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What are cyberphysical systems (CPS)?

A cyberphysical system…
…consists of a collection of computing 
devices communicating with one another 
and… 
…interacting with the physical world via 
sensors and actuators in a feedback loop. 

Common among definitions: convergence
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Some properties of cyberphysical systems

Reactivity and interaction with the physical world 
A reactive system interacts with its environment in an 
ongoing manner via inputs (e.g., through sensors) 
and outputs (e.g., through actuators).

Concurrency
Multiple threads (components or processes) 
execute simultaneously, exchanging 
information to achieve a desired goal. 

Real-time decisions
Delays in computation and 
communication are critical.

Heterogeneity
Multiple, integrated functionality.
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What makes autonomy hard?

dynamic environment complex missions

run-time faults unknown environments

variations in user characteristicsimperfect perceptionintegrity of critical information

verifiability

heterogenous decisions
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Why are we not there yet? What is still missing?

Autonomous systems are nobody’s comfort zone: 
We need hybrid solutions. 

control 
theory

formal 
methods

learningGive me data, I’ll 
learn all you need.

You may, but how 
will you verify?

I know how to 
verify software.

What if you don’t 
have models, 
models adapt,…?

Btw, an autonomous 
system is not only 
software.

I can handle 
physics. I can adapt. 
I can verify stability.

Sure. How about high-level 
requirements, interactions 
with human…?
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What would it take to construct 
the control software of an 
autonomous system in an hour
—as opposed to days or even 
weeks—to deliver a mission?

Outline

Correct-by-construction synthesis of 
hierarchical control protocols 

• formal methods  controls↔

How can an autonomous system 
learn how to execute a new 
mission in an a priori unknown 
environment efficiently and 
safely?

How can we cope with 
imperfection and/or limitations in 
run-time information?

Verifiable reinforcement learning 
• formal methods  learning↔

Planning in POMDPs 
• formal methods  convex optimization 

• formal methods  learning

↔
↔
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A (sample) synthesis problem

Automatically synthesize a control protocol that 
• manages the system behavior; 
• reacts to changes in allowable external environment; and  
• is provably correct with respect to the specifications.

Given: 
• System model  

-both continuous & discrete evolution 
-actuation limitations 
-modeling uncertainties & disturbances

ẋ = f(x, u, �)
g(x, u) � 0

• Specifications in “temporal logic” 
-high-level requirements & goals 
-assumptions about the a priori unknown, 
dynamic environment



        Temporal Logic   =   
⇤ (and)
⌅ (or)
⇥ (implies)
¬ (not)
� (eventually)
⇤ (always)
U (until)

• Reason about infinite sequences                            of states  
• Many different dialects of temporal logic (with probabilistic and epistemic modalities) 
• Specify safe, allowable, required, or desired behavior of system and/or environment.

� = s0s1s2 . . .

⌃ (eventually)
⇤ (always)
U (until)

Propositional Logic    
+  

Temporal Operators

Coverage:

Sequencing:

Sequencing with avoidance:

Never after:

Coordination with mutual exclusion:

De-tour: Specifying behavior with temporal logic

8
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Theorem: Correctness provably guaranteed  
by the construction of the abstractions and splitting of the specifications

A Solution: Hierarchical Control Structure

Iterative 
graph search

Two-player, 
turn-based 

graph game

Constrained, 
finite-horizon 

optimal control

short- 
horizon 
specifications

long- 
horizon 
specifications 

constraints on 
continuous 
state + input

Control 
protocol

Multi-scale 
models

Different 
views

Synthesis 
method
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X

⌫6 ⌫7 ⌫8 ⌫9 ⌫10

⌫1 ⌫2 ⌫3 ⌫4 ⌫5

⌫1 ⌫2 ⌫3 ⌫4 ⌫5

⌫6 ⌫7 ⌫8 ⌫9 ⌫10

Zoom in a bit…

x 2 X , u 2 U , w 2 W
xt+1 = f(xt, wt, ut)

9u 2 U and finite T > 0 s.t.
xt 2 Xinitial [ Xtarget 8t = 0, . . . , T,
xT 2 Xtarget

for all x0 2 Xinitial and w 2 W?

Correctness: For any discrete run satisfying the specification, there exists an 
admissible control signal leading to a continuous trajectory satisfying the specification. 

Proof — “correct by construction”:  
Constructive → Finite-state model + Continuous control signals.
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Specify + Synthesize

controlled  
quadrotor

uncontrolled 
quadrotors
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Outline

How can an autonomous system 
learn how to execute a new 
mission in an a priori unknown 
environment efficiently and 
safely?

Verifiable reinforcement learning 
• formal methods  learning↔

What would it take to construct 
the control software of an 
autonomous system in an hour
—as opposed to days or even 
weeks—to deliver a mission?

How can we cope with 
imperfection and/or limitations in 
run-time information?

Correct-by-construction synthesis of 
hierarchical control protocols 

• formal methods  controls↔

Planning in POMDPs 
• formal methods  convex optimization 

• formal methods  learning

↔
↔
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Need for learning

Conventional Synthesis 

synthesis

  
environment 
φenv  

F
performance 

C

requirements 
φreq }

Known/fixed  
temporal logic constraints 
+ reward structure

user

φreq

C

Synthesis + Learning 

synthesisφenv F

2

2 Operators do not “speak” temporal logic or 
cannot express complex reward structures.

3

3 Controller itself may be learned from data or 
examples.

1 No a priori knowledge about environment. 
But, online (and offline) data available.

1
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new piece of problem data: temporal logic specification φ

Does the learned strategy satisfy φ?

Is φ violated during learning?

Learning subject to temporal logic specifications

learner

action

environment

observation

reward

Reinforcement learning

expert

demonstrations

Inverse reinforcement learning
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Safe reinforcement learning via shielding

15

learner

environment

reward

observation
action

modified 
action

run-time 
shield

Run-time shielding…

•Corrective w.r.t. specifications in 
the safety fragment of linear 
temporal logic

•Minimally interfering

•Agnostic to the learner

•Can be used with function-
approximation-based methods

•Preserves (constrained) 
convergence in some cases

• Improves the data-efficiency in 
learning

Provable 
properties

Empirically 
observed

Shield 
synthesis

specifications
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without shielding 
(40 min training  + 1600 crashes)

with shielding 
(1 min training  + no crashes)

Deep reinforcement learning with a neural network 
of three layers and Boltzmann exploration

Reinforcement  
learning for 
PACMAN

Examples of shielded reinforcement learning
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Can task similarities help learn faster?

RL in extended 
state space

Extended 
Q-functions

Source
task

Target
task

Construct timed 
automaton

Construct timed 
automaton

RL in extended 
state space

Inferred 
formulas

Data DataLogical 
similarity?
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Transfer of temporal logical similarities improves 
data efficiency by orders of magnitude.

Source task Target task

Episodes

Cumulative reward

Q-learning

+ extended state space  
+ maximize classification rate in MITL inference

+ “informative” MITL formulas

+ transfer of extended Q-functions

x10



Ufuk Topcu

Inverse reinforcement learning

19

Reward 
function R

inverse 
reinforcement 

learning

Reward-free MDP 
M = (S, A, T, γ)

Expert 
demonstrations 

D

Policy that mimics the 
demonstrations
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Inverse reinforcement learning  
with high-level task as side information

20

modified 
inverse 

reinforcement 
learning

Reward 
function R

Reward-free MDP 
M = (S, A, T, γ)

Policy that balances between 
mimicking the demonstrations  

and  
probability of satisfying φ Task knowledge as side 

information 
(encoded as a temporal 

logic formula φ)

Expert 
demonstrations 

D{
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Inverse reinforcement learning  
with high-level task as side information

21

min
✓

Jmle(⇡✓|M,D)

s.t. Bellman equation(✓)

min
✓

negative log-likelihood

R = [f1 · · · fk] ✓ reward parameterized in θ given the features f1, …, fk

Q⇡(s, a) = E⇡

⇥P1
k=0 �

kR(sk, ak)|s0, a0
⇤ expected discounted reward with 

policy π from state s and action a

⇡Q(s, a) =
exp(Q(s,a))P
a0 exp(Q(s,a0)) softmax policy (randomized)

Assumptions: 
•Demonstrations are samples of a softmax, randomized policy. 
•This unknown policy satisfies φ with probability higher than a threshold.

Bellman equation(✓,M,D)
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Inverse reinforcement learning  
with high-level task as side information

21

s.t. Bellman equation(✓)

Jmle(⇡✓|M ⇥A', D)� µg(ȳ)min
✓

negative log-likelihood

all states 
are in the 
product 

automaton
ȳ(s0,⇡✓)

probability of satisfying the 
specification by taking 
policy πθ from initial state s0

penalty for violating 
the specification

affine constraints on θ for 
the fragment of temporal 
logic considered

R = [f1 · · · fk] ✓ reward parameterized in θ given the features f1, …, fk

Q⇡(s, a) = E⇡

⇥P1
k=0 �

kR(sk, ak)|s0, a0
⇤ expected discounted reward with 

policy π from state s and action a

⇡Q(s, a) =
exp(Q(s,a))P
a0 exp(Q(s,a0)) softmax policy (randomized)

Assumptions: 
•Demonstrations are samples of a softmax, randomized policy. 
•This unknown policy satisfies φ with probability higher than a threshold.

Bellman equation(✓,M ⇥A', D)

strategy
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Example

22

Probability of satisfying the 
specification for the given 
initial state:
Poor generalization 
without side information

without side information with side information

Minimum 
probability of 
satisfying the 
specification 

from the initial 
state

Likelihood of 
demonstrations

Major increase in probability of satisfaction at negligible reduction in likelihood 

0.1   0.01  0.001 0.0001 1e-05 1e-06 
�

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1   0.01  0.001 0.0001
�

11.5

11.6

11.7

11.8

11.9

12

12.1

←higher weight for satisfying specification
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Outline

How can we cope with 
imperfection and/or limitations in 
run-time information?

What would it take to construct 
the control software of an 
autonomous system in an hour
—as opposed to days or even 
weeks—to deliver a mission?

How can an autonomous system 
learn how to execute a new 
mission in an a priori unknown 
environment efficiently and 
safely?

Correct-by-construction synthesis of 
hierarchical control protocols 

• formal methods  controls↔

Verifiable reinforcement learning 
• formal methods  learning↔

Planning in POMDPs 
• formal methods  convex optimization 

• formal methods  learning

↔
↔
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Can distinguish only between 
the colors of the states

A few words on POMDPs

POMDPs — partially observable MDPs: Like 
MDPs but with limited information

Synthesis in POMDPs is hard.  
• Undecidable as infinite memory may be necessary. 
• Restriction to finite-memory strategies yields decidable yet still hard 

problems (and “suboptimality”). 
• Finite-memory strategies: Randomized may be better than deterministic. 
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Computing finite-state controllers for POMDPs by 
parameter synthesis

Correspondence table between POMDP 
and pMCs POMDP Corresponding pMC with  

Parameters p1,p2 and q

• The set of all finite-state controllers for a POMDP 
and a fixed memory bound can be represented by 
a parametric Markov chain (pMC). 

• If POMDP states share an observation, the 
corresponding  pMC states will share parameters 
at their transitions. 

• A strategy in the POMDP, corresponds to a 
parameter instantiation in the pMC.
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Synthesis in parametric MDPs (pMDPs)

Safety specification
' = P�(⌃T ), T ✓ S

Performance specification
 = E(⌃G), G ✓ S

sI

↵1

↵2

T

G

p1
1� p1

p2

p1 + 2p2

p21

26

Given pMDP     , find a well-defined valuation of  
parameters and a scheduler                     such that 

M
� 2 SchedM

M� |= ' ^  
and value for objective function                 is minimal.f : V ! R

Objective function                f : V ! R
Parameters p1, p2, . . . , pn 2 V
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Solution as a “nonlinear program”

psI  �

csI  

safety and 
performance 
specifications

well-defined 
schedulers and  

parameter 
instantiations

8s 2 S.
X

↵2Act(s)

�s,↵ = 1

8s 2 S 8↵ 2 Act(s).
X

s02S

P(s,↵, s0) = 1

8s 2 T. ps = 1

8s 2 S \ T. ps =
X

↵2Act(s)

�s,↵ ·
X

s02S

P(s,↵, s0) · ps0
safety 

probability 
computation

8s 2 G. cs = 0

8s 2 S \G. cs =
X

↵2Act(s)

�s,↵ ·
⇣
c(s,↵) +

X

s02S

P(s,↵, s0) · cs0
⌘expected performance computation

minimize f

subject to

objective function 
over parameters

Problem variables:
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A useful observation

8s 2 S \ T. ps =
X

↵2Act(s)

�s,↵ ·
X

s02S

P(s,↵, s0) · ps0

non-negative-
valued 

variable

non-negative-
valued 

variable

signomials

strictly positive real

monomial

}
> 0: 

posynomial 
no restriction: 

signomial 

sI

↵1

↵2

T

G

p1
1� p1

p2

p1 + 2p2

p21

Question: Can we somehow 
exploit this structure and 
solve the parameter 
synthesis problem as a 
convex optimization problem 
(maybe bunch of them)?
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Workflow

Parametric 
MDP

Safety 
specification

Performance 
specification

Parametric 
MDP 

restricted to 
signomials

Geometric 
program

Nonlinear 
program

Feasible 
solution

Objective  
function

minimize f

subject to

8i. 1  i  m gi  1

8j. 1  i  p hj = 1

posynomials

monomials
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Convexification: relaxation + lifting

8s 2 S \ T. ps =
X

↵2Act(s)

�s,↵ ·
X

s02S

P(s,↵, s0) · ps0

upper bound  
on actual probability

8s 2 S \ T.

P
↵2Act(s)

�s,↵ ·
P
s02S

P(s,↵, s0) · ps0

ps
 1

still signomials 
(not geometric 
program yet) 

(assuming )ps ≠ 0

P(s,↵, s̄) = 1�
X

s02S\{s̄}

P(s,↵, s0)

signomial posynomials

Turns out that all but one 
transition probability can 

be written as a 
posynomial.

lifting: introduce 
new variables p̄s,α,s̄
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Geometric program (with relaxation tightening)

psI
�

 1

csI


 1

8s 2 S.
X

↵2Act(s)

�s,↵  1

8s 2 S 8↵ 2 Act(s).
X

s02S

P(s,↵, s0)  1

8s 2 S \ T.

P
↵2Act(s)

�s,↵ ·
P
s02S

P(s,↵, s0) · ps0

ps
 1

8s 2 S \G.

P
↵2Act(s)

�s,↵ ·
⇣
c(s,↵) +

P
s02S

P(s,↵, s0) · cs0
⌘

cs
 1

minimize
X

p2V

1

p
+

X

p̄2L

1

p̄
+

X

s2S,↵2Act(s)

1

�s,↵

subject to

regularization  

Theorem: The solution to 
the geometric program gives 
a well-defined scheduler and 
parameter instantiation.  
But it may be sub-optimal.
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Workflow

Parametric 
MDP

Safety 
specification

Performance 
specification

Parametric 
MDP 

restricted to 
signomials

Geometric 
program

Nonlinear 
Program

Feasible 
solution

Objective  
function

Sequential 
convex 

programming
Local optimum

• Local polynomial approximation 

• Trust-region optimization
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Compare against benchmarks

Benchmark #states #par specs MOSEK (s) Z3

BRP (pMC) 5382 2 EC,P, ⇤ 23.17 (6.48) �
112646 2 EC,P, ⇤ 3541.59 (463.74) �
112646 4 EC,P, ⇤ 4173.33 (568.79) �

5382 2 EC,P 3.61 904.11
112646 2 EC,P 479.08 TO

NAND (pMC) 4122 2 EC,P, ⇤ 14.67 (2.51) �
35122 2 EC,P, ⇤ 1182.41 (95.19) �
4122 2 EC,P 1.25 1.14
35122 2 EC,P 106.40 11.49

BRP (pMDP) 5466 2 EC,P, ⇤ 31.04 (8.11) �
112846 2 EC,P, ⇤ 4319.16 (512.20) �

5466 2 EC,P 4.93 1174.20
112846 2 EC,P 711.50 TO

CONS (pMDP) 4112 2 EC,P, ⇤ 102.93 (1.14) �
65552 2 EC,P, ⇤ TO �
4112 2 EC,P 6.13 TO

65552 2 EC,P 1361.96 TO

only 
feasibility

Alternative tools for 
optimization TO even in 
the smallest instances

proposed 
method
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More benchmarks
(using a related but different method)

parametric 
MCs

POMDPs

parametric 
MDPs
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Uncertain POMDPs, through a more visual example

Uncertain POMDP: Partial observability over the 
current position of spacecraft, uncertainty on the 
location of other objects and operator 

Spacecraft motion planning: 
Switching between orbits is possible if the 
orbits are close to each other, but costs fuel.
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Uncertain POMDPs, through a more visual example

Uncertain POMDP: Partial observability over the 
current position of spacecraft, uncertainty on the 
location of other objects and operator 

Spacecraft motion planning: 
Switching between orbits is possible if the 
orbits are close to each other, but costs fuel.

or linearize + dualize 

+ solve finite LP 
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Outline

How can we cope with 
imperfection and/or limitations in 
run-time information?

What would it take to construct 
the control software of an 
autonomous system in an hour
—as opposed to days or even 
weeks—to deliver a mission?

How can an autonomous system 
learn how to execute a new 
mission in an a priori unknown 
environment efficiently and 
safely?

Correct-by-construction synthesis of 
hierarchical control protocols 

• formal methods  controls↔

Verifiable reinforcement learning 
• formal methods  learning↔

Planning in POMDPs 
• formal methods  convex optimization 

• formal methods  learning

↔
↔
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Synthesis is hard. Guess a strategy and verify!

ℳ

POMDP Specification

Guess Candidate 
Strategy

Apply Strategy to 
POMDP

UNSAT

ℳ φ

σ

ℳσ

efficient

how to guess a  
good strategy?

Model Checking

SAT
ℳσ ⊧ φ?

Probabilistic  
Temporal Logic 

Constraints
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How to guess a 
“good” strategy?
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Learn a guess and improve (with help from verification).
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Learn a guess and improve (with help from verification).
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Learn a guess and improve (with help from verification).
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Learn a guess and improve (with help from verification).
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Learn a guess and improve (with help from verification).
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What do we get at the end?

Correct, as each strategy prediction is 
evaluated using model checking.

Not complete, as we may never find 
a feasible strategy. 
Obviously, expected!



Nils Jansen

Numerical examples with LTL constraints
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Numerical examples on standard POMDP benchmarks
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1. Safety and verification

2. Security

3. Certification and regulation

4. Human-system integration and trust

5. Privacy

6. Ethics

7. Societal impacts

8. Governance and policy

9. Education

Some common comments: 
•No assurance = no useful autonomy

•Diverse set of vulnerabilities

•Open world

• Interdisciplinary approaches 
needed, not as an afterthought


