Using Resolution and
Cutting Planes for
Verification of Nonlinear
Bit-Vector Properties

Paul Beame, Vincent Liew [CAV 2017, JACM 2020]

Vincent Liew, Paul Beame, Jo Devriendt, Jan Elffers,
Jakob Nordstrom [FMCAD 2020]

Bit-Vector Verification of Hardware/Software

Code: Specification:
int min(int x, int y) { [(s=x)V(s=pP) A (S<x)A(s<ZYy)
return y * ((x *y) & -(x < y));
} /' /' f Inputs: x,y Output: s
bit-level operations arithmetic
operation
Step 1: Model

o int x,y ~ 32-bit vectors x, y.
> Directly model int operators using:
o Arithmetic operations: +, -, X,%, <, >
o Bit-level operations: &, *, @, o, <<, >>
o Write bit-vector formula ¢ asserting code does not follow specification

Step 2: Solve
o Send formula ¢ to bit-vector solver to prove UNSAT

o Formula ¢ UNSAT — Program follows specification

Challenge: Nonlinear arithmetic

Empirically, great success if all arithmetic is linear but...

Major problems with non-linear arithmetic

No bit-vector solver is close to working well in general at verifying:

o Hardware implementations that involve multiplier circuits

> Though significant recent progress on multiplier circuits in isolation
[Kaufmann et al., 2017-2019]

> Software involving multiplication operations

Bit-Vector Verification of Hardware/Software

Hardware:
> Directly model circuits using Boolean logic and gate variables

Software:
o Directly model operations in bit-vector language

o Apply theories to simplify/prove via pre-processing (e.g. un-interpreted
functions, arithmetic identities)

Core of the challenge: Mix of Boolean logic and arithmetic

o |f no direct solution, “bit-blast/flatten” formulas to convert arithmetic to
fixed bit-width, at least 32/64 bits

> Replace arithmetic operations using gate variables and constraints for
circuits that evaluate them

> Send resulting formula to SAT Solver.

Circuitsforx + y

Length 1: X0
o Use full adder circuit Cout Cin
0

Cout = MA](x0» Yo, cin)
Aoyt = X0 D Yo D Cin

o Conservation of weight: 2¢,,; + dyyt = X0 + Yo + Cin

Length n:
o Chain full adders to form ripple-carry adder circuit

x+y)s (x+¥)3 (x+y)2 (x+y)1 (x+y)

Example Circuits for x X y

e Stack ripple-carry adders to make
X3X2X1Xp

Y3Y2Y1)Yo

array multiplier

‘xs}’() ‘ ‘xz)’o ‘ ‘xﬂ’o ‘ ‘xo}’o ‘
!

! !

N e e
! ! 3
xz)’z H x1y2 H X0Y2 ‘
xz)’s H x1y3 H x0y3 ‘

Outputs il(xy)7 (xy)e (x}’)s (xy)4 (x}’)s (xy)2 (x;’)1 (x;’)o

__

Tableau—

X3Y3

Example: Verifying array multiplier commutativity

Fix input bitwidth n.

Construct bit-blasted SAT formula encoding xy # yx with array multipliers

[\/ (@ 00,]

l

Commutativity is hard for CDCL SAT solvers

MULT MULT Number of bits | Seconds to show
Xy # yx unsat

0.01
0.2
0.5

11

e SAT formula: 100s-1000s of variables 43
e SAT solvers cannot solve this with 10 743

16-bit-vectors for any multiplier circuit 11 Timeout
[Biere, 2016].

O 00 N OO Un

MiniSAT times

Arithmetic identities as indicators of complexity

Linear arithmetic

(@ D
Easy to check:
1 EY =V X (Commutativity)
(x+y)+z=x+(y+2) (Associativity)
x-1=x (Multiplicative Identity)
\ J
Nonlinear arithmetic
[Hard to check h
X-y=y-x (Commutativity)
x(y+z)=xy+xz (Distributivity)
x-y)-z=x-(y-2) (Associativity)
\ J

Fundamental barrier? Or feasible with better SAT-solving?

Is resolution proof complexity a fundamental obstacle?

Conjecture: CDCL SAT solvers take exponential time to
decide nonlinear arithmetic because resolution proofs require
exponential size.

® [Biere SAT’16] [Slobodova SAT’16] [Tomb SAT’16] [Kalla FMCAD’15]

Example: Verifying array multiplier commutativity

Start: branch to find first disagreeing output bit (2n branches)

Issue: output sensitive to all previous tableau entries
so obvious proof is exponential

[\/ (@ 00:)]

l

Example: Verifying array multiplier commutativity

Key Idea 1: The critical strip of the prior log n columns suffices for UNSAT

lan lan

[\/ (@ 00:)]

l

Example: Verifying array multiplier commutativity

Key Idea 1: The critical strip of the prior log n columns suffices for UNSAT

lan

\/ (@ 00:)]

i

Example: Verifying array multiplier commutativity

Key Idea 1: The critical strip of the prior log n columns suffices for UNSAT

. 1
Internal bits are the same °p"
just in different order

Carry-in bits may be
completely different
but difference < n

1 (xy)

\/ (@ 00:)]

i

Example: Verifying array multiplier commutativity

* Key Idea 2: Each critical strip has poly-size regular
resolution refutations

lan lan

e Why?
* Follows from O(logn) pathwidth
e Resolution size at most exponential
in pathwidth. [Dechter 1996]

1 (xy) (yx)

Result: Polynomial-size resolution proofs

Theorem: For array, diagonal and Booth multipliers, there are

polynomial size resolution proofs for any degree 2 identity.
[B, Liew CAV 2017, JACM 2020]

Identity Proof size for bitwidth n
X-y=y-x 0(n%
x-y+2)=x-y+x-z 0(n®)
x-(1+x)=x*+x 0(n'%

Compare with circuit size 0(n?)

Polynomial size — practical CDCL SAT solving?

Solvers: _ _ Number Strips Full
o Don’t find these proofs even given the [0 xy #yx | xy#yx
division into strips

o With the most extreme hand-holding 5 0.01 0.01
(force-fed order, etc.) can’t get any 6 0.1 0.2
closer empirically than a factor of v =~ 5 0.7 0.5

> 0(n®) proofs seem too large in any 8 3 11
Case. 9 26 43

o Target: 32 and 64 bits. 10 146 743

11 1055 Timeout
Stronger proof system? 12 3676 Timeout

MiniSAT: Strips vs Full

Stronger proof systems?

Ext-Frege

Frege

Resolution

Nullstellensatz

Truth Tables

Stronger proof systems?

Cutting Planes

Polynomial Calculus

Resolution

Beyond resolution: polynomial calculus

Polynomial Calculus (PC):
* Each line is a polynomial equationp = 0
e Addition rule: 10y = O, 10 = 0- P1 i I8l = 0
* Multiplication rule: p = 0 — pq = 0 for any polynomial q

Models steps of Groebner basis reduction (GBR) algorithms
> Checks if spec polynomial p = 0 implied by polynomials p; =0, p, =0, ...

Polynomial calculus stronger than resolution = GBR more efficient than SAT?

* No for most non-algebraic problems.
* Yes for certain algebraic problems.
e [Sayed et al., 2016]: Verified 128-bit integer multipliers.
e [Kaufmann et al., 2017-2019]: Verified 1024-bit integer multipliers

Proof size in polynomial calculus

e [Kaufmann et al., 2019]: O(nz) length PC proof of word-level commutativity

n—1 n—1
> 2ay)i =) 2 (yx);
1=0 1=0

* |dea generalizes to O(nz) length PC proofs of any word-level ring identity.

A Roadblock for Polynomial Calculus
[Liew, B, Devriendt, Elffers, Nordstrom, FMCAD 2020]

Theorem: Polynomial calculus requires
a proof of size at least e™*~1 to derive

B any bit-equality (xy)r = (¥X)y.

Fr e
o o

Beyond resolution: cutting planes

r

Cutting Planes Proofs:

 Each line [is Boolean linear inequality Y a;x; = b
* Linear combination (non-negative):

l,,1, > al, + Bl, (., p =2 0)
* Division: Yca;x; > b

Yax; = [2]

J

o Underlying proof system for the best pseudo-Boolean solvers

Cutting planes can extract bit-equalities!

Say we derive word-level equality xy = yx:

n—1 ‘ n—1 ‘
> 2ay)i =) 2 (ya);

Two linear inequalities

Cutting planes can derive all n bit-equalities in O(n) steps!

RoundingSat Satdj-Res NaPS
(Pseudo-Boolean) (SAT) (SAT)
32 002 16 3 2
64 .009 20 81 39

128 .04 24 TO 208
256 2 28 Error

And small cutting planes proofs at the word-level!

Theorem: There are O(nz) length cutting planes proofs for word-level
2-colorable ring identities. [Liew, et. al., FMCAD 2020]

2-colorable includes:

* Xy =Yyx (commutativity)

(x+y)z=xz+yz (distributivity)
x+y)w+2z)=wx+yw+axw+ zx (double distributivity)
xy+z)+wz=xy+ (x+w)z (distribute then factor)

Corollary: There are O(nz) length cutting planes proofs for bit-level
2-colorable ring identities. [Liew, et. al., FMCAD 2020]

Key idea: we can do nonlinear reasoning within a linear proof system
by using only a little nonlinearity at a time!

A nonlinear format for cutting planes proofs

Cutting Planes:

Linear inequality:
Yaix;i = b

* Linear combination rule:

ll, lz o a11 -+ ﬂlz

* Division rule:

Bea v =)

Saix; 2 | ¢

=)

(k, d)-Cutting planes:

(k, d)-nonlinear inequality:
t1+t2+---+tk+2aixi >b

|
Up to k terms of degree d or less

(e.g. monomial, or l1x, ... x4)

* Linear combination rule:
Result must be (k, d)-nonlinear
* Division rule:
Generalizes immediately
* Multiply by variable rule:
S5xy+w2=b
—> Sxyz+wz—-bz=>0

Result must be (k, d)-nonlinear

Result: Simulating (k, d)-Cutting planes

é Theorem: A (k, d)-cutting planes proof of s lines can be simulated by a
standard cutting planes proof of at most (k + 4)d¥* - s lines.

[Liew, et. al., FMCAD 2020]

J

Simulation: Boolean (k, d)-nonlinear inequality < d¥ linear inequalities.

Eg. k=1,d = 2:) 2x > 1
2xy > 1 > 2y > 1
o 1) “lo. 1) (1,1)
e ® ®
“lo.0) (1,0)) (0,0) (1,0)
_0? 02 0.4 06 08 . 12 _U’ 02 04 06 08 . 1.2

Simulating (k, d)-Cutting planes

Theorem: A (k, d)-cutting planes proof of s lines can be simulated by a
standard cutting planes proof of at most (k + 4)d¥ - s lines.

[Liew, et. al., FMICAD 2020]

Application: small proofs of 2-colorable identities

We give O(nz) length (k, d)-cutting planes proofs with k, d constant

Constant factor overhead simulation — O(nz) proof in standard cutting planes

Finding cutting planes proofs via pB solvers

Pseudo-Boolean (PB) solvers Sat4j and RoundingSat
e Satdj: Saturation-based, fast at proving word-level equalities
* RoundingSat: Division-based, fast at extracting bit-level equalities.

Combination: 256-bit commutativity for bit-level!

256-bit multiplier equivalence checking (e.g. array = diagonal)

* Requires value-based not clausal representation of 1-bit adders

But cannot yet handle more complicated identities such as distributivity.

32 21 15
64 43 34
128 117 91
256 419 338

Sat4j + RoundingSat

Another approach to bit-blasting

The usual pseudo-Boolean advantage:

e Canrepresent full adder with equation: X0
Cout Cin
2¢out + dour = X0 + Yo + Cin
* Two inequalities instead of 14 clauses. dout

Even better pseudo-Boolean advantage:

* Can represent addition x + y without a circuit:

Y2ix; + Y2y, = Y21 (x + y);

* Even further, can represent multiplication xy without a circuit!

n? Tableau constraints Tableau sum constraint

tij = XiYj Y2Ht; = Y2t (xy);

i.e. xi—ti,j > 0; yi_ti,j = 0; ti,j —Xi—JYj = -1

Beating bit-vector solvers

* With algebraic representation of multiplication, RoundingSat can
outperform bit-vector solvers on crafted bit-vector inequalities.

* Inequalities mix multiplication and bit-wise operations.

Example: kz > (x&k)z
Constant Bit-wise AND
20 0.8 10 15
24 0.3 117 1154
28 0.5 TO TO

32 0.6 TO TO

Future directions

Pseudo-Boolean bit-vector solving

* Use preprocessing like CDCL/Bit-vector solvers
» Replace final SAT solver with PB solver.

* Algebraic bit-blasting

* Can we get good performance on industrial benchmarks with
multiplication?

Improve cutting planes solving

* Pseudo-Boolean solving still young.
* Could not solve more complicated 2-colorable identities.

e Crucial SAT solving improvements found over the last 25 years.

e Can we get analogous improvements for pseudo-Boolean solvers?

