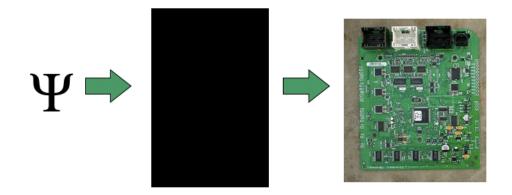
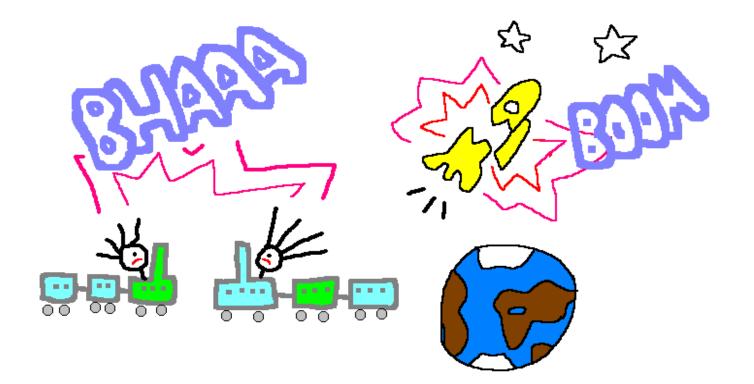
Rational Synthesis



Orna Kupferman Hebrew University

Joint work with Shaull Almagor, Dana Fisman, Yoad Lustig, Giuseppe Perelli, and Moshe Y. Vardi

Is the system correct?

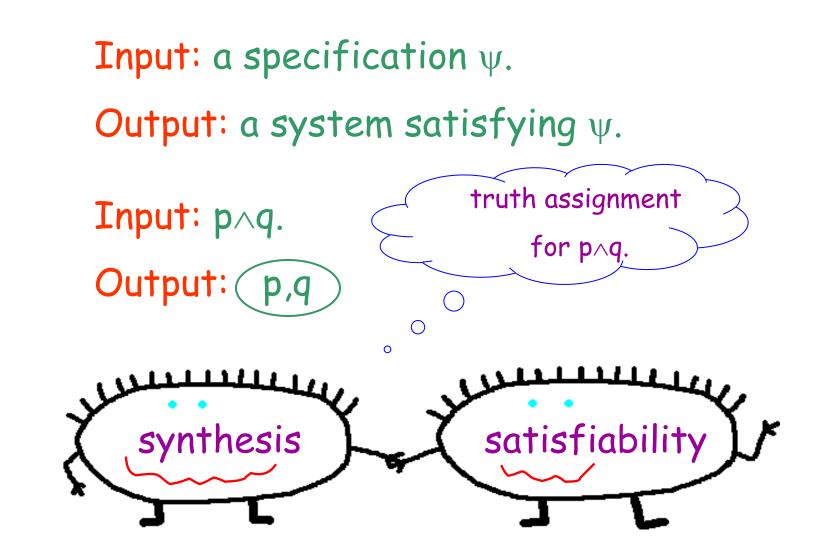


Input: a specification ψ . **Output:** a system satisfying ψ .

Is the system correct?

Yes! it satisfies its specification.

Synthesis:



An example:

user 2

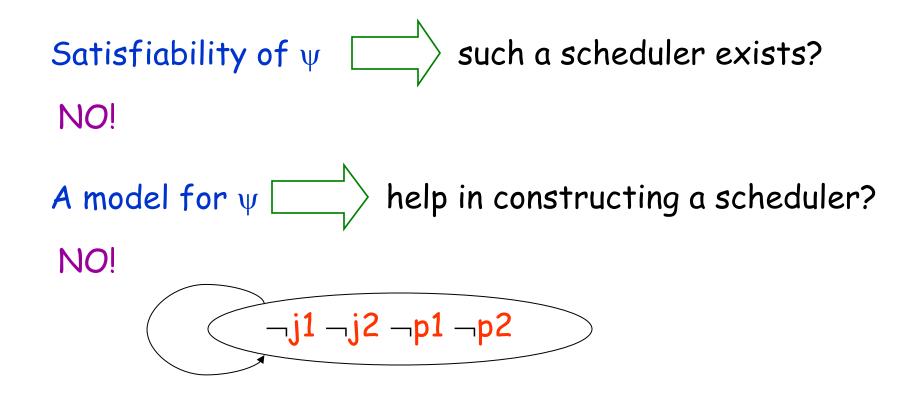
- 1. Whenever user i sends a job, the job is eventually printed.
- 2. The printer does not serve the two users simultaneously.

AP={j1,j2,p1,p2}

1. $G(j1 \rightarrow Fp1) \land G(j2 \rightarrow Fp2)$

2. *G*((¬p1) ∨ (¬p2))

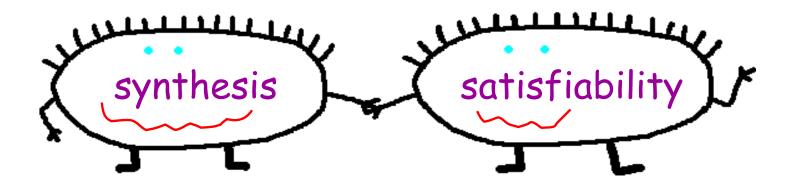
Let's synthesize a scheduler that satisfies the specification ψ ...



A model for ψ : a scheduler that is guaranteed to satisfy ψ for some input sequence.

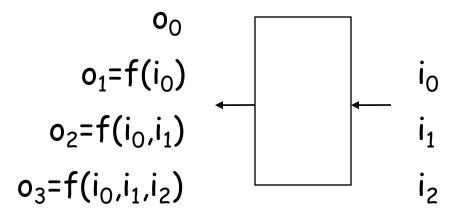
Wanted: a scheduler that is guaranteed to satisfy ψ for all input sequences.

all input sequences=some input sequence



Closed vs. open systems

Open system: interacts with an environment!

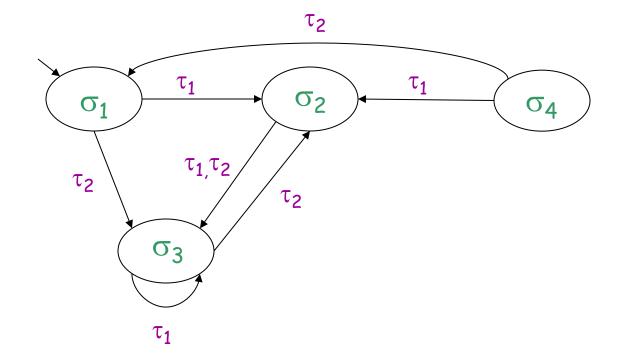


An open system:
$$f(2^{I}) \rightarrow 2^{O}$$

starategy

f:(2^I)* \rightarrow 2° is a regular strategy if for all $\sigma \in 2^{\circ}$, the set of words $w \in (2^{I})^{*}$ for which f(w)= σ is regular.

Regular strategies \rightarrow Finite-state transducers

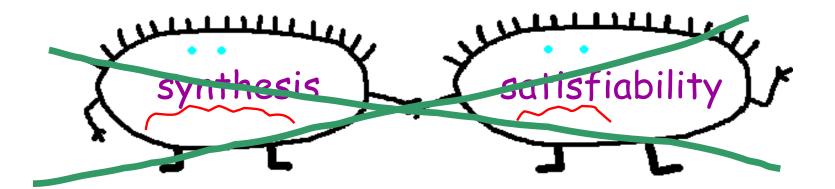


Closed vs. open systems

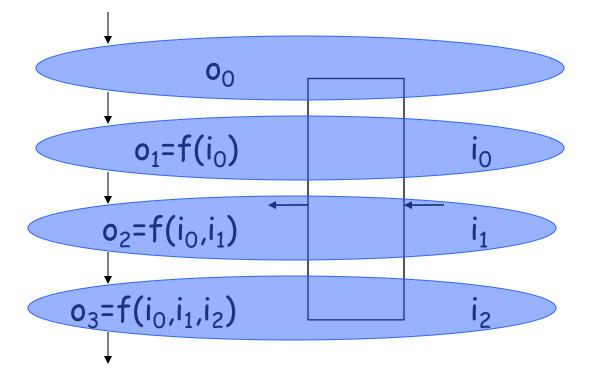
Open system: $f:(2^{I})^* \rightarrow 2^{\circ}$

In the printer example: I={j1,j2}, O={p1,p2}

 $f:(\{\{\},\{j1\},\{j2\},\{j1,j2\}\})^* \rightarrow \{\{\},\{p1\},\{p2\},\{p1,p2\}\}$

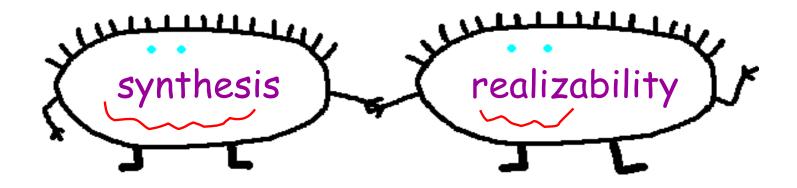


A computation of f:



$(\mathsf{f}(\varepsilon)) \rightarrow (\mathsf{i}_0,\mathsf{f}(\mathsf{i}_0)) \rightarrow (\mathsf{i}_1,\mathsf{f}(\mathsf{i}_0,\mathsf{i}_1)) \rightarrow (\mathsf{i}_2,\mathsf{f}(\mathsf{i}_0,\mathsf{i}_1,\mathsf{i}_2)) \rightarrow \dots$

The specification ψ is realizable if there is f:(2^I)* \rightarrow 2^O such that all the computations of f satisfy ψ .

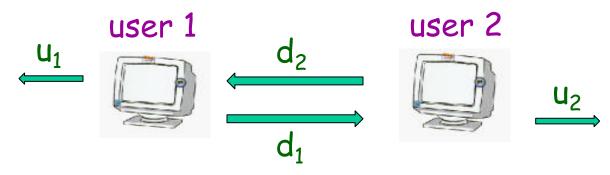


An open system is correct if it satisfies its specification in all environments.

Too strong: Add assumptions on the environment (behavioral or structural).

Rational synthesis: the components that compose the environment have their own objectives and are rational. [Fisman, Lustig, Kupferman 2010]

An example:

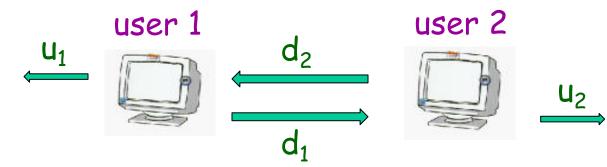


User 1 can download only when User 2 uploads. User 2 can download only when User 1 uploads. Both users want to download infinitely often. $\varphi_1 = GF(d_1 \wedge u_2)$

 $\varphi_2 = GF(d_2 \wedge u_1)$

 φ_1 is not realizable:

- fails when User 2 never uploads.

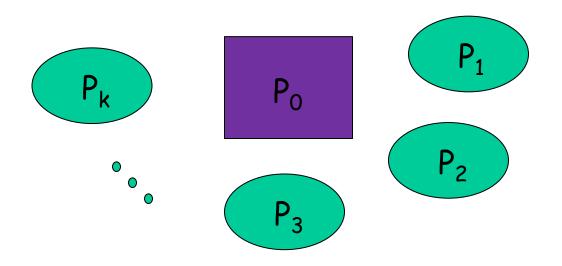


 $\varphi_1 = GF(d_1 \wedge u_2)$ $\varphi_2 = GF(d_2 \wedge u_1)$

User 1 to User 2: I will upload, and will continue to upload as long as you upload.

A rational User 2 will upload forever, enabling User 1 to satisfy φ_1 .

Rational Synthesis [FKL10]



 $\begin{array}{l} X=X_0 \cup ... \cup X_k \\ P_i \text{ assigns values} \\ \text{to } X_i \end{array}$

Input: objectives ψ and $\varphi_1, \dots, \varphi_k$.

Output: a stable profile $\langle f_0, ..., f_k \rangle$ that satisfies ψ .

P₁...P_k have no incentive to deviate

Cooperative Rational Synthesis [FKL10] Input: objectives ψ and $\varphi_1, \dots, \varphi_k$. Output: a stable profile $\langle f_0, \dots, f_k \rangle$ that satisfies ψ .

We can suggest a strategy to the enviroment...

Cooperative Rational Synthesis [FKL10] Input: objectives ψ and $\varphi_1, \dots, \varphi_k$. Output: a stable profile $\langle f_0, \dots, f_k \rangle$ that satisfies ψ .

Non-Cooperative Rational Synthesis [KPV13]

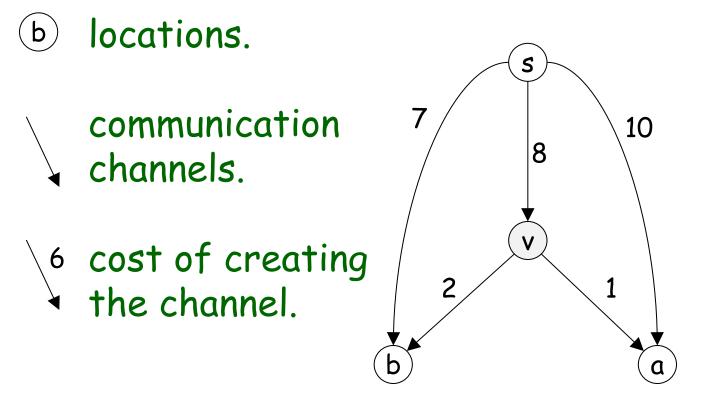
Input: objectives ψ and $\varphi_1, \dots, \varphi_k$.

Output: a strategy f_0 such that every stable profile $\langle f_0, ..., f_k \rangle$ satisfies ψ .

How different they are?

Algorithmic Game Theory

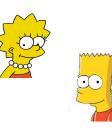
A network



A network formation game

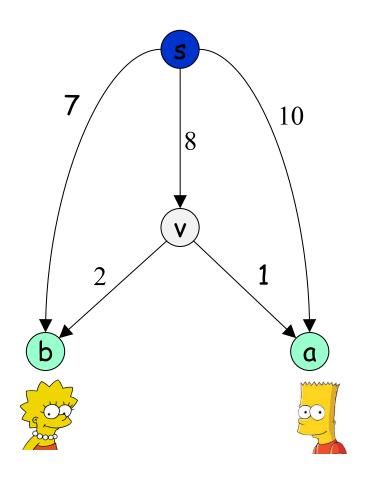
[Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden 2004]

locations. S communication channels. 10 8 6 cost of creating
4 the channel. 2 D



Players that need to transmit messages between locations in the network.

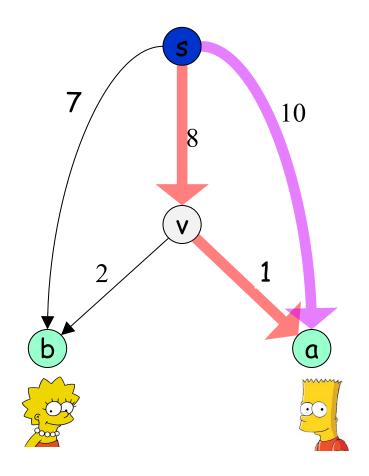
A network formation game: example



A network formation game: example

Two players need to transmit messages from *s* Player 1 *needs* to reach *a* Player 2 *needs* to reach *b*

The strategy space of $\frac{1}{\langle s,v \rangle, \langle v,a \rangle \rangle}$, $\{\langle s,a \rangle\}$

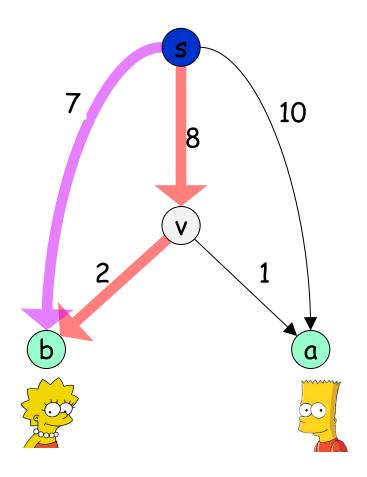


A network formation game: example

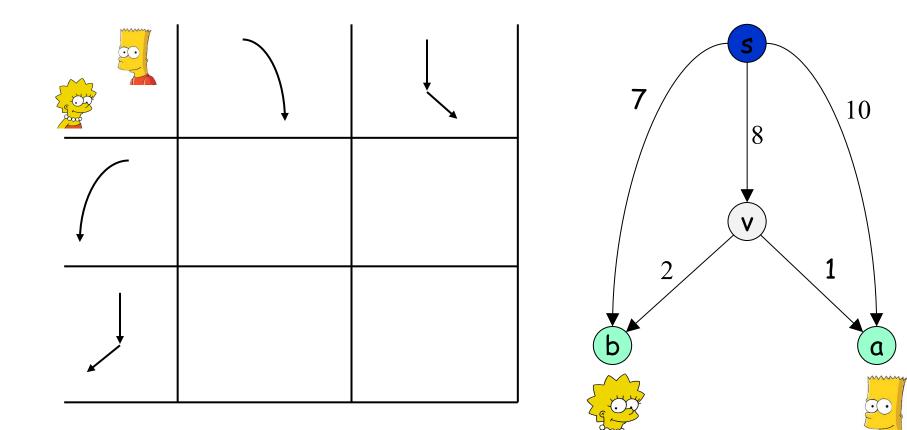
Two players need to transmit messages from *s* Player 1 *needs* to reach *a* Player 2 *needs* to reach *b*

The strategy space of $\frac{3}{2}$: { { $\langle s,v \rangle, \langle v,a \rangle$ }, { $\langle s,a \rangle$ } }

The strategy space of 🔗 : { {<s,b>} , {<s,v>, <v,b>} }

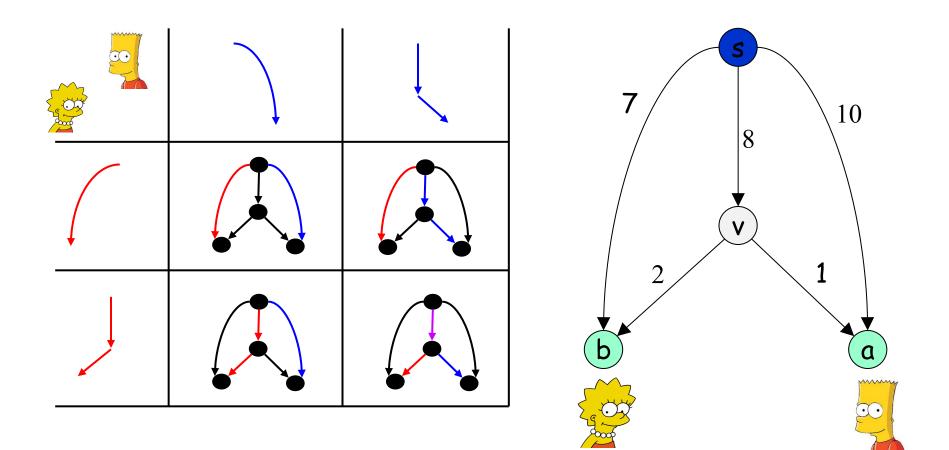


Four possible profiles in our example:



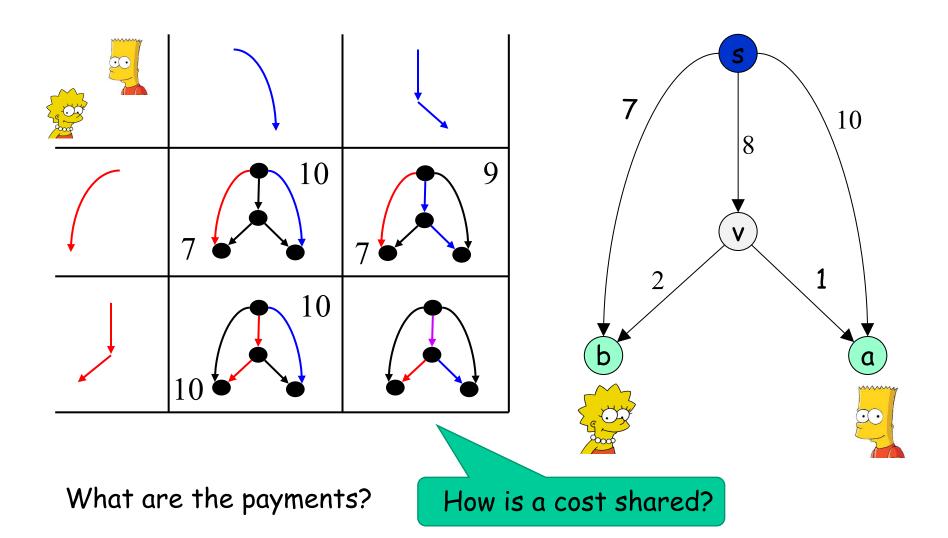
What are the payments?

Four possible profiles in our example:

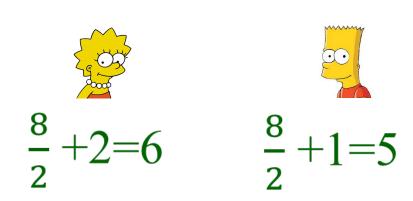


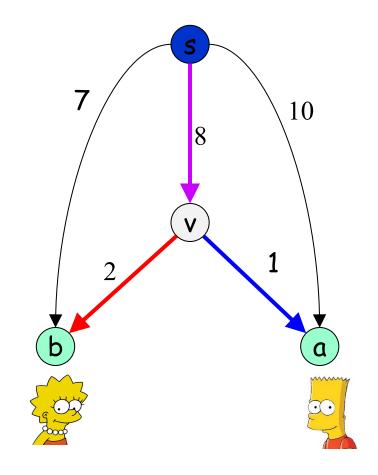
What are the payments?

Four possible profiles in our example:

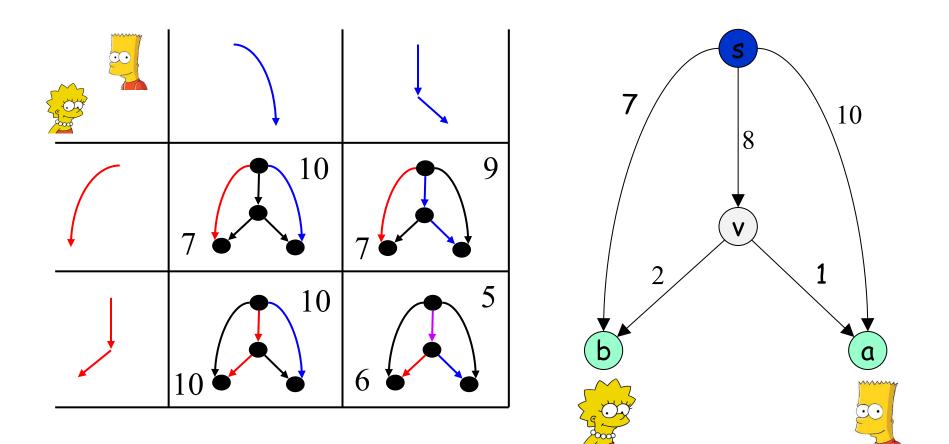


Players that use the same channel share its cost:





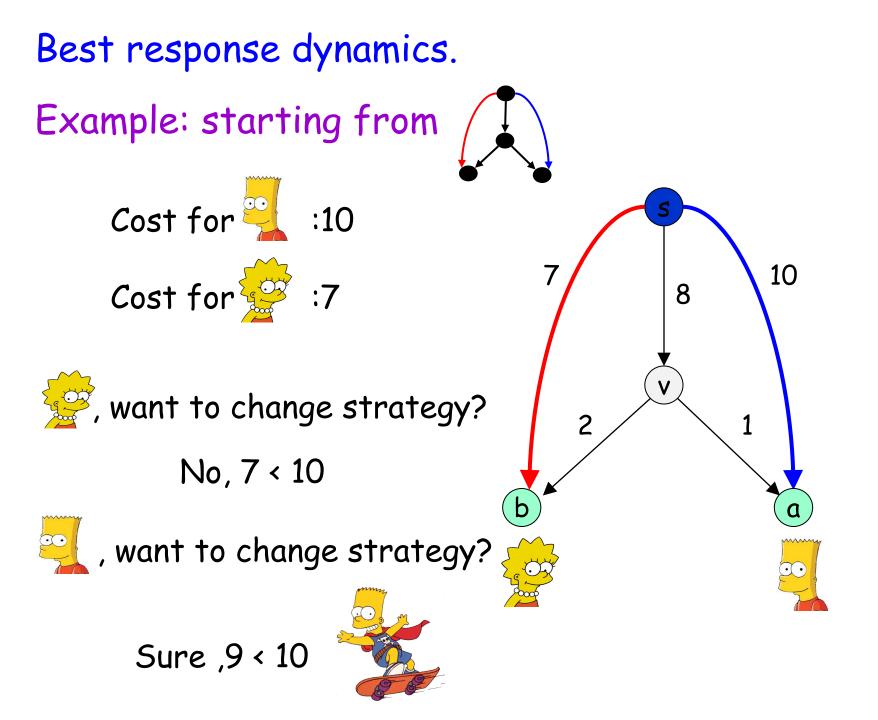
Four possible profiles in our example:



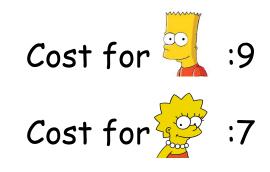
Best response dynamics (BRD):

- A local search method: in each step some player is chosen and plays his best-response strategy, given the strategies of the others.

- BRD converges when no player wants to change his strategy.

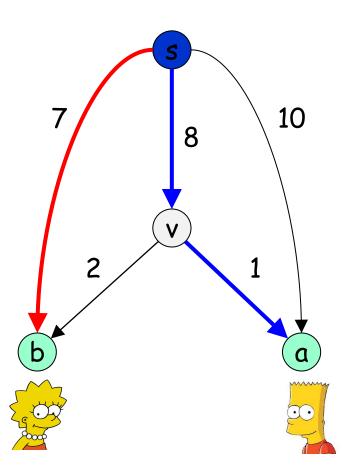


Best response dynamics.

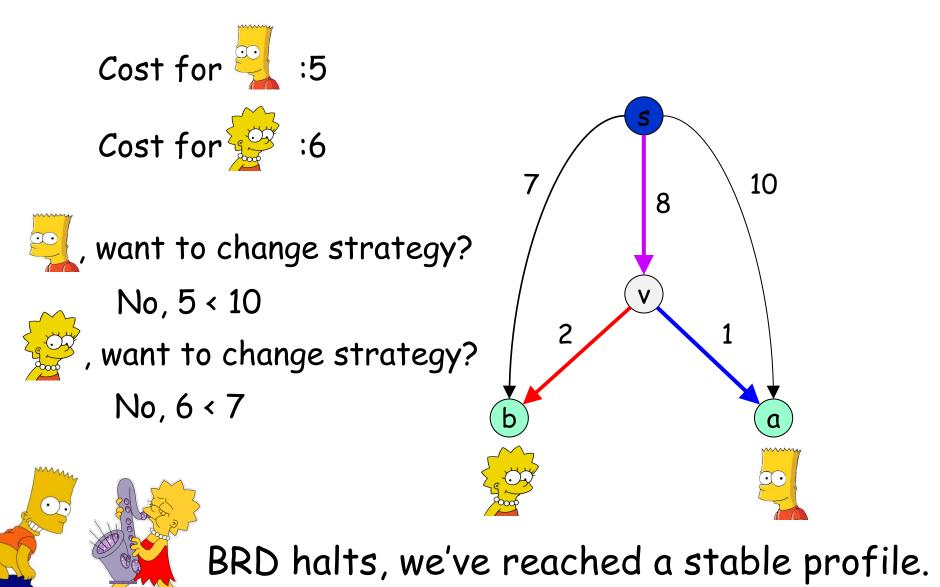


want to change strategy?

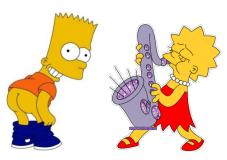
Yes, 6 < 7



Best response dynamics.



Nash Equilibria (NE): a profile of strategies such that no player can benefit from changing to another strategy (assuming the other players stay with their strategies).



BRD halts, we've reached a stable profile.

Interesting questions:

- Does best response dynamics always converge?

Yes! In all network formation games.

Proof: potential functions.

If profile P' is obtained by applying a best-response in profile P, then $\Phi(P') < \Phi(P)$.

Interesting questions:

- Does best response dynamics always converge?
- Will we reach a good Nash equilibrium?

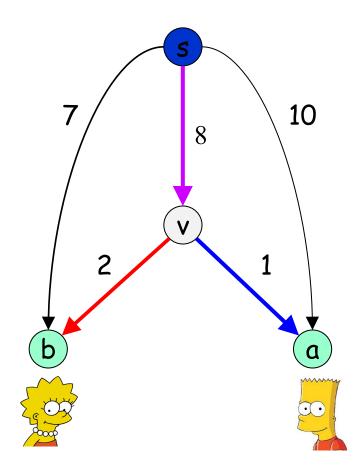
What is "good"?

Social optimum (SO): minimizes the sum of the payments of all players together.

Good: equal (or at least close) to the social optimum.

How much do we lose from the absence of a centralized authority?

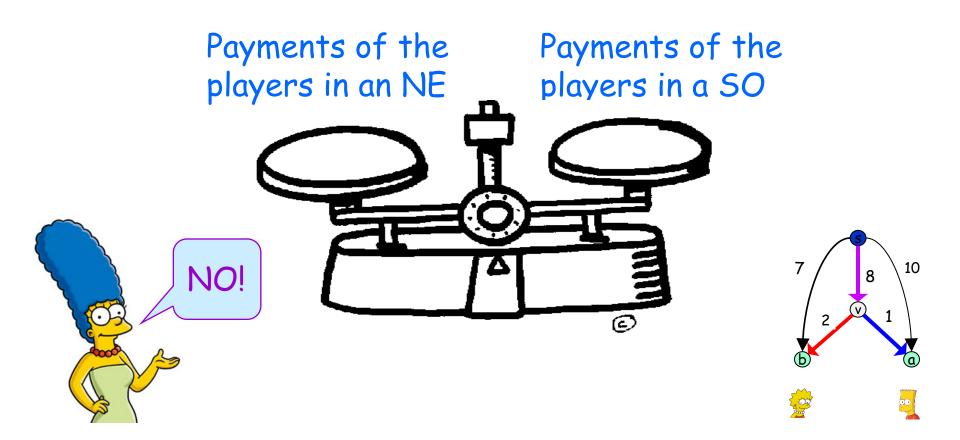
In our example:

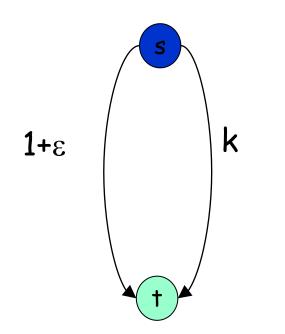


SO = NE = 11

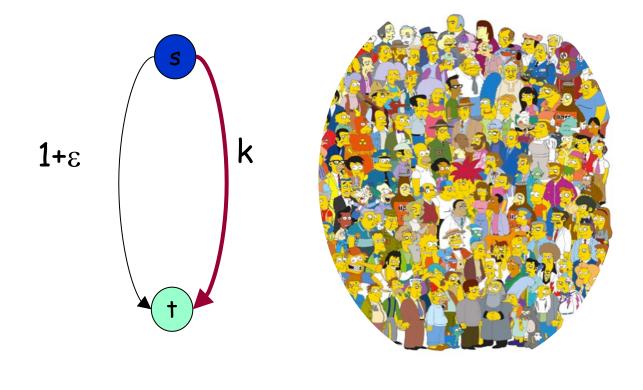
Interesting questions:

Will we reach a good Nash equilibrium?

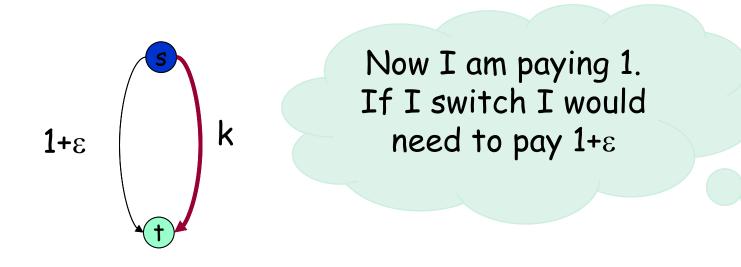




- k players, all want to route from s to (†
- All k players start in the channel that costs k.

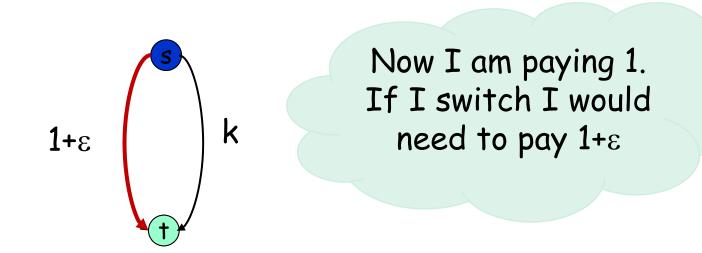


Each player pays
$$\frac{k}{k}=1$$



No one wants to switch!
A very bad NE.
Price of Anarchy = k

PoA: worst NE / SO.



No one wants to switch!
A very bad NE.
Price of Anarchy = k

- But, a good NE does exist.

For every network formation game, there exists a good NE – one whose cost is at most H_{k} . SO.

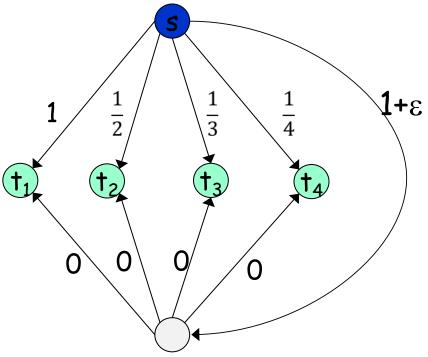
$$H_0 = 0,$$

 $H_k = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} \approx \ln k$

Price of stability: best NE / SO.

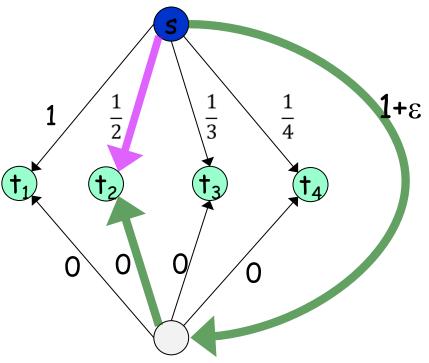
H_k is tight...

Four players want to route in the following network:



Four players want to route in the following network:

Each player has two possible strategies: A direct edge or via the vertex at the bottom.



 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ **]+**2 (+2) \mathbf{t}_4 0 \mathbf{O}

A profile that attains the social optimum:

Does there always exist a good NE?

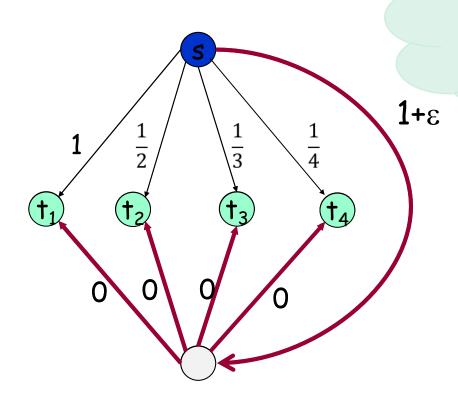
Note: it costs $1+\varepsilon$.

In this profile each player pays $\frac{1}{4}$ + ε .

 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ **1+**E (+2) \mathbf{t}_4 U \mathbf{O}

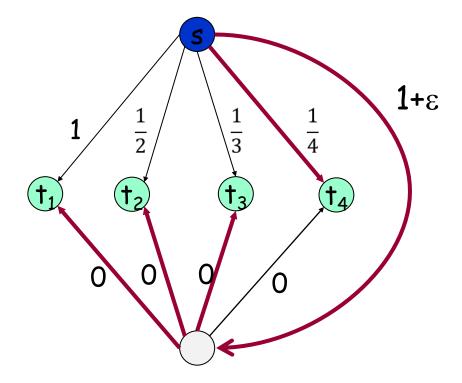
A profile that attains the social optimum:

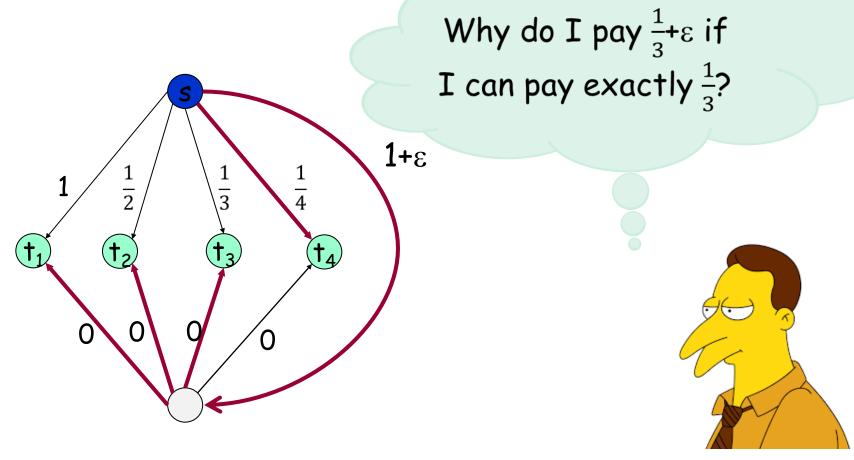
But this is not an NE!



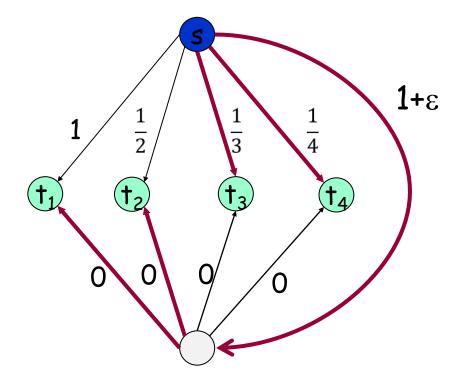
Why do I pay $\frac{1}{4}$ + ε if I can pay exactly $\frac{1}{4}$?

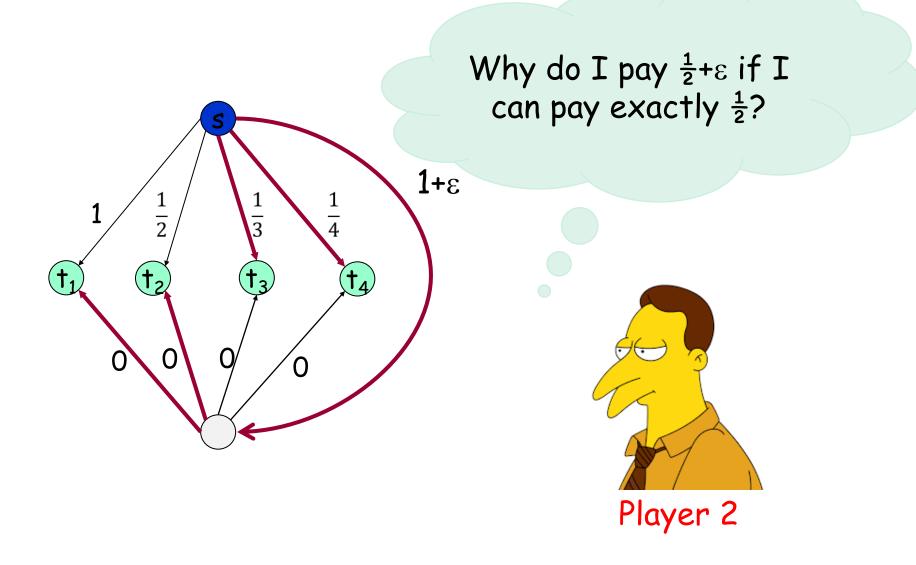
Player 4

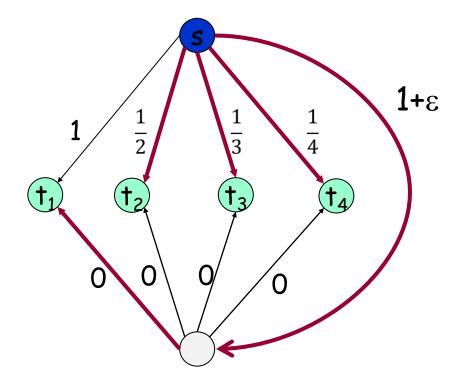


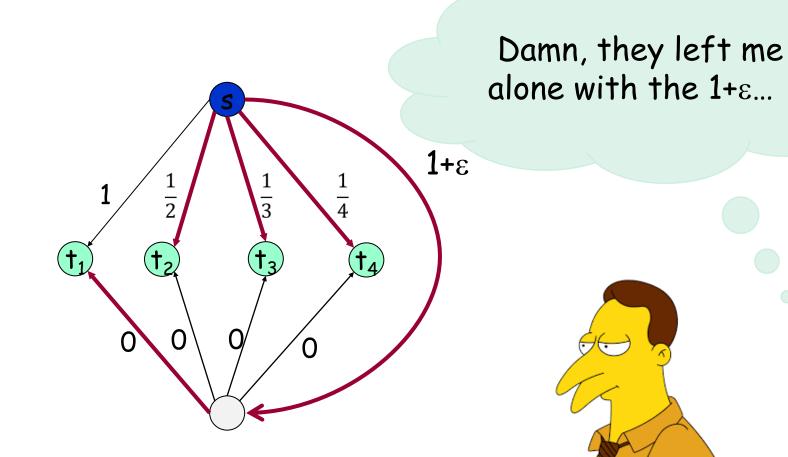


Player 3

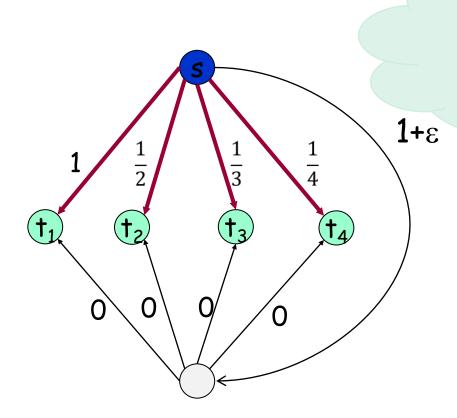






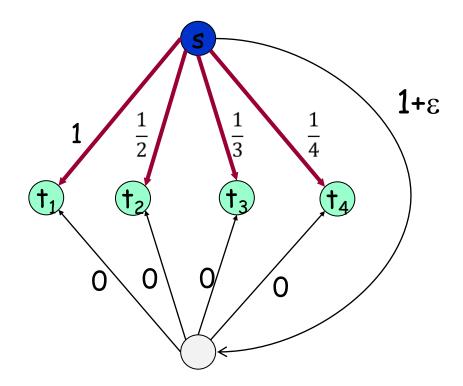


Player 1



Damn, they left me alone with the 1+ ε ...

Player 1



The price of the only stable (NE) profile: $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$

There is no good NE!

So, network formation games:

- Players have reachability objectives.
- Players that share a channel, share its cost.
- Nash Equilibrium (NE): a stable profile in which no player has an incentive to change his strategy
 always exists in network formation games.
- Social Optimum (SO): a profile that minimizes the players' payments.
- Price of anarchy: worst NE/SO.
 PoA=k in network formation games.
- Price of stability: best NE /SO. PoS = $H_k \approx \log k$ in network formation games.

BTW: [Avni, Kupferman, Tamir, 2013]

- Players may have regular objectives (in a labeled network).
- Strategies: paths that need not be simple.
- Players that share a channel, share its cost proportionally.
- An NE need not exists
- PoS=PoA=k.

Back to Rational Synthesis

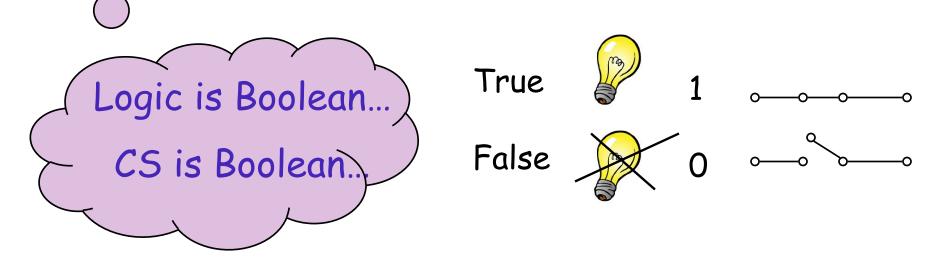
A stable (NE) profile $P = \langle f_0, ..., f_k \rangle$:

for every i, if φ_i is not satisfied in P, then φ_i is not satisfied also in P[i \leftarrow f'_i]= $\langle f_0, ..., f'_i, ..., f_k \rangle$, for all alternative strategies f'_i for P_i.

The objectives are Boolean!

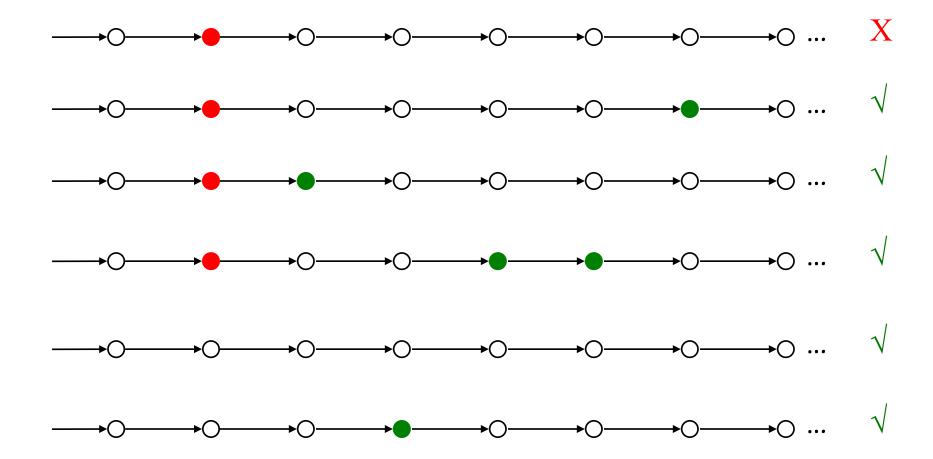
0

Notwork formation games: quantitative objectives!



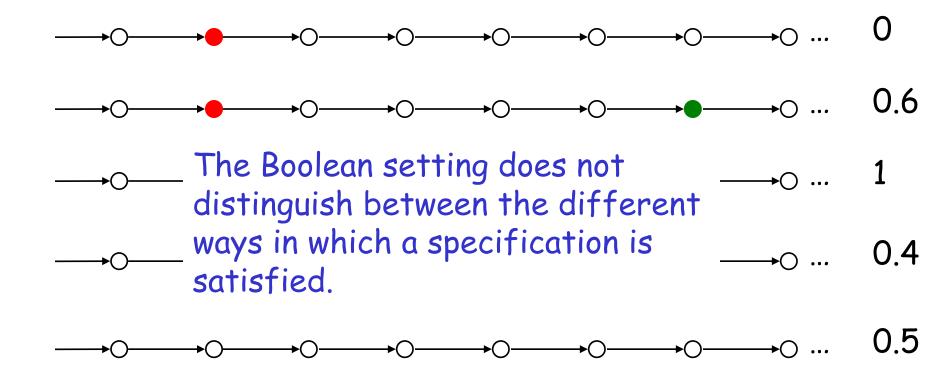
Is satisfaction really Boolean?

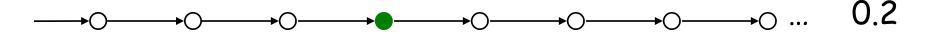
ALWAYS (request \rightarrow EVENTUALLY grant)



Is satisfaction really Boolean?

ALWAYS (request \rightarrow EVENTUALLY grant)





Behavioral quality: [Almagor, Boker, Kupferman 2014]

The logics LTL[F] and LTL[D]: multi-valued extensions of LTL.

LTL[F]:

The satisfaction value of an LTL[F] formula is in [0,1].

0: "very bad". 1: very good.

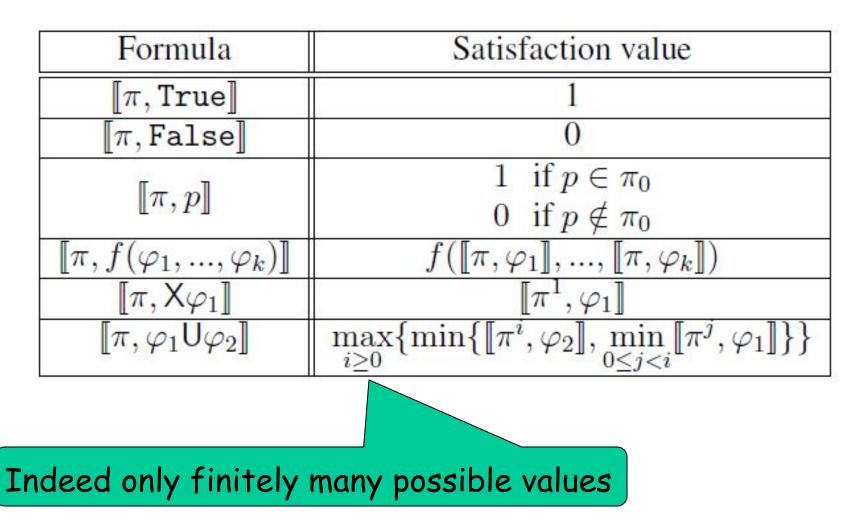
F: a set of propositional-quality operators.

A k-ary operator $f:[0,1]^k \rightarrow [0,1]$

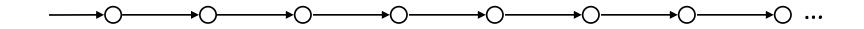
Examples: $x \wedge y \min(x,y)$, $x \vee y \max(x,y)$, $\neg x 1 - x$

Semantics of LTL[F]:

 $[[\pi, \psi]]$: the satisfaction value of ψ in π .

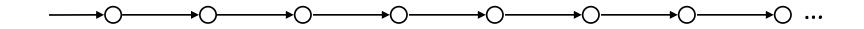


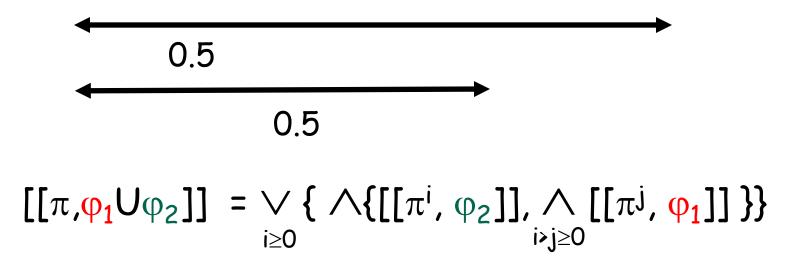
 $[[\pi, \varphi_1 \cup \varphi_2]] = \max_{i \ge 0} \{\min\{[[\pi^i, \varphi_2]], \min_{i > j \ge 0} \{[[\pi^j, \varphi_1]]\}\}\}$



 $[[\pi, \varphi_1 \cup \varphi_2]] = \bigvee_{i \ge 0} \{ \bigwedge_{i > j \ge 0} [[\pi^i, \varphi_2]], \bigwedge_{i > j \ge 0} [[\pi^j, \varphi_1]] \} \}$

 $[[\pi, \varphi_1 \cup \varphi_2]] = \max_{i \ge 0} \{\min\{[[\pi^i, \varphi_2]], \min_{i > j \ge 0} \{[[\pi^j, \varphi_1]]\}\}\}$





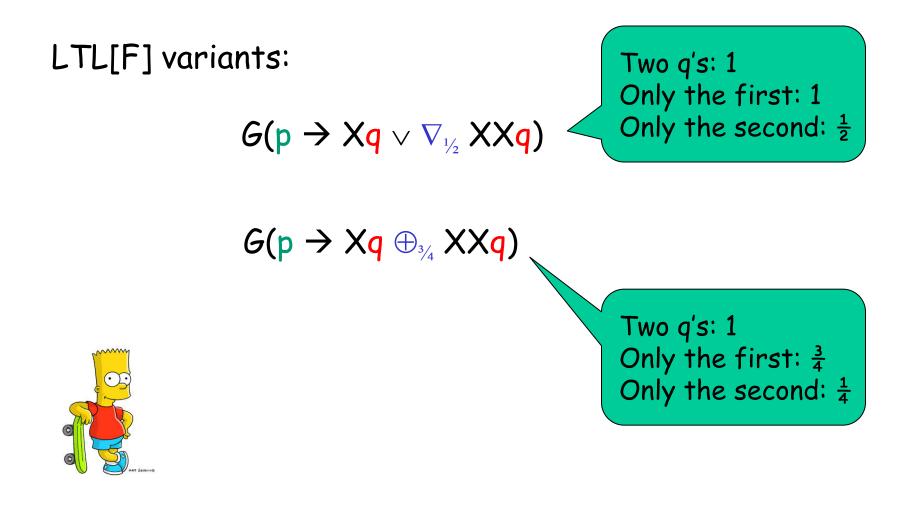
Two useful quality operators:

For a parameter λ in [0,1]: $[[\pi, \nabla_{\lambda} \phi]] = \lambda \cdot [[\pi, \phi]].$ $[[\pi, \phi_1 \bigoplus_{\lambda} \phi_2]] = \lambda \cdot [[\pi, \phi_1]] + (1-\lambda) \cdot [[\pi, \phi_2]].$

Prioritize different behaviors

 $\phi_{1}\, \lor\, \nabla_{{}^{\scriptscriptstyle 3\!/_{\!\!\!\!\!\!4}}}\,\phi_{2}$:

If ϕ_1 holds, the satisfaction value is 1. If only ϕ_2 holds, the satisfaction value is $\frac{3}{4}$. If none of them holds, the satisfaction value is 0. Consider $G(p \rightarrow Xq \vee XXq)$.



Back to Rational Synthesis

- A stable (NE) profile $P = \langle f_0, \dots, f_k \rangle$:
- for every i, if $[[P,\varphi_i]]=v$, then $[[P',\varphi_i]] \le v$ for all profiles P'=P[i \leftarrow f'_i].
- Consider a profile $P = \langle f_0, ..., f_k \rangle$.
- utility(P) = sum of satisfaction values =
- =[[P,ψ]]+[[P,φ_1]]+ ... + [[P,φ_k]].
- SO: max P {utility(P)}.
- PoS: SO/ utility of best NE.
- PoA: SO / utility of worst NE.
- What are they in rational synthesis?

Note: in NFG

it was dual

Cooperative vs. Non-cooperative RS

Input: objectives ψ and $\varphi_1, \dots, \varphi_k$.

Cooperative rational synthesis:

0

Output: a stable profile $\langle f_0, \dots, f_k \rangle$ that satisfies ψ .

Non-cooperative rational synthesis:

Output: a strategy f_0 such that every stable profile $\langle f_0, ..., f_k \rangle$ satisfies ψ .

What are the prices of stability and anarchy in rational synthesis?

Price of Anarchy:

 P_1, \dots, P_k assign values to x_1, \dots, x_k

 $\varphi_{1,\ldots,\varphi_{k-1}}: \varphi_{i} = \nabla_{\alpha} (\mathbf{x}_{i} \wedge \neg \mathbf{x}_{k})$ $\alpha = (1-\varepsilon)/k-1$ $\varphi_{k} = \nabla_{\beta} (\mathbf{x}_{k} \vee (\mathbf{x}_{1} \wedge \mathbf{x}_{2} \wedge ... \wedge \mathbf{x}_{k-1}))$ β=ε P_1 P_k P_0 SO: TTT...TFP₂ P_3 $\varphi_{1},...,\varphi_{k-1}$: (1- ε)/k-1 utility: 1 *φ***k**∶ε o Worst NE: FFF...FT Ο utility: ε $\varphi_{1},...,\varphi_{k-1} = 0$ $\varphi_k: \varepsilon$ \bigcirc SO/worst NE = $1/\epsilon$ -- unbounded! PoA:

Price of Anarchy:

$P_1,,P_k$ assign values to $x_1,,x_k$	
$\varphi_1, \dots, \varphi_{k-1}$: $\varphi_{i} = \nabla_{\alpha} \left(x_{i} \land \neg x_{k} \right)$	α =(1-ε)/k-1
$\varphi_{k} = \nabla_{\beta} (\mathbf{x}_{k} \lor (\mathbf{x}_{1} \land \mathbf{x}_{2} \land \land \mathbf{x}_{k-1}))$	β= ε
) is stable> SO is best NE.
SO: TTTTF be	st/worst NE is unbounded.
$\varphi_1, \dots, \varphi_{k-1}$: (1-ε)/k-1 φ_k :ε	utility: 1
Worst NE: FFFFT	Cooperative RS may be unboundedly better than non-cooperative RS!
$\varphi_1,\ldots,\varphi_{k-1}$: 0 φ_k : ε	utility: ε

PoA: SO/worst NE = $1/\epsilon$ -- unbounded!

Price of Stability:

 P_1, \dots, P_k assign values to x_1, \dots, x_k

$$\varphi_{1}, \dots, \varphi_{k-1} \colon \varphi_{i} = \nabla_{\alpha} \left(x_{1} \wedge x_{2} \wedge \dots \wedge x_{k-1} \wedge x_{k} \right) \qquad \alpha = (1-\varepsilon)/k-1$$
$$\varphi_{k} = \nabla_{\beta} \left(x_{1} \wedge x_{2} \wedge \dots \wedge x_{k-1} \wedge \neg x_{k} \right) \qquad \beta = \varepsilon$$

stable? 50: TTT...T no! $\varphi_{1},\ldots,\varphi_{k-1}$ (1- ε)/k-1 φ_{k} :0 utility: $1-\varepsilon$ Best NE: TTT...TF φ_k : ε utility: ε $\varphi_{1},...,\varphi_{k-1} = 0$ SO/best NE = $(1-\varepsilon)/\varepsilon$ -- unbounded! PoS:

To Sum Up:

- Synthesis of open systems: winning strategy in a zero-sum game.

- Rationality assumption on the environment. Transition to non-zero-sum game.

- Classical game theory: quantitative utilities. Price of stability, price of anarchy.

- LTL[F]: quantitative specifications.
- Cooperative rational synthesis: PoS, unbounded.

- Non-cooperative rational synthesis: PoA, unbounded.

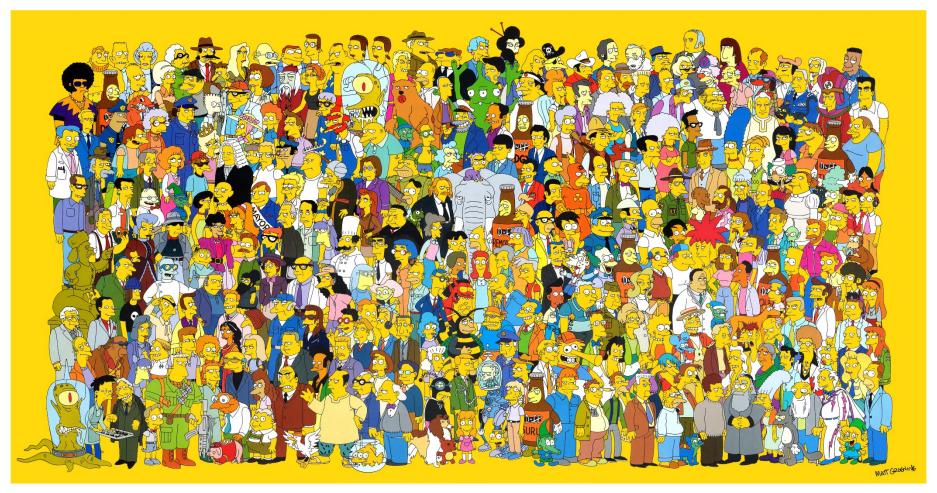
We did not see:

- Solving rational synthesis: connection with strategy logic.

- Rational verification: does S satisfy ψ in every rational? [Wooldridge, Gutierrez, Harrenstein, Marchioni, Perelli 2016]

- Fixing systems by making them stable.

- Richer settings: incomplete information, probability, other solution concepts.



Thank you