}, with
0-sink vn−1 and 1-sink vn, consider the following system of n equations in
n unknowns:

xi =

∑
{vj∈V |(vi ,pvi ,vj ,vj)∈δ}

pvi ,vj xj if vi ∈ V0

max{xj | (vi ,⊥, vj) ∈ δ} if vi ∈ V1

min{xj | (vi ,⊥, vj) ∈ δ} if vi ∈ V2

0 if vi = vn−1 is the 0-sink
1 if vi = vn is the 1-sink

Denote these equations by x = F (x). F : [0, 1]n → [0, 1]n defines a
monotone (continuous) map.

The n-vector of values of the SSG, starting at each vertex vi , is given
by the LFP solution, q∗ ∈ [0, 1]n, of x = F (x).

For β > 0, the β-discounted equations x = (1− β)F (x) are also
monotone, and also a contraction map. Hence (by Banach’s fixed
point theorem) they have a unique fixed point qβ ∈ [0, 1]n.

Kousha Etessami (U. Edinburgh) Tarski Simons 2021 13 / 20

It is possible to choose a small enough β > 0, such that one can
recover the LFP, q∗, of x = F (x), from the unique fixed point qβ of
x = (1− β)F (x).

Finally, we can define a discretized monotone function
H : [M]n → [M]n, a discretization of (1− β)F (x), such that a fixed
point of H yields a point ε-close to the unique fixed point qβ, for a
chosen ε > 0, from which we can uniquely recover qβ, and in turn
uniquely recover q∗.

Tarski is P-time equivalent to computing a pure NE for a
supermodular game

Supermodular games ([Topkis,1979]), and games with strategic
complementarities ([Milgrom-Roberts,1990]), are important classes of
games with widespread applications in economics (for modeling
oligopolies, markets with search costs, bank runs, arms races,).

These games always have a pure Nash Equilibrium ([Topkis’79]). The
proof of existence of a pure NE uses the fact that their (infimum)
“best response correspondence” defines a monotone function, and
applies Tarski’s fixed point theorem. We show that:

Theorem

Computing a pure NE for a given k-player discrete supermodular
game with strategy space [N]di for player i , given its (infimum)
best response correspondence, is P-time reducible to Tarski.

Tarski is P-time reducible to computing a pure NE for a given
2-player discrete supermodular games with strategy space [N]d

for each player.

Tarski is P-time equivalent to computing a pure NE for a
supermodular game

Supermodular games ([Topkis,1979]), and games with strategic
complementarities ([Milgrom-Roberts,1990]), are important classes of
games with widespread applications in economics (for modeling
oligopolies, markets with search costs, bank runs, arms races,).

These games always have a pure Nash Equilibrium ([Topkis’79]). The
proof of existence of a pure NE uses the fact that their (infimum)
“best response correspondence” defines a monotone function, and
applies Tarski’s fixed point theorem.

We show that:

Theorem

Computing a pure NE for a given k-player discrete supermodular
game with strategy space [N]di for player i , given its (infimum)
best response correspondence, is P-time reducible to Tarski.

Tarski is P-time reducible to computing a pure NE for a given
2-player discrete supermodular games with strategy space [N]d

for each player.

Tarski is P-time equivalent to computing a pure NE for a
supermodular game

Supermodular games ([Topkis,1979]), and games with strategic
complementarities ([Milgrom-Roberts,1990]), are important classes of
games with widespread applications in economics (for modeling
oligopolies, markets with search costs, bank runs, arms races,).

These games always have a pure Nash Equilibrium ([Topkis’79]). The
proof of existence of a pure NE uses the fact that their (infimum)
“best response correspondence” defines a monotone function, and
applies Tarski’s fixed point theorem. We show that:

Theorem

Computing a pure NE for a given k-player discrete supermodular
game with strategy space [N]di for player i , given its (infimum)
best response correspondence, is P-time reducible to Tarski.

Tarski is P-time reducible to computing a pure NE for a given
2-player discrete supermodular games with strategy space [N]d

for each player.

Definition 1: A function f : L→ R, where L is a lattice, is
supermodular if ∀x , y ∈ L, f (x) + f (y) ≤ f (x ∧ y) + f (x ∨ y).

Definition 2: A function f : L1 × L2 → R has increasing
differences in its two arguments if for all x ′ ≥ x in L1 and y ′ ≥ y in
L2, f (x ′, y ′)− f (x ′, y) ≥ f (x , y ′)− f (x , y).

Kousha Etessami (U. Edinburgh) Tarski Simons 2021 16 / 20

Definition: In a supermodular game with k players, each player
i ∈ [k] has a complete lattice Si of strategies. Let S =

∏k
i=1 Si be the

product lattice of pure strategy profiles. Every player’s utility function
ui : S → R must satisfy the following conditions:

C1. ui(si ; s−i) is upper semicontinuous in si for fixed s−i , and
continuous in s−i for fixed si , and has a finite upper bound.
(This condition holds trivially when Si is a finite subset of Rmi .)

C2. ui(si ; s−i) is supermodular in si for fixed s−i .

C3. ui(si ; s−i) has increasing differences in si and s−i .

Kousha Etessami (U. Edinburgh) Tarski Simons 2021 17 / 20

A lower bound for Tarski in the oracle model

Theorem

Any deterministic black-box (oracle) algorithm for computing a Tarski
fixed point of a monotone function f : [N]2 → [N]2 requires
Ω(log2N) queries.

Any randomized black-box (oracle) algorithm for computing a Tarski
fixed point of a monotone function f : [N]2 → [N]2, requires
Ω(log2N) queries in expectation (and w. h. p.).

The lower bound proof uses a family of functions we call “herringbones”,
whose “vector field” looks a bit like a fish bone with a unique fixed point....

A lower bound for Tarski in the oracle model

Theorem

Any deterministic black-box (oracle) algorithm for computing a Tarski
fixed point of a monotone function f : [N]2 → [N]2 requires
Ω(log2N) queries.

Any randomized black-box (oracle) algorithm for computing a Tarski
fixed point of a monotone function f : [N]2 → [N]2, requires
Ω(log2N) queries in expectation (and w. h. p.).

The lower bound proof uses a family of functions we call “herringbones”,
whose “vector field” looks a bit like a fish bone with a unique fixed point....

An example of a “herringbone” function f : [5]2 → [5]2:

1,1

1,2

1,3

1,4

1,5

2,1

2,2

2,3

2,4

2,5

3,1

3,2

3,3

3,4

3,5

4,1

4,2

4,3

4,4

4,5

5,1

5,2

5,3

5,4

5,5

1,1

1,2 2,2

2,3

2,4 3,4 4,4 5,4

5,5

Conclusions

We have shown that Tarski ∈ PLS ∩ PPAD.

We have shown that Tarski is at least as hard as solving both
simple stochastic games and Shapley’s stochastic games; and just
as hard as finding a pure NE for supermodular games.

We have shown, in the oracle model, for 2-dimensional monotone
functions f : [N]2 → [N]2, a lower bound of Ω(log2 N) for the
(expected) number of (randomized) queries required to find a
fixed point, which matches the O(log2 N) upper bound for d = 2.

Can we do much better than O(logd N) for small values of
d > 2?
We know that for large d = ω(logN

log logN
), the d · N upper bound is

already better than logd N .

Very recent result by [Fearnley-Savani, 2021]:
For d ≥ 3, they give a O(logd−1 N) query algorithm for finding a
fixed point of a monotone function f : [N]d → [N]d .

Many, many, questions remain open.

Conclusions

We have shown that Tarski ∈ PLS ∩ PPAD.

We have shown that Tarski is at least as hard as solving both
simple stochastic games and Shapley’s stochastic games; and just
as hard as finding a pure NE for supermodular games.

We have shown, in the oracle model, for 2-dimensional monotone
functions f : [N]2 → [N]2, a lower bound of Ω(log2 N) for the
(expected) number of (randomized) queries required to find a
fixed point, which matches the O(log2 N) upper bound for d = 2.

Can we do much better than O(logd N) for small values of
d > 2?
We know that for large d = ω(logN

log logN
), the d · N upper bound is

already better than logd N .

Very recent result by [Fearnley-Savani, 2021]:
For d ≥ 3, they give a O(logd−1 N) query algorithm for finding a
fixed point of a monotone function f : [N]d → [N]d .

Many, many, questions remain open.

Conclusions

We have shown that Tarski ∈ PLS ∩ PPAD.

We have shown that Tarski is at least as hard as solving both
simple stochastic games and Shapley’s stochastic games; and just
as hard as finding a pure NE for supermodular games.

We have shown, in the oracle model, for 2-dimensional monotone
functions f : [N]2 → [N]2, a lower bound of Ω(log2 N) for the
(expected) number of (randomized) queries required to find a
fixed point, which matches the O(log2 N) upper bound for d = 2.

Can we do much better than O(logd N) for small values of
d > 2?
We know that for large d = ω(logN

log logN
), the d · N upper bound is

already better than logd N .

Very recent result by [Fearnley-Savani, 2021]:
For d ≥ 3, they give a O(logd−1 N) query algorithm for finding a
fixed point of a monotone function f : [N]d → [N]d .

Many, many, questions remain open.

Conclusions

We have shown that Tarski ∈ PLS ∩ PPAD.

We have shown that Tarski is at least as hard as solving both
simple stochastic games and Shapley’s stochastic games; and just
as hard as finding a pure NE for supermodular games.

We have shown, in the oracle model, for 2-dimensional monotone
functions f : [N]2 → [N]2, a lower bound of Ω(log2 N) for the
(expected) number of (randomized) queries required to find a
fixed point, which matches the O(log2 N) upper bound for d = 2.

Can we do much better than O(logd N) for small values of
d > 2?
We know that for large d = ω(logN

log logN
), the d · N upper bound is

already better than logd N .

Very recent result by [Fearnley-Savani, 2021]:
For d ≥ 3, they give a O(logd−1 N) query algorithm for finding a
fixed point of a monotone function f : [N]d → [N]d .

Many, many, questions remain open.

Conclusions

We have shown that Tarski ∈ PLS ∩ PPAD.

We have shown that Tarski is at least as hard as solving both
simple stochastic games and Shapley’s stochastic games; and just
as hard as finding a pure NE for supermodular games.

We have shown, in the oracle model, for 2-dimensional monotone
functions f : [N]2 → [N]2, a lower bound of Ω(log2 N) for the
(expected) number of (randomized) queries required to find a
fixed point, which matches the O(log2 N) upper bound for d = 2.

Can we do much better than O(logd N) for small values of
d > 2?
We know that for large d = ω(logN

log logN
), the d · N upper bound is

already better than logd N .

Very recent result by [Fearnley-Savani, 2021]:
For d ≥ 3, they give a O(logd−1 N) query algorithm for finding a
fixed point of a monotone function f : [N]d → [N]d .

Many, many, questions remain open.

Conclusions

We have shown that Tarski ∈ PLS ∩ PPAD.

We have shown that Tarski is at least as hard as solving both
simple stochastic games and Shapley’s stochastic games; and just
as hard as finding a pure NE for supermodular games.

We have shown, in the oracle model, for 2-dimensional monotone
functions f : [N]2 → [N]2, a lower bound of Ω(log2 N) for the
(expected) number of (randomized) queries required to find a
fixed point, which matches the O(log2 N) upper bound for d = 2.

Can we do much better than O(logd N) for small values of
d > 2?
We know that for large d = ω(logN

log logN
), the d · N upper bound is

already better than logd N .

Very recent result by [Fearnley-Savani, 2021]:
For d ≥ 3, they give a O(logd−1 N) query algorithm for finding a
fixed point of a monotone function f : [N]d → [N]d .

Many, many, questions remain open.

