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Tarski’s Fixed Point Theorem

Recall: A partially ordered set (L,≤) is a complete lattice if every
non-empty subset S ⊆ L has both a least upper bound (or supremum
or join), and a greatest lower bound (or infimum or meet) in L.

A function f : L→ L is monotone if
∀x , y ∈ L, x ≤ y ⇒ f (x) ≤ f (y).

Let Fix(f ) := {x ∈ L | x = f (x)} denote the set of fixed points of f .

Theorem [Tarski, 1955]

Every monotone function f : L→ L from a complete lattice (L,≤) to
itself, has a non-empty set Fix(f ) of fixed points, which themselves
form a complete lattice (Fix(f ),≤) under the same partial order ≤.

(In particular, f has a Least Fixed Point, and a Greatest Fixed Point.)
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Question: how hard is it to compute a (any) fixed point of a given
monotone function f : L→ L when (L,≤) is finite?

More specifically, how hard is it when (L,≤) is the d-dimensional
euclidean grid lattice, L = {1, . . . ,N}d = [N]d , under the standard
coordinate-wise partial order ≤ on vectors.

In other words, by definition, for x , y ∈ [N]d :

x ≤ y ⇔ xi ≤ yi , for all i ∈ {1, . . . , d}.

As we will see, this question has important applications, including for:

equilibrium computation problems (for supermodular games),

solving (i.e., computing the value of) stochastic games.

And we will see that this problem has an intriguing computational
complexity status....
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First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?



First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?



First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.

Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?



First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?



First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?



First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?



First, an easy classic algorithm: Kleene/Tarski iteration

To find a fixed point of f : [N]d → [N]d :

start with 1̄ = (1, 1, . . . , 1), the bottom element of [N]d , and
compute the sequence: 1̄ , f (1̄) , f (f (1̄)) , . . . , f i(1̄) , . . .

From monotonicity of f , it follows that for all i ≥ 0, f i(1̄) ≤ f i+1(1̄).

Hence, unless we reach a fixed point f i(1̄) = f i+1(1̄), the sum of the
coordinates must increase by at least 1 in each iteration.
Hence, we will reach a fixed point in at most d · N iterations.

The fixed point computed by this is the least fixed point (LFP).

We can similarly compute the greatest fixed point (GFP) within d · N
iterations, by starting instead at the top element N = (N ,N , . . . ,N).

Question: Suppose we don’t care which fixed point we compute.
Suppose we just want to compute some fixed point.

Can we do better than d · N iterations?



An O(logd N) algorithm ([Dang-Qi-Ye,2012])

We can compute a fixed point of f : [N]d → [N]d , using binary search
combined with recursion, in O(logd N) queries to the function f .

For a, b ∈ [N]d , where a ≤ b, let L(a, b) = {x ∈ [N]d | a ≤ x ≤ b},
denote the sublattice of grid points between a and b. So,
[N]d = L(1̄,N).

1-dimensional case: for d = 1, suppose we are given a monotone
function f : L(a, b)→ L(a, b), with 1 ≤ a ≤ b ≤ N .
We can compute a fixed point of f by binary search, as follows:

Let mid := ba+b
2
c. Evaluate f (mid). If f (mid) = mid , we are done.

If f (mid) > mid , then f : L(mid , b)→ L(mid , b) is montone and has
a fixed point.

Likewise, if f (mid) < mid , then f : L(a,mid)→ L(a,mid) is
monotone and has a fixed point.

So, by repeating, we can find a fixed point of f : [N]→ [N] in logN
iterations (i.e., logN function evaluations).
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For dimensions d > 1, we procede recursively:
For c ∈ [N], let f 〈c〉 : [N]d−1 → [N]d−1, be defined as follows:
for x ∈ [N]d−1 and i ∈ {1, . . . , d − 1}, let f 〈c〉i(x) := fi(x , c).

Note that f 〈c〉 : [N]d−1 → [N]d−1 defines a monotone function.
Let c := bN+1

2
c. If we (recursively) compute x∗ ∈ Fix(f 〈c〉), then

either:

fd(x∗, c) = c , in which case (x∗, c) ∈ Fix(f ) and we are done; or

fd(x∗, c) > c , in which case f : L((x∗, c),N)→ L((x∗, c),N) is
monotone, and we have “halved” the range of values to consider
in the last coordinate in our search for a fixed point of f ; or,

fd(x∗, c) < c , in which case f : L(1̄, (x∗, c))→ L(1̄, (x∗, c)), and
we have again “halved” the range of values to consider in the
last coordinate in our search for a fixed point of f .

Applying this recursively yields, by induction, an algorithm that
requires at most logd−1 N · logN = logd N function evaluations to
compute a fixed point of a monotone function f : [N]d → [N]d .

Note: for d ∈ o( logN
log logN

), logd N is better than d · N .
Can we do better?
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fd(x∗, c) < c , in which case f : L(1̄, (x∗, c))→ L(1̄, (x∗, c)), and
we have again “halved” the range of values to consider in the
last coordinate in our search for a fixed point of f .

Applying this recursively yields, by induction, an algorithm that
requires at most logd−1 N · logN = logd N function evaluations to
compute a fixed point of a monotone function f : [N]d → [N]d .

Note: for d ∈ o( logN
log logN

), logd N is better than d · N .

Can we do better?
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The Tarski Problem

Let’s define our task as an explicit computational problem:

Definition (the Tarski problem)

Input: A function f : [N]d → [N]d with N = 2n for some n ≥ 1,
given by a boolean circuit, Cf , with (d · n) input gates and (d · n)
output gates.
Output: Either a (any) fixed point x∗ ∈ Fix(f ), or else a witness pair
of vectors x , y ∈ [N]d such that x ≤ y and f (x) 6≤ f (y).

Note: Tarski is a total search problem: if f is monotone, it will
contain a fixed point in [N]d , and otherwise it will contain such a
witness pair of vectors that exhibit non-monotonicity.

(If f is non-monotone it may of course have both witnesses for
non-monotonicity and fixed points; either output will do.)

Question: What is the complexity of this total search problem?
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A harder problem: computing the LFP (or the GFP)

Question: What if, instead of the Tarski problem, our task was to
compute the LFP, rather than just any fixed point?

Proposition

1 Given a monotone f : [N]→ [N], N = 2n, by a boolean circuit,
(i.e., already for d = 1) it is NP-hard to compute the LFP of f .
(Likewise, it is NP-hard to compute the GFP of f .)

2 Given a montone f : [N]→ [N] by an oracle, computing the LFP
requires Ω(N) queries to f . (Likewise for the GFP.)

The proofs are easy: (1.) is a simple reduction from SAT.
For (2.): let f : [N]→ [N] be the family of monotone functions where
f (N) := N , and for all x ∈ {1, . . . ,N − 1}, f (x) ∈ {x , x + 1}. The
LFP of such an f is 6= N iff ∃x ∈ {1, . . . ,N − 1} such that f (x) = x .
In the oracle model, finding such an x requires trying all
x ∈ {1, . . . ,N − 1}. �
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Towards the complexity of Tarski:
some standard total search complexity classes.

Two very well-studied discrete total search complexity classes are:

PLS (Polynomial Local Search) [JPY’88]

PPAD (Polynomial Parity Argument – Directed) [P’94]

PLS consists of discrete local search problems that can be phrased as
follows: given a instance I ∈ {0, 1}∗, and a start “solution”
x ∈ {0, 1}p(|I |), compute a “locally optimal” solution, x∗ ∈ {0, 1}p(|I |),
with respect to a (P-time computable) objective function gI (x), and
(P-time computable) neighborhood function, NI (x).

There are many PLS-complete problems. One is: given a boolean
circuit, C , with n input gates and m output gates, compute
x∗ ∈ {0, 1}n such that integer(C (x∗)) ≥ integer(C (x ′)) for all
x ′ ∈ {0, 1}n whose hamming distance from x∗ is 1.
PPAD can be defined in many ways. One PPAD-complete problem
([Chen-Deng’06]) is this: compute a mixed Nash Equilibrium for a
given 2-player normal form (bimatrix) game.
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Tarski ∈ PLS ∩ PPAD

Theorem

Tarski ∈ PLS ∩ PPAD

Proof sketch that Tarski is in PLS: given an instance Cf of
Tarski, consider the set of “solutions” to be
Sf = {x ∈ [N]d | x ≤ f (x)}, and define the objective function to be

gf (x) :=
∑d

i=1 xi , and the neighborhood function to be
Nf (x) := {f (x)}. It is not hard to show that x∗ is a local optimum iff
x∗ ∈ Fix(f ).

The proof that Tarski is in PPAD is more involved. It uses: (1.) a
characterization of PPAD from [E.-Yannakakis’07], (2.) a special
simplicial subdivision of the d-cube, [0, 1]d ([Freudenthal,1942]), (3.)
a divide-and-conquer algorithm, to show that Tarski ∈ PPPAD, and
(4.) the fact ([Buss-Johnson,2012]) that PPAD is closed under
P-time Turing reductions.
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Is Tarski “hard”?

Note that no search problem in PLS or in PPAD can be NP-hard,
unless NP = co-NP.

Also, since Tarski ∈ PLS ∩ PPAD, it cannot be PLS-complete
(nor PPAD-complete), unless PLS ⊆ PPAD (or PPAD ⊆ PLS,
respectively). Neither of these two inclusions is known, nor widely
believed.

However, we can provide some tentative “evidence” that Tarski is
“somewhat hard”....
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Condon’s and Shapley’s stochastic games reduce to
Tarski

Theorem

The following problems are P-time reducible to Tarski:

Given an instance, G , of Condon’s simple stochastic
(reachability) game (SSG), compute the exact value val(G ) of G .

Given an instance, G , of Shapley’s original stochastic game, and
given ε > 0 (in binary), compute an approximate value, v ′, such
that |val(G )− v ′| < ε.

Note: It is a long-standing open problem whether the value of SSGs
can be computed in P-time. It is at least as hard as solving parity
games and mean payoff games. Approximating the value of Shapley’s
games is, in turn, at least as hard as computing the value of a SSG.



Proof sketch that solving SSGs is reducible to Tarski:
Given a SSG, G = (V ,V0,V1,V2, δ), with vertices V = {v1, . . . , vn}, with
0-sink vn−1 and 1-sink vn, consider the following system of n equations in
n unknowns:

xi =



∑
{vj∈V |(vi ,pvi ,vj ,vj )∈δ}

pvi ,vj xj if vi ∈ V0

max{xj | (vi ,⊥, vj) ∈ δ} if vi ∈ V1

min{xj | (vi ,⊥, vj) ∈ δ} if vi ∈ V2

0 if vi = vn−1 is the 0-sink
1 if vi = vn is the 1-sink

Denote these equations by x = F (x). F : [0, 1]n → [0, 1]n defines a
monotone (continuous) map.

The n-vector of values of the SSG, starting at each vertex vi , is given
by the LFP solution, q∗ ∈ [0, 1]n, of x = F (x).

For β > 0, the β-discounted equations x = (1− β)F (x) are also
monotone, and also a contraction map. Hence (by Banach’s fixed
point theorem) they have a unique fixed point qβ ∈ [0, 1]n.

Kousha Etessami (U. Edinburgh) Tarski Simons 2021 13 / 20



It is possible to choose a small enough β > 0, such that one can
recover the LFP, q∗, of x = F (x), from the unique fixed point qβ of
x = (1− β)F (x).

Finally, we can define a discretized monotone function
H : [M]n → [M]n, a discretization of (1− β)F (x), such that a fixed
point of H yields a point ε-close to the unique fixed point qβ, for a
chosen ε > 0, from which we can uniquely recover qβ, and in turn
uniquely recover q∗.



Tarski is P-time equivalent to computing a pure NE for a
supermodular game

Supermodular games ([Topkis,1979]), and games with strategic
complementarities ([Milgrom-Roberts,1990]), are important classes of
games with widespread applications in economics (for modeling
oligopolies, markets with search costs, bank runs, arms races, . . . . . . ).

These games always have a pure Nash Equilibrium ([Topkis’79]). The
proof of existence of a pure NE uses the fact that their (infimum)
“best response correspondence” defines a monotone function, and
applies Tarski’s fixed point theorem. We show that:

Theorem

Computing a pure NE for a given k-player discrete supermodular
game with strategy space [N]di for player i , given its (infimum)
best response correspondence, is P-time reducible to Tarski.

Tarski is P-time reducible to computing a pure NE for a given
2-player discrete supermodular games with strategy space [N]d

for each player.
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Definition 1: A function f : L→ R, where L is a lattice, is
supermodular if ∀x , y ∈ L, f (x) + f (y) ≤ f (x ∧ y) + f (x ∨ y).

Definition 2: A function f : L1 × L2 → R has increasing
differences in its two arguments if for all x ′ ≥ x in L1 and y ′ ≥ y in
L2, f (x ′, y ′)− f (x ′, y) ≥ f (x , y ′)− f (x , y).
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Definition: In a supermodular game with k players, each player
i ∈ [k] has a complete lattice Si of strategies. Let S =

∏k
i=1 Si be the

product lattice of pure strategy profiles. Every player’s utility function
ui : S → R must satisfy the following conditions:

C1. ui(si ; s−i) is upper semicontinuous in si for fixed s−i , and
continuous in s−i for fixed si , and has a finite upper bound.
(This condition holds trivially when Si is a finite subset of Rmi .)

C2. ui(si ; s−i) is supermodular in si for fixed s−i .

C3. ui(si ; s−i) has increasing differences in si and s−i .

Kousha Etessami (U. Edinburgh) Tarski Simons 2021 17 / 20



A lower bound for Tarski in the oracle model

Theorem

Any deterministic black-box (oracle) algorithm for computing a Tarski
fixed point of a monotone function f : [N]2 → [N]2 requires
Ω(log2N) queries.

Any randomized black-box (oracle) algorithm for computing a Tarski
fixed point of a monotone function f : [N]2 → [N]2, requires
Ω(log2N) queries in expectation (and w. h. p.).

The lower bound proof uses a family of functions we call “herringbones”,
whose “vector field” looks a bit like a fish bone with a unique fixed point....
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An example of a “herringbone” function f : [5]2 → [5]2:
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Conclusions

We have shown that Tarski ∈ PLS ∩ PPAD.

We have shown that Tarski is at least as hard as solving both
simple stochastic games and Shapley’s stochastic games; and just
as hard as finding a pure NE for supermodular games.

We have shown, in the oracle model, for 2-dimensional monotone
functions f : [N]2 → [N]2, a lower bound of Ω(log2 N) for the
(expected) number of (randomized) queries required to find a
fixed point, which matches the O(log2 N) upper bound for d = 2.

Can we do much better than O(logd N) for small values of
d > 2?
We know that for large d = ω( logN

log logN
), the d · N upper bound is

already better than logd N .

Very recent result by [Fearnley-Savani, 2021]:
For d ≥ 3, they give a O(logd−1 N) query algorithm for finding a
fixed point of a monotone function f : [N]d → [N]d .

Many, many, questions remain open.
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