Probabilistic Systems

Part 2: Markov decision processes

Dr. Gethin Norman School of Computing Science University of Glasgow gethin.norman@glasgow.ac.uk

Markov Decision Processes

Markov Decision Processes (MDPs)

Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs

- qualitative probabilistic reachability
- optimality equations
- computing reachability probabilities

Some aspects of a system may not be probabilistic and therefore should not be modelled probabilistically; for example:

Concurrency – scheduling of parallel components

e.g. randomised distributed algorithms - multiple probabilistic processes operating asynchronously

Unknown environments

- e.g. probabilistic security protocols - unknown adversary

Underspecification – unknown model parameters

- e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}

Abstraction

- e.g. partition DTMC into similar (but not identical) states

Probability vs. nondeterminism

Labelled transition system

- (S, s₀, T, L) where T⊆S×S
- choice is nondeterministic

Discrete-time Markov chain

- (S, s₀, P, L) where P:S×S→[0,1]
- choice is probabilistic

How to combine?

Markov decision processes

Markov decision processes (MDPs)

extension of DTMCs which allow nondeterministic choices

Like DTMCs:

- discrete set of states representing possible configurations of the system being modelled
- transitions between states occur in discrete time-steps

Probabilistic and nondeterministic behaviour in each state:

- a nondeterministic choice between available actions
- once an action is chosen the successor state is chosen probabilistically based on the action and the current state

Formally, an MDP M is a tuple (S, s₀, P, L) where:

- S is a finite set of states ("state space")
- $s_0 \in S$ is a initial state
- L:S \rightarrow 2^{AP} is a labelling function
- P:S×A→Dist(S) is a (partial) transition probability function
 where A is a set of actions and Dist(S) is the set of discrete probability distributions over the set of states S
 - in state s, action a is available (can be performed) if P(s,a) is defined
 - \cdot we denote by A(s) the available actions in state s

Modification of the simple DTMC communication protocol

- after one step, process starts trying to send a message
- then, a nondeterministic choice between: (a) waiting a step because the channel is busy; (b) sending the message
- if the latter, with probability 0.99 send successfully and stops and with probability 0.01, message sending fails, and protocol restarts

Another simple MDP example with four states

- from state s_0 , move directly to s_1 (action a)
- in state s_1 , nondeterministic choice between actions **b** and **c**
- action **b** gives a probabilistic choice: self-loop or return to s_0
- action c gives a 50-50 random choice between heads/tails

Simple MDP example 2

$$M = (S, S_0, P, L)$$

$$S = \{S_0, S_1, S_2, S_3\}$$

$$L(S_0) = \{init, heads, tails\}$$

$$L(S_1) = \emptyset$$

$$L(S_2) = \{heads\}$$

$$L(S_3) = \{tails\}$$

$$P(S_0, a) = [S_1 \mapsto 1]$$

$$P(S_1, b) = [S_0 \mapsto 0.7, S_1 \mapsto 0.3]$$

$$P(S_1, c) = [S_2 \mapsto 0.5, S_3 \mapsto 0.5]$$

$$P(S_2, a) = [S_2 \mapsto 1]$$

$$\{init\}$$

$$a = [S_3 \mapsto 1]$$

$$\{init\}$$

$$a = [S_1 \mapsto 1]$$

$$a = [S_1 \mapsto 1]$$

$$\{init\}$$

$$a = [S_1 \mapsto 1]$$

$$[S_1 \to S_1]$$

$$[S_1 \to S_2]$$

$$[S_2 \to S_2]$$

$$[S_2 \to S_2]$$

$$[S_2 \to S_2]$$

$$[S_2 \to S_3]$$

$$[S_2 \to S_2]$$

$$[S_2 \to S_3]$$

$$[S_1 \to S_2]$$

$$[S_2 \to S_3]$$

$$[S_1 \to S_2]$$

$$[S_2 \to S_3]$$

$$[S_2 \to S_3]$$

$$[S_3 \to S_3]$$

$$[S$$

Simons Institute Bootcamp

{heads}

S₂

S₃

 $\{tails\}$ 1

5

a

a

Example – Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here

Markov Decision Processes

Markov Decision Processes (MDPs)

Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs

- qualitative probabilistic reachability
- optimality equations
- computing reachability probabilities

A (finite or infinite) path through an MDP

- is a sequence $s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$
- such that $P(s,a_i)(s_{i+1})>0$ for all $i\geq 0$
- represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling

Path(s) is the set of all infinite paths of MDP starting from state s

- Path_{fin}(s) is the set of all finite paths starting from state s

Paths resolve both nondeterministic and probabilistic choices

- how to reason about probabilities?

Strategies

To consider the probability of some behaviour of the MDP

- first need to resolve the nondeterministic choices
- \dots which results in a DTMC
- \dots for which we can define a probability measure over paths

A strategy resolves nondeterministic choice in an MDP

- also known as a "scheduler", "policy" or "adversary"

Formally:

- a strategy σ of an MDP is a function mapping every finite path $\pi = s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \cdots \xrightarrow{a_{n-1}} s_n$ to an available action of s_n
 - · i.e. resolves nondeterminism based on execution history
 - $\cdot\,$ given what has happened (the history) what action to perform next

Strategies – Examples

Consider the previous example MDP

- note s_1 is the only state for which there is more than one available action
 - $\cdot\,$ i.e. s_1 is the only state for which a strategy makes a choice

Strategy σ_1 picks action c the first time

 $- \sigma_1(s_0s_1) = c$

Strategy σ_2 picks action **b** the first time, then **c**

- $\sigma_2(s_0s_1)=b$
- $\sigma_2(s_0s_1s_1) = c$
- $\sigma_2(s_0s_1s_0s_1) = c$

Note: actions omitted from paths for clarity

$Path^{\sigma}(s) \subseteq Path(s)$

- (infinite) paths from s where nondeterminism resolved by $\boldsymbol{\sigma}$

- i.e. paths are of the form $\pi \xrightarrow{a} s$ and $\sigma(\pi) = (a)$

Strategy σ_1 picks action c the first time

 $- Path^{\sigma_1}(s_0) = \{ s_0 s_1 s_2^{\omega}, s_0 s_1 s_3^{\omega} \}$

Strategy σ_2 picks action **b** the first time, then **c**

 $- \operatorname{Path}_{\sigma_2}(s_0) = \{ s_0 s_1 s_0 s_1 s_2^{\omega}, s_0 s_1 s_0 s_1 s_3^{\omega}, s_0 s_1 s_1 s_2^{\omega}, s_0 s_1 s_1 s_3^{\omega} \}$

For a given starting state s, a strategy σ of an MDP induces an infinite-state DTMC D(s, σ)

 $D(s,\sigma) = (Path_{fin}(s), s, P^{\sigma}, L)$ where:

- states of the DTMC are the finite paths of the MDP starting in state s
- initial state is s (the path starting in s of length 0)
- $P^{\sigma}(\pi, \pi')=P(last(\pi), a)(s')$ if $\pi'=\pi \xrightarrow{a} s'$ and $\sigma(\pi)=a$
- $\mathbf{P}^{\sigma}(\pi, \pi') = 0$ otherwise
- labelling of a path just given by the labelling of the last state of the path

1-to-1 correspondence between Path^{σ}(s) and paths of D(s, σ)

This therefore gives us a probability measure over $Path^{\sigma}(s)$

- by using probability measure over the paths of $D(s,\sigma)$

Strategies – Examples

- Fragment of induced DTMC for strategy σ_1
 - σ_1 picks action c the first time

Strategies – Examples

Markov Decision Processes (MDPs)

Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs

- qualitative probabilistic reachability
- optimality equations
- computing reachability probabilities

Probabilistic Reachability

Probabilistic reachability

- fundamental concept in quantitative verification
- concerns probability of reaching a target set T
 - P^σ(s,T) probability of reaching T under the strategy σ from state s
 as for DTMCs

MDP provides best-/worst-case analysis

- based on lower/upper bounds on probabilities over all strategies
- $\mathbf{P}^{\min}(s,T) = \inf_{\sigma} \mathbf{P}^{\sigma}(s,T)$

the minimum probability of reaching **T** over all strategies

- $\mathbf{P}^{\max}(s,T) = \sup_{\sigma} \mathbf{P}^{\sigma}(s,T)$
 - the maximum probability of reaching T over all strategies
- vectors: $P^{min}(T)$ and $P^{max}(T)$ values for all states of an MDP

Simons Institute Bootcamp

•

Examples - target T equals {tails}

Consider strategy σ_i that first selects **b** the first **i**-**1** times in state **s**₁ and then **c**

 $P^{\sigma 1}(s_0,T) = 0.5$ $P^{\sigma 2}(s_0,T) = 0.5$... $P^{\min}(s_0,T) = 0.0$ $P^{\max}(s_0,T) = 0.5$

Examples - target T equals {tails}

Consider strategy σ_i that first selects **b** the first i-1 times in state s_1 and then **c**

Memoryless strategies always pick same choice in a state

- also known as: positional, Markov, simple
- can write as a mapping from states to available actions
- induced DTMC can be mapped to a |S|-state DTMC

From previous example:

- strategy σ_1 (picks c in s_1) is memoryless; σ_2 is not

Other classes of strategies

Finite-memory strategies

- finite number of modes, which can govern choices made
- formally defined by a deterministic finite automaton
- induced DTMC (for finite MDP) again mapped to finite DTMC

Randomised strategies

- maps finite paths to a probability distribution over available actions
- generalises deterministic schedulers
- still induces a (possibly infinite state) DTMC

Fair strategies

- fairness assumptions on resolution of nondeterminism

Markov Decision Processes (MDPs)

Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs

- qualitative probabilistic reachability
- optimality equations
- computing reachability probabilities

Qualitative probabilistic reachability

Consider the problem of determining states **s** for which P^{min}(**s**,**T**) or P^{max}(**s**,**T**) is non-zero (or zero)

- max case: $S^{max>0} = \{ s \in S | P^{max}(s,T)>0 \}$
- this is just (non-probabilistic) reachability

```
R := T
done := false
while (done = false)
R' = R \cup \{ s \in S \mid \exists a \in A . \exists s' \in R . P(s,a)(s') > 0 \}
if (R'=R) then done := true
R := R'
endwhile
return R
```

Qualitative probabilistic reachability

Consider the problem of determining states **s** for which P^{min}(**s**,**T**) or P^{max}(**s**,**T**) is non-zero (or zero)

Probabilistic Reachability - Optimality equations

The values **P**^{min}(s,T) are the unique solution of the equations:

This is an instance of the Bellman equation, the basis of dynamic programming techniques

Probabilistic Reachability - Optimality equations

The values **P**^{max}(**s**,**T**) are the unique solution of the equations:

Recall memoryless strategies always pick same choice in a state

Memoryless strategies suffice for probabilistic reachability

- i.e. there exist memoryless strategies σ_{min} and σ_{max} such that:
- $P^{\sigma_{min}}(s,T) = P^{min}(s,T)$ for all states $s \in S$
- $P^{\sigma_{max}}(s,T) = P^{max}(s,T)$ for all states $s \in S$

Can construct memoryless strategies from optimal solution:

- $\sigma_{\min}(s) = \operatorname{argmin} \{ \Sigma_{s \in S} P(s,a)(s') \cdot P^{\min}(s,T) \mid a \in A(s) \}$
- $\sigma_{max}(s) = \operatorname{argmax} \{ \Sigma_{s \in S} P(s,a)(s') \cdot P^{max}(s,T) \mid a \in A(s) \}$

Memoryless strategies not always sufficient

- although they are sufficient for reachability in turn-based games

Finite-memory strategies are required for

- bounded properties
- LTL and automata-based properties

Randomized strategies are required for concurrent games

Finite-memory strategies and randomised strategies are required for multi-objective properties

Markov Decision Processes (MDPs)

Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs

- qualitative probabilistic reachability
- optimality equations
- computing reachability probabilities

Computing reachability probabilities

Method 1 – Value iteration (min)

For minimum probabilities $P^{min}(s,T)$ it can be shown that:

-
$$P^{\min}(s,T) = \lim_{n\to\infty} x_s^{(n)}$$
 where:

Method 1 – Value iteration (max)

For maximum probabilities P^{max}(s,T) it can be shown that:

```
- P^{\max}(s,T) = \lim_{n \to \infty} x_s^{(n)} where:
```


Value iteration as a fixed point

Can view as a fixed point computation over vectors $y \in [0,1]^s$

- for example, for minimum consider the function F : $[0,1]^{s} \rightarrow [0,1]^{s}$

$$F(y)(s) = \begin{cases} 1 & \text{if } s \in T \\ 0 & \text{if } s \in S \setminus S^{\min > 0} \\ min_{a \in A(s)} \{ \Sigma_{s' \in S} P(s, a)(s') \cdot y(s') \} & \text{otherwise} \end{cases}$$

If we let $x^{(0)}=0$ and $x^{(n+1)}=F(x^{(n)})$ then we have that

- $X^{(0)} \leq X^{(1)} \leq X^{(2)} \leq X^{(3)} \leq ...$
- $P^{\min}(T) = \lim_{n \to \infty} x^{(n)}$
- \cdot F(P^{min}(T)) = P^{min}(T) and it is the unique fixed point

Minimum/maximum probability of reaching T={s₂}

Example – Value iteration (min)

```
Compute: P^{\min}(s_1, T) where T=\{s_2\}

S^{\min>0} = \{s_0, s_1, s_2\}

[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]

n=0: [0, 0, 1, 0]

n=1: [\min(1\cdot0, 0.25\cdot0+0.25\cdot0+0.5\cdot1), 0.01\cdot0+0.5\cdot0+0.4\cdot1, 1, 0]

=[0, 0.4, 1, 0]

n=2: [\min(1\cdot0.4, 0.25\cdot0+0.25\cdot0+0.5\cdot1), 0.01\cdot0+0.5\cdot0.4+0.4\cdot1, 1, 0]

=[0.4, 0.6, 1, 0]

n=3: ...
```


Example – Value iteration (min)

```
[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]
n=0: [ 0.000000, 0.000000, 1, 0 ]
n=1: [ 0.000000, 0.400000, 1, 0 ]
n=2: [ 0.400000, 0.600000, 1, 0 ]
n=3: [ 0.600000, 0.740000, 1, 0 ]
n=4: [ 0.650000, 0.830000, 1, 0 ]
n=5: [ 0.662500, 0.880000, 1, 0 ]
n=6: [ 0.665625, 0.906250, 1, 0 ]
n=7: [ 0.666406, 0.919688, 1, 0 ]
n=8: [ 0.666602, 0.926484, 1, 0 ]
....
n=20: [ 0.666667, 0.933332, 1, 0 ]
n=21: [ 0.666667, 0.933332, 1, 0 ]
    \approx [ 2/3, 14/15, 1, 0 ]
```

Simons Institute Bootcamp

 $\underline{P}^{\min}(T) = [2/3, 14/15, 1, 0]$

Generating an optimal strategy

Minimum strategy omin

 $\begin{bmatrix} x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)} \end{bmatrix}$...
n=20: [0.6666667, 0.933332, 1, 0]
n=21: [0.6666667, 0.933332, 1, 0] \approx [2/3, 14/15, 1, 0]

 s_0 : min(1·14/15, 1/2·1+1/4·0+1/4·2/3) = min(14/15, 2/3)

 $s_3 \in S \setminus S^{\min>0}$

Generating an optimal strategy

• DTMC $D(s_0, \sigma_{min})$

$$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$$

...
n=20: [0.6666667, 0.933332, 1, 0]
n=21: [0.6666667, 0.933332, 1, 0]

$$\approx$$
 [2/3, 14/15, 1, 0]

 s_0 : min(1·14/15, 1/2·1+1/4·0+1/4·2/3) = min(14/15, 2/3)

Linear programming

- optimisation of a linear objective function
- subject to linear (in)equality constraints

General form:

- n variables: x_1 , x_2 , ..., x_n
- maximise (or minimise): $c_1x_1 + c_2x_2 + \cdots + c_nx_n$
- subject to constraints

Many standard solution techniques exist, e.g. Simplex, ellipsoid method, interior point method

In matrix/vector form: Maximise (or minimise) $C \cdot X$ subject to $A \cdot X \leq b$

Method 2 – Linear programming problem

Minimum probabilities **P**^{min}(s,T) can be computed as follows:

- $P^{min}(s,T)=1$ if $s \in T$
- $P^{\min}(s,T)=0$ if $s \in S \setminus S^{\min>0}$
- values for remaining states S? can be obtained as the unique solution of the following linear programming problem:

maximize $\sum_{s \in S?} x_s$ subject to the constraints: $x_s \leq \sum_{s' \in S?} P(s,a)(s') \cdot x_{s'} + \sum_{s' \in T} P(s,a)(s')$

for all $s \in S^{?}$ and $a \in A(s)$

Method 2 – Linear programming problem

Maximum probabilities P^{max}(s,T) can be computed as follows:

- $P^{max}(s,T)=1$ if $s \in T$
- $P^{max}(s,T)=0$ if $s \in S \setminus S^{max>0}$
- values for remaining states S? can be obtained as the unique solution of the following linear programming problem:

Let $x_i = P^{\min}(s_i, T)$ T: $x_2=1$, $S^{\min=0}$: $x_3=0$ For $S^? = \{s_0, s_1\}$: maximise x_0+x_1 subject to constraints:

- $X_0 \leq X_1$
- $x_0 \leq 1/4 \cdot x_0 + 1/2$
- $x_1 \leq 1/10 \cdot x_0 + 1/2 \cdot x_1 + 2/5$

Let $x_i = P^{min}(s_i, T)$ T: $x_2=1$, $S^{min=0}$: $x_3=0$ For $S^? = \{s_0, s_1\}$: maximise x_0+x_1 subject to constraints: • $x_0 \le x_1$

- $3/4 \cdot x_0 \leq 1/2$
- $1/2 \cdot x_1 \leq 1/10 \cdot x_0 + 2/5$

rearranging

Let $x_i = P^{\min}(s_i, T)$ T: $x_2=1$, $S^{\min=0}$: $x_3=0$ For $S^? = \{s_0, s_1\}$: maximise x_0+x_1 subject to constraints: • $x_0 \le x_1$ • $x_0 \le 2/3$

•
$$x_1 \leq 1/5 \cdot x_0 + 4/5$$

rearranging

Simons Institute Bootcamp

Example – Value iteration + LP

	Ε	$x_0^{(n)}$,	$\mathbf{X}_{1}^{(n)}$,	$x_2^{(n)}$,	X ₃ ⁽ⁿ⁾]
:	Ε	0.000000,	0.000000,	1,	0]	
	Ε	0.000000,	0.400000,	1,	0]	
	Ε	0.400000,	0.600000,	1,	0]	
	Ε	0.600000,	0.740000,	1,	0]	
	Ε	0.650000,	0.830000,	1,	0]	
	Ε	0.662500,	0.880000,	1,	0]	
	Ε	0.665625,	0.906250,	1,	0]	
:	Ε	0.666406,	0.919688,	1,	0]	
	E	0.666602,	0.926484,	1,	0]	
):	Ε	0.666667,	0.933332,	1,	0]	
1:	E	0.666667,	0.933332,	1,	0]	
~	Ε	2/3,	14/15,	1,	0]	

- Let $x_i = P^{max}(s_i, T)$
- T: $x_2=1$, $S^{max=0}$: Ø
- For $S^? = \{s_0, s_1, s_3\}$:

minimise $x_0+x_1+x_3$ subject to constraints:

- $\mathbf{x}_0 \geq \mathbf{x}_1$ $\mathbf{x}_3 \geq 1$
- $x_0 \ge 2/3 + 1/3 \cdot x_3$ $x_3 \ge x_3$
- $x_1 \ge 1/5 \cdot x_0 + 4/5$

Let $x_i = P^{max}(s_i, T)$

1:
$$X_2 = 1$$
, S^{max-0} : Ø

For
$$S^? = \{s_0, s_1, s_3\}$$
:

minimise $x_0 + x_1 + x_3$ subject to constraints:

- $x_0 \ge x_1$ $x_3 \ge 1$
- $x_0 \ge 2/3 + 1/3 \cdot 1$ $x_3 \ge x_3$
- $x_1 \ge 1/5 \cdot x_0 + 4/5$

rearranging

Let $x_i = P^{max}(s_i, T)$ T: $x_2=1$, $S^{max=0}$: Ø

For $S^{?} = \{s_0, s_1, s_3\}$:

minimise $x_0+x_1+x_3$ subject to constraints:

• $x_0 \ge x_1$ • $x_3 \ge 1$

•
$$x_0 \ge 1$$
 • $x_3 \ge x_3$

•
$$x_1 \ge 1/5 \cdot x_0 + 4/5$$

rearranging

Simons Institute Bootcamp

Let $x_i = P^{max}(s_i, T)$ T: $x_2=1$, $S^{max=0}$: Ø For S? = $\{s_0, s_1, s_3\}$:

minimise $x_0+x_1+x_3$ subject to constraints:

• $x_0 \ge x_1$ • $x_3 \ge 1$

•
$$x_0 \geq 1$$
 • $x_3 \geq x_3$

•
$$x_1 \ge 1/5 \cdot x_0 + 4/5$$

Solution:

• $(x_0, x_1, x_2, x_3) = (1, 1, ?, ?)$

(only feasible) solution:

 $(x_0, x_1) = (1, 1)$

Let $x_i = P^{max}(s_i, T)$ T: $x_2=1$, $S^{max=0}$: Ø For S? = $\{s_0, s_1, s_3\}$:

minimise $x_0+x_1+x_3$ subject to constraints:

• $x_0 \ge x_1$ • $x_3 \ge 1$

•
$$x_0 \geq 1$$
 • $x_3 \geq x_3$

•
$$x_1 \ge 1/5 \cdot x_0 + 4/5$$

Solution:

•
$$(x_0, x_1, x_2, x_3) = (1, 1, 1, 1)$$

(only feasible) solution:

 $(x_0, x_1) = (1, 1)$

Let $x_i = P^{max}(s_i, T)$ T: $x_2=1$, $S^{max=0}$: Ø For S? = $\{s_0, s_1, s_3\}$:

minimise $x_0+x_1+x_3$ subject to constraints:

• $x_0 \ge x_1$ • $x_3 \ge 1$

•
$$x_0 \ge 1$$
 • $x_3 \ge x_3$

•
$$x_1 \ge 1/5 \cdot x_0 + 4/5$$

Solution:

•
$$(x_0, x_1, x_2, x_3) = (1, 1, 1, 1)$$

(only feasible) solution:

```
(x_0, x_1) = (1, 1)
```

Maximum memoryless adversary σ_{min}

Let $x_i = P^{max}(s_i, T)$ T: $x_2=1$, $S^{max=0}$: Ø For S? = $\{s_0, s_1, s_3\}$: minimise $x_0+x_1+x_3$ subject to constraints:

• $x_0 \ge x_1$ • $x_3 \ge 1$

•
$$x_0 \geq 1$$
 • $x_3 \geq x_3$

•
$$x_1 \ge 1/5 \cdot x_0 + 4/5$$

Solution:

•
$$(x_0, x_1, x_2, x_3) = (1, 1, 1, 1)$$

(only feasible) solution:

 $(x_0, x_1) = (1, 1)$

DTMC $D(s_0, \sigma_{max})$

Method 3 – Policy iteration

Value iteration:

- iterates over (vectors of) probabilities

Policy iteration:

- iterates over adversaries ("policies")
- 1. start with an arbitrary (memoryless) adversary $\boldsymbol{\sigma}$
- 2. compute the reachability probabilities $P^{\sigma}(s,T)$ for σ
- 3. improve the adversary in each state
- 4. repeat steps 2 and 3 until no change in adversary

Termination:

- finite number of memoryless adversaries
- improvement (in min/max probabilities) each time

More general probabilistic properties

For example, once can compute the minimum and maximum probability an LTL formula ψ is true

- 1. convert problem to one needing maximum probabilities
 - e.g. to find a minimum probability $P_{min=?}[\psi] = 1 P_{max=?}[\neg \psi]$
- **2.** Generate a deterministic Rabin automaton (DRA) for ψ (or $\neg \psi$)
- 3. Construct product MDP M⊗A
- 4. Identify accepting end components (ECs) of M⊗A
 - an EC is a set of states such that there is an strategy under which one remains in the set, and visits all states infinitely often with probability 1
- 5. Compute maximum probability of reaching accepting ECs
 - from all states of the $M \otimes A$

One last thing - Complexity and Rewards

When using linear programming

- main task solution of linear optimization problem of size |S|
 - can be solved with ellipsoid method (polynomial in |S|)
- and qualitative algorithms (max |S| steps)

Reward Structures for MDPs

- reward accumulated in a state
- reward accumulated when performing a specific action in a state

Can then compute the minimum and maximum expected

accumulated rewards before reaching a target

- solution methods as for probabilistic reachability