Cyberphysical Systems (Autonomous Systems) in the Intersection of Controls, Learning and Formal Methods

Ufuk Topcu

The University of Texas at Austin

u-t-autonomous.info

What are cyberphysical systems (CPS)?

A cyberphysical system...

...consists of a collection of computing devices communicating with one another and...

...interacting with the physical world via sensors and actuators in a feedback loop.

Some properties of cyberphysical systems

Reactivity and interaction with the physical world

A reactive system interacts with its environment in an ongoing manner via inputs (e.g., through sensors) and outputs (e.g., through actuators).

Heterogeneity

Multiple, integrated functionality.

Real-time decisions

Delays in computation and communication are critical.

Concurrency

Multiple threads (components or processes) execute simultaneously, exchanging information to achieve a desired goal.

What makes autonomy hard?

dynamic environment

complex missions

heterogenous decisions

run-time faults

integrity of critical information

verifiability

imperfect perception

unknown environments

variations in user characteristics

Why are we not there yet? What is still missing?

Autonomous systems are nobody's comfort zone: We need hybrid solutions.

Outline

Correct-by-construction synthesis of hierarchical control protocols

• formal methods \leftrightarrow controls

Verifiable reinforcement learning

formal methods ↔ learning

What would it take to construct the control software of an autonomous system **in an hour** —**as opposed to days or even** weeks—to deliver a mission?

How can an autonomous system learn how to execute a new mission in an a priori unknown environment efficiently and safely?

Planning in POMDPs

- formal methods ↔ convex optimization
- formal methods ↔ learning

How can we cope with imperfection and/or limitations in run-time information?

A (sample) synthesis problem

Given:

System model

- -both continuous & discrete evolution
- -actuation limitations
- -modeling uncertainties & disturbances

Specifications in "temporal logic"

- -high-level requirements & goals
- -assumptions about the a priori unknown, dynamic environment

Automatically synthesize a control protocol that

- manages the system behavior;
- reacts to changes in allowable external environment; and
- is provably correct with respect to the specifications.

De-tour: Specifying behavior with temporal logic

Propositional Logic + Temporal Operators

- Reason about infinite sequences $\sigma = s_0 s_1 s_2 \dots$ of states
- Many different dialects of temporal logic (with probabilistic and epistemic modalities)
- Specify safe, allowable, required, or desired behavior of system and/or environment.

Coverage:

$$\Box \Diamond uav_1 = w_3 \land \Box \Diamond uav_1 = w_4 \land \Box \Diamond uav_1 = w_5 \land \\ \Diamond uav_2 = w_1 \land \Diamond uav_2 = w_2 \land \Diamond uav_2 = w_6$$

Sequencing:

 $\Diamond \left(uav = w_1 \land \Diamond \left(uav = w_2 \land \Diamond uav = w_3 \right) \right)$

Coordination with mutual exclusion:

Temporal Logic

$$egin{aligned}
egin{aligned}
egi$$

Sequencing with avoidance:

$$igta uav = w_1 \wedge igta uav = w_2 \wedge igta uav = w_3 \wedge \
eg w_2 \ \mathsf{U} \ w_1 \wedge
eg w_3 \ \mathsf{U} \ w_2$$

Never after:

$$\Box(uav = w_1
ightarrow \bigcirc \Box \neg uav = w_1)$$

A Solution: Hierarchical Control Structure

Theorem: *Correctness provably guaranteed* by the construction of the abstractions and splitting of the specifications

Zoom in a bit...

 $x_{t+1} = f(x_t, w_t, u_t)$ $x \in \mathcal{X}, u \in \mathcal{U}, w \in \mathcal{W}$

 $\exists u \in \mathcal{U} \text{ and finite } T > 0 \text{ s.t.}$ $x_t \in \mathcal{X}_{\text{initial}} \cup \mathcal{X}_{\text{target}} \quad \forall t = 0, \dots, T,$ $x_T \in \mathcal{X}_{\text{target}}$ for all $x_0 \in \mathcal{X}_{\text{initial}} \text{ and } w \in \mathcal{W}$?

Correctness: For any discrete run satisfying the specification, there exists an admissible control signal leading to a continuous trajectory satisfying the specification.

Proof — "correct by construction":

Constructive \rightarrow Finite-state model + Continuous control signals.

Specify + Synthesize

Outline

Correct-by-construction synthesis of hierarchical control protocols

• formal methods \leftrightarrow controls

Verifiable reinforcement learning

formal methods ↔ learning

What would it take to construct the control software of an autonomous system **in an hour** —**as opposed to days or even** weeks—to deliver a mission?

How can an autonomous system learn how to execute a new mission in an a priori unknown environment efficiently and safely?

Planning in POMDPs

- formal methods ↔ convex optimization
- formal methods ↔ learning

How can we cope with imperfection and/or limitations in run-time information?

Need for learning

Conventional Synthesis

Known/fixed temporal logic constraints + reward structure

Synthesis + Learning

- 1 No a priori knowledge about environment. But, online (and offline) data available.
- 2 Operators do not "speak" temporal logic or cannot express complex reward structures.

Controller itself may be learned from data or examples.

Learning subject to temporal logic specifications

Inverse reinforcement learning

new piece of problem data: temporal logic **specification** ϕ

Does the learned strategy satisfy φ ?

Is φ violated during learning?

Safe reinforcement learning via shielding

Provable properties

Examples of shielded reinforcement learning

Deep reinforcement learning with a neural network of three layers and Boltzmann exploration

without shielding
(40 min training + 1600 crashes)

with shielding
(1 min training + no crashes)

Reinforcement learning for PACMAN

Can task similarities help learn faster?

Transfer of temporal logical similarities improves data efficiency by orders of magnitude.

- + transfer of extended Q-functions
- + "informative" MITL formulas
- + extended state space
- + maximize classification rate in MITL inference

Q-learning

Inverse reinforcement learning

Inverse reinforcement learning with high-level task as side information

$$\begin{aligned} \varphi_{\rm cs} &= \varphi_{\rm init} \to (\varphi_{\rm safe} \land \varphi_{\rm goal}) \\ \varphi_{\rm init} &= \neg r \land \neg y \\ \varphi_{\rm safe} &= \neg r \mathcal{U} y \\ \varphi_{\rm goal} &= \left((\neg y) \mathcal{U} \left(\diamondsuit g_1 \land \diamondsuit g_2 \right) \right) \land (\diamondsuit y) \end{aligned}$$

Task knowledge as side
information(encoded as a temporal
logic formula φ)

Inverse reinforcement learning with high-level task as side information

 $R = [f_1 \cdots f_k] \theta$ reward parameterized in θ given the features f_1, \dots, f_k

 $Q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R(s_{k},a_{k}) | s_{0}, a_{0} \right]$

expected discounted reward with policy π from state s and action a

 $\pi_Q(s, a) = \frac{\exp(Q(s, a))}{\sum_{a'} \exp(Q(s, a'))} \quad \text{softmax policy (randomized)}$

Assumptions:

- •Demonstrations are samples of a softmax, randomized policy.
- •This <u>unknown</u> policy satisfies φ with probability higher than a threshold.

min
$$J^{\text{mle}}(\pi_{\theta}|M,D)$$

s.t. Bellman equation (θ, M, D)

Inverse reinforcement learning with high-level task as side information

 $R = [f_1 \cdots f_k] \theta$ reward parameterized in θ given the features f_1, \dots, f_k

 $Q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R(s_{k},a_{k}) | s_{0}, a_{0} \right]$

expected discounted reward with policy π from state s and action a

 $\pi_Q(s, a) = \frac{\exp(Q(s, a))}{\sum_{a'} \exp(Q(s, a'))} \quad \text{softmax policy (randomized)}$

Assumptions:

- •Demonstrations are samples of a softmax, randomized policy.
- •This <u>unknown</u> policy satisfies φ with probability higher than a threshold.

Example

Probability of satisfying the specification for the given initial state: Poor generalization without side information
without side information
without side information

Major increase in probability of satisfaction at negligible reduction in likelihood

Outline

Correct-by-construction synthesis of hierarchical control protocols

• formal methods \leftrightarrow controls

Verifiable reinforcement learning

formal methods ↔ learning

What would it take to construct the control software of an autonomous system **in an hour** —**as opposed to days or even** weeks—to deliver a mission?

How can an autonomous system learn how to execute a new mission in an a priori unknown environment efficiently and safely?

Planning in POMDPs

- formal methods ↔ convex optimization
- formal methods ↔ learning

How can we cope with imperfection and/or limitations in run-time information?

A few words on POMDPs

POMDPs — partially observable MDPs: Like MDPs but with limited information

Can distinguish only between the colors of the states

Synthesis in POMDPs is hard.

- Undecidable as infinite memory may be necessary.
- Restriction to finite-memory strategies yields decidable yet still hard problems (and "suboptimality").
- Finite-memory strategies: Randomized may be better than deterministic.

Computing finite-state controllers for POMDPs by parameter synthesis

- The set of all finite-state controllers for a POMDP and a fixed memory bound can be represented by a parametric Markov chain (pMC).
- If POMDP states share an observation, the corresponding pMC states will share parameters at their transitions.
- A strategy in the POMDP, corresponds to a parameter instantiation in the pMC.

1111	ne-state Controllers of POWDPS via Parameter Synthesis
	Sebastian Junges ¹ , Nils Jansen ² , Ralf Wimmer ³ , Tim Quatmann ¹ ,
	Leonore Winterer", Joost-Pieter Katoen ² , and Bernd Becker"
	² Rw IH Aacnen University, Aacnen, Germany
	³ Albert Ludwige University, Nijmegen, The Netherlands
	Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany

POMDP under FSC	pMC
states \times memory	states
same observation	same parameter
strategy	parameter instantiation
permissive strategy	region of instantiations

POMDP

Corresponding pMC with Parameters p1,p2 and q

Synthesis in parametric MDPs (pMDPs)

Safety specification $\varphi = \mathbb{P}_{\leq \lambda}(\Diamond T), \ T \subseteq S$

Performance specification $\psi = \mathbb{E}_{\leq \kappa}(\Diamond G), \ G \subseteq S$

Objective function $f: V \to \mathbb{R}$

Parameters $p_1, p_2, \ldots, p_n \in V$

Given pMDP \mathcal{M} , find a well-defined valuation of parameters and a scheduler $\sigma \in Sched^{\mathcal{M}}$ such that $\mathcal{M}^{\sigma} \models \varphi \land \psi$

and value for objective function $f \colon V \to \mathbb{R}$ is minimal.

Solution as a "nonlinear program"

. .

$$\begin{array}{lll} \mbox{minimize} & f & \mbox{over parameters} \\ \mbox{subject to} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ &$$

Ufuk Topcu

 \forall

A useful observation

Question: Can we somehow exploit this structure and solve the parameter synthesis problem as a convex optimization problem (maybe bunch of them)?

Workflow

Convexification: relaxation + lifting

Geometric program (with relaxation tightening)

minimize

$$\sum_{p \in V} \frac{1}{p} + \sum_{\bar{p} \in L} \frac{1}{\bar{p}} + \sum_{s \in S, \alpha \in Act(s)} \frac{1}{\sigma_{s,\alpha}}$$

regularization

subject to

$$\frac{p_{s_I}}{\lambda} \le 1$$
$$\frac{c_{s_I}}{\kappa} \le 1$$

$$\forall s \in S. \quad \sum_{\alpha \in Act(s)} \sigma^{s,\alpha} \le 1$$

Theorem: The solution to the geometric program gives a well-defined scheduler and parameter instantiation. But it may be sub-optimal.

$$\forall s \in S \,\forall \alpha \in Act(s). \quad \sum_{s' \in S} \mathcal{P}(s, \alpha, s') \leq 1$$

$$\forall s \in S \setminus T. \quad \frac{\sum_{\alpha \in Act(s)} \sigma^{s, \alpha} \cdot \sum_{s' \in S} \mathcal{P}(s, \alpha, s') \cdot p_{s'}}{p_s} \leq 1$$

$$\forall s \in S \setminus G. \quad \frac{\sum_{\alpha \in Act(s)} \sigma^{s, \alpha} \cdot \left(c(s, \alpha) + \sum_{s' \in S} \mathcal{P}(s, \alpha, s') \cdot c_{s'}\right)}{c_s} \leq 1$$

Workflow

Compare against benchmarks

Alternative tools for optimization TO even in the smallest instances

				proposed method		only feasibility
Benchmark	#states	#par	specs	MOSEK (s)		Z3
BRP (pMC)	5382	2	$\mathrm{EC},\mathbb{P},*$	23.17	(6.48)	_
	112646	2	$\mathrm{EC},\mathbb{P},*$	3541.59	(463.74)	—
	112646	4	$\mathrm{EC}, \mathbb{P}, \ast$	4173.33	(568.79)	—
	5382	2	EC,\mathbb{P}	3.61		904.11
	112646	2	EC,\mathbb{P}	479.08		TO
NAND (pMC)	4122	2	$\mathrm{EC},\mathbb{P},\ast$	14.67	(2.51)	—
	35122	2	$\mathrm{EC}, \mathbb{P}, \ast$	1182.41	(95.19)	—
	4122	2	EC,\mathbb{P}	1.25		1.14
	35122	2	EC,\mathbb{P}	106.40		11.49
BRP (pMDP)	5466	2	$\mathrm{EC}, \mathbb{P}, \ast$	31.04	(8.11)	—
	112846	2	$\mathrm{EC}, \mathbb{P}, \ast$	4319.16	(512.20)	—
	5466	2	EC,\mathbb{P}	4.93		1174.20
	112846	2	EC,\mathbb{P}	711.50		TO
CONS (pMDP)	4112	2	$\mathrm{EC},\mathbb{P},*$	102.93	(1.14)	—
	65552	2	$\mathrm{EC},\mathbb{P},*$	TO		—
	4112	2	EC,\mathbb{P}	6.13		TO
	65552	2	EC,\mathbb{P}	1361.96		TO

More benchmarks

(using a related but different method)

	Problem			Info			PSO			SMT	CCP		
	Set	Inst	Spec	States	Trans.	Par.	tmin	tmax	tavg	t	t	solv	iteı
	Brp	16,2	$\mathbb{P}_{\leq 0.1}$	98	194	2	0	0	0	40	0	30%	
noromo	trio	$512,\!5$	$\mathbb{P}_{\leq 0.1}$	6146	12290	2	24	36	28	TO	33	24%	
parame	vds	10,5	$\mathbb{P}_{\leq 0.1}$	42	82	2	4	5	5	8	4	2%	4
IVICS	d	5,10	$\mathbb{P}_{\leq 0.05}$	10492	20982	2	21	51	28	TO	22	21%	2
	Zeroconf	10000	$\mathbb{E}_{\leq 10010}$	10003	20004	2	2	4	3	TO	57	81%	÷
	GridA	4	$\mathbb{P}_{\geq 0.84}$	1026	2098	72	11	11	11	TO	22	81%	11
	GridB	8,5	$\mathbb{P}_{\geq 0.84}$	8653	17369	700	409	440	427	TO	213	84%	٤
	GridB	$10,\!6$	$\mathbb{P}_{\geq 0.84}$	16941	33958	$\boldsymbol{1290}$	533	567	553	TO	426	84%	7
	GridC	6	$\mathbb{E}_{\leq 4.8}$	1665	305	168	261	274	267	TO	169	90%	23
	Maze	5	$\mathbb{E}_{\leq 14}$	1303	2658	590	213	230	219	TO	67	89%	8
	Maze	5	$\mathbb{E}_{\leq 6}$	1303	2658	590	-	_	ТО	TO	422	85%	97
	Pe ^e	7	$\mathbb{E}_{\leq 6}$	2580	5233	$\boldsymbol{1176}$	_	_	ТО	TO	740	90%	60
		5,2	$\mathbb{E}_{\leq 11.5}$	21746	63158	2420	312	523	359	TO	207	39%	÷
	Netw	5,2	$\mathbb{E}_{\leq 10.5}$	21746	63158	2420	-	—	ТО	TO	210	38%	4
	Netw	$4,\!3$	$\mathbb{E}_{\leq 11.5}$	38055	97335	$\boldsymbol{4545}$	-	—	ТО	TO	MO	-	
	Repud	8,5	$\mathbb{P}_{\geq 0.1}$	1487	3002	360	16	22	18	TO	4	36%	2
	Repud	8,5	$\mathbb{P}_{\leq 0.05}$	1487	3002	360	273	324	293	TO	14	72%	4
	Repud	16,2	$\mathbb{P}_{\leq 0.01}$	790	1606	96	_	—	ТО	TO	15	78%	9
	Repud	16,2	$\mathbb{P}_{\geq 0.062}$	790	1606	96	_	_	ТО	ТО	ТО	-	-
-				Proł	olem				Info				

Synthesis in pMDPs: A Tale of 1001 Parameters

¹ The University of Texas at Austin, Austin, TX, USA*
 ² Radboud University, Nijmegen, The Netherlands
 ³ RWTH Aachen University, Aachen, Germany**

Abstract. This paper considers parametric Markov decision processes (pMDPs) whose transitions are equipped with affine functions over a finite set of parameters. The synthesis problem is to find a parameter valuation such that the instantiated pMDP satisfies a (temporal logic) specification under all strategies. We show that this problem can be formulated as a quadratically-constrained quadratic program (QCQP) and is non-convex in general. To deal with the NP-hardness of such problems, we exploit a convex-concave procedure (CCP) to iteratively obtain local optima. An appropriate interplay between CCP solvers and probabilistic model checkers creates a procedure — realized in the tool PROPheSY — that solves the synthesis problem for models with thousands of parameters.

1 Introduction

The parameter synthesis problem. Probabilistic model checking concerns the automatic verification of models such as Markov decision processes (MDPs). Unremitting improvements in algorithms and efficient tool implementations [14,22,26] have opened up a wide variety of applications, most notably in dependability, security, and performance analysis as well as systems biology. However, at early development stages, certain system quantities such as fault or reaction rates are often not fully known. This lack of information gives rise to parametric models where transitions are functions over real-valued parameters [12,21,27], forming symbolic descriptions of (uncountable) families of concrete MDPs. The parameter synthesis problem is: Given a finite-state parametric MDP, find a parameter

	Pr	oblem	L		Inf	o			PSO		SMT	C	CCP	
	\mathbf{Set}	Inst	Spec	States	Act	Trans.	Par.	tmin	tmax	tavg	t	\mathbf{t} s	solv i	iter
	BRP	4,128	$\mathbb{P}_{\leq 0.1}$	17131	17396	23094	2	45	47	46	TO	39 3	3%	4
	Coin	32	$\mathbb{E}_{\leq 500}$	4112	6160	7692	2	117	119	118	TO	ТО	-	-
parametric	CoinX	32	$\mathbb{E}_{\leq 210}$	16448	24640	30768	2	1196	1222	1208	TO	32 7	78%	3
· MDPs	Zeroconf	1	$\mathbb{P}_{\geq 0.99}$	31402	55678	70643	3	18	19	19	TO	79 8	32%	2
	CSMA	2,4	$\mathbb{E}_{\leq 69.3}$	7958	7988	10594	26	n.s.	n.s.	n.s.	TO	79 8	36%	10
	Virus	-	$\mathbb{E}_{\leq 10}$	809	3371	6741	18	113	113	113	TO	13 7	6%	4
	Wlan	0	$\mathbb{E}_{\leq 580}$	2954	3972	5202	15	n.s.	n.s.	n.s.	ТО	7 7	2%	2

Uncertain POMDPs, through a more visual example

induced uncertain Markov chain

satisfies the specification

transition

Spacecraft motion planning:

Switching between orbits is possible if the orbits are close to each other, but costs fuel.

Uncertain POMDP: Partial observability over the current position of spacecraft, **uncertainty** on the location of other objects and operator

Uncertain POMDPs, through a more visual example

induced uncertain Markov chain

satisfies the specification

transition

set

Spacecraft motion planning:

Switching between orbits is possible if the orbits are close to each other, but costs fuel.

Uncertain POMDP: Partial observability over the current position of spacecraft, **uncertainty** on the location of other objects and operator

Outline

Correct-by-construction synthesis of hierarchical control protocols

• formal methods \leftrightarrow controls

Verifiable reinforcement learning

formal methods ↔ learning

What would it take to construct the control software of an autonomous system **in an hour** —**as opposed to days or even** weeks—to deliver a mission?

How can an autonomous system learn how to execute a new mission in an a priori unknown environment efficiently and safely?

Planning in POMDPs

- formal methods ↔ convex optimization
- formal methods ↔ learning

How can we cope with imperfection and/or limitations in run-time information?

Synthesis is hard. Guess a strategy and verify!

Nils Jansen

Ufuk Topcu

38

What do we get at the end?

Correct, as each strategy prediction is evaluated using model checking.

Not complete, as we may never find a feasible strategy. Obviously, expected!

Numerical examples with LTL constraints

Problem	S	Act	Z
Navigation (c)	c^4	4	256
Delivery (c)	c^2	4	256
Slippery (c)	c^2	4	256
Maze(c)	3c+8	4	7
$\operatorname{Grid}(c)$	c^2	4	2
RockSample[4, 4]	257	9	2
RockSample[5, 5]	801	10	2
RockSample[7, 8]	12545	13	2

			RNN-ł	based Synthesis	PRIS	M-POMDP
Problem	States	Type, φ	Res.	Time (s)	Res.	Time (s)
Navigation (3)	333	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.74	14.16	0.84	73.88
Navigation (4)	1088	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.82	22.67	0.93	1034.64
Navigation (4) [2-FSC]	13373	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.91	47.26	_	-
Navigation (4) [4-FSC]	26741	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.92	59.42	_	-
Navigation (4) [8-FSC]	53477	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.92	85.26	_	_
Navigation (5)	2725	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.91	34.34	MO	МО
Navigation (5) [2-FSC]	33357	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.92	115.16	_	_
Navigation (5) [4-FSC]	66709	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.92	159.61	_	_
Navigation (5) [8-FSC]	133413	$\mathbb{P}^{\mathcal{M}}_{ ext{max}}, arphi_1$	0.92	250.91	_	_
Navigation (10)	49060	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.79	822.87	MO	MO
Navigation (10) [2-FSC]	475053	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.83	1185.41	_	_
Navigation (10) [4-FSC]	950101	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.85	1488.77	_	_
Navigation (10) [8-FSC]	1900197	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.81	1805.22	_	_
Navigation (15)	251965	$\mathbb{P}_{\max}^{\mathcal{M}}, arphi_1$	0.91	1271.80*	MO	MO
Navigation (20)	798040	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_1$	0.96	4712.25*	MO	MO
Navigation (30)	4045840	$\mathbb{P}^{\overline{\mathcal{M}}}_{\mathrm{max}}, arphi_1$	0.95	25191.05*	MO	MO
Navigation (40)	_	$\mathbb{P}_{ ext{max}}^{\overline{\mathcal{M}}}, arphi_1$	TO	ТО	MO	MO
Delivery (4) [2-FSC]	80	$\mathbb{E}_{\min}^{\mathcal{M}}, arphi_2$	6.02	35.35	6.0	28.53
Delivery (5) [2-FSC]	125	$\mathbb{E}_{\min}^{\mathcal{M}}, \varphi_2$	8.11	78.32	8.0	102.41
Delivery (10) [2-FSC]	500	$\mathbb{E}_{\min}^{\mathcal{M}^{+}}, arphi_{2}$	18.13	120.34	MO	MO
Slippery (4) [2-FSC]	460	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_3$	0.78	67.51	0.90	5.10
Slippery (5) [2-FSC]	730	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_3$	0.89	84.32	0.93	83.24
Slippery (10) [2-FSC]	2980	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_3$	0.98	119.14	MO	МО
Slippery (20) [2-FSC]	11980	$\mathbb{P}_{\max}^{\mathcal{M}}, \varphi_3$	0.99	1580.42	MO	МО

Nils Jansen

Numerical examples on standard POMDP benchmarks

		RNN-based Synthesis			PRISM	I-POMDP	pomdpSolve		
Problem	Туре	States	Res	Time (s)	Res	Time (s)	Res	Time (s)	
Maze (1)	$\mathbb{E}_{\min}^{\mathcal{M}}$	68	4.31	31.70	4.30	0.09	4.30	0.30	
Maze (2)	$\mathbb{E}_{\min}^{\mathcal{M}^+}$	83	5.31	46.65	5.23	2.176	5.23	0.67	
Maze (3)	$\mathbb{E}_{\min}^{\mathcal{M}}$	98	8.10	58.75	7.13	38.82	7.13	2.39	
Maze (4)	$\mathbb{E}_{\min}^{\mathcal{M}}$	113	11.53	58.09	8.58	543.06	8.58	7.15	
Maze (5)	$\mathbb{E}_{\min}^{\mathcal{M}^+}$	128	14.40	68.09	13.00	4110.50	12.04	132.12	
Maze (6)	$\mathbb{E}_{\min}^{\overline{\mathcal{M}}^-}$	143	22.34	71.89	MO	MO	18.52	1546.02	
Maze (10)	$\mathbb{E}_{\min}^{\overline{\mathcal{M}}^-}$	203	100.21	158.33	MO	MO	MO	MO	
Grid (3)	$\mathbb{E}_{\min}^{\mathcal{M}}$	165	2.90	38.94	2.88	2.332	2.88	0.07	
Grid (4)	$\mathbb{E}_{\min}^{\overline{\mathcal{M}}^-}$	381	4.32	79.99	4.13	1032.53	4.13	0.77	
Grid (5)	$\mathbb{E}_{\min}^{\overline{\mathcal{M}}^-}$	727	6.623	91.42	MO	MO	5.42	1.94	
Grid (10)	$\mathbb{E}_{\min}^{\mathcal{M}}$	5457	13.630	268.40	MO	MO	MO	MO	
RockSample[4, 4]	$\mathbb{E}_{\max}^{\mathcal{M}}$	2432	17.71	35.35	N/A	N/A	18.04	0.43	
RockSample[5, 5]	$\mathbb{E}_{\max}^{\mathcal{M}}$	8320	18.40	43.74	N/A	N/A	19.23	621.28	
RockSample[7, 8]	$\mathbb{E}_{ ext{max}}^{\mathcal{M}}$	166656	20.32	860.53	N/A	N/A	21.64	20458.41	

Nils Jansen

Assured Autonomy: Path Toward Living With Autonomous Systems We Can Trust

Some common comments:

- •No assurance = no useful autonomy
- Diverse set of vulnerabilities
- Open world
- Interdisciplinary approaches needed, not as an afterthought
- 1. Safety and verification
- 2. Security
- 3. Certification and regulation
- 4. Human-system integration and trust
- 5. Privacy
- 6. Ethics
- 7. Societal impacts
- 8. Governance and policy
- 9. Education