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Markov Decision Processes

Markov Decision Processes (MDPs)

Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs
− qualitative probabilistic reachability
− optimality equations 
− computing reachability probabilities
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Nondeterminism

Some aspects of a system may not be probabilistic and therefore 
should not be modelled probabilistically; for example:
Concurrency - scheduling of parallel components

− e.g. randomised distributed algorithms - multiple probabilistic processes 
operating asynchronously

Unknown environments
− e.g. probabilistic security protocols - unknown adversary

Underspecification - unknown model parameters
− e.g. a probabilistic communication protocol designed for message 

propagation delays of between dmin and dmax
Abstraction

− e.g. partition DTMC into similar (but not identical) states
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Probability vs. nondeterminism

Labelled transition system
− (S,s0,T,L) where T⊆S×S
− choice is nondeterministic

Discrete-time Markov chain
− (S,s0,P,L) where P:S×S➝[0,1]

− choice is probabilistic

How to combine?
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Markov decision processes

Markov decision processes (MDPs)
− extension of DTMCs which allow nondeterministic choices

Like DTMCs:
− discrete set of states representing possible configurations of the system 

being modelled
− transitions between states occur in discrete time-steps

Probabilistic and nondeterministic behaviour in each state:
− a nondeterministic choice between available actions
− once an action is chosen the successor state is chosen probabilistically 

based on the action and the current state
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Markov decision processes

Formally, an MDP M is a tuple (S,s0,P,L) where: 
− S is a finite set of states (“state space”)
− s0∈S is a initial state
− L:S➝2AP is a labelling function
− P:S×A➝Dist(S) is a (partial) transition probability function

where A is a set of actions and Dist(S) is the set of discrete probability 
distributions over the set of states S
• in state s, action a is available (can be performed) if P(s,a) is defined
• we denote by A(s) the available actions in state s
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Simple MDP example

Modification of the simple DTMC communication protocol
− after one step, process starts trying to send a message
− then, a nondeterministic choice between: (a) waiting a step because the 

channel is busy; (b) sending the message
− if the latter, with probability 0.99 send successfully and stops and

with probability 0.01, message sending fails, and protocol restarts
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Simple MDP example 2

Another simple MDP example with four states
− from state s0, move directly to s1 (action a)
− in state s1, nondeterministic choice between actions b and c
− action b gives a probabilistic choice: self-loop or return to s0
− action c gives a 50-50 random choice between heads/tails

8Simons Institute Bootcamp

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1

a

b

c

a

a



Simple MDP example 2

M = (S,s0,P,L)
S = {s0, s1, s2, s3} 

P(s0,a) = [s1↦1]

P(s1,b) = [s0↦0.7,s1↦0.3]
P(s1,c) = [s2↦0.5,s3↦0.5]

P(s2,a) = [s2↦1]

P(s3,a) = [s3↦1]

AP = {init,heads,tails}

L(s0)={init}
L(s1)=∅
L(s2)={heads}
L(s3)={tails}
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Example - Parallel composition
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Example - Parallel composition
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− qualitative probabilistic reachability
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Paths and probabilities

A (finite or infinite) path through an MDP
− is a sequence s0 s1 s2           …

− such that P(s,ai)(si+1)>0 for all i≥0
− represents an execution (i.e. one possible behaviour) of the system which 

the MDP is modelling

Path(s) is the set of all infinite paths of MDP starting from state s
− Pathfin(s) is the set of all finite paths starting from state s

Paths resolve both nondeterministic and probabilistic choices
− how to reason about probabilities?

a0 a1 a2
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Strategies

To consider the probability of some behaviour of the MDP
− first need to resolve the nondeterministic choices
− … which results in a DTMC
− … for which we can define a probability measure over paths

A strategy resolves nondeterministic choice in an MDP
− also known as a “scheduler”, “policy” or “adversary”

Formally:
− a strategy σ of an MDP is a function mapping every finite path 

π = s0          s1         ... sn to an available action of sn
• i.e. resolves nondeterminism based on execution history
• given what has happened (the history) what action to perform next

a0 a1 an-1

14Simons Institute Bootcamp



Strategies - Examples

Consider the previous example MDP
− note s1 is the only state for which there is more than one available action

• i.e. s1 is the only state for which a strategy makes a choice

Strategy σ1 picks action c the first time
− σ1(s0s1)=c

Strategy σ2 picks action b the first time, then c
− σ2(s0s1)=b

− σ2(s0s1s1)=c

− σ2(s0s1s0s1)=c

Note: actions omitted from paths for clarity
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Strategies and paths

Pathσ(s) ⊆ Path(s) 
− (infinite) paths from s where nondeterminism resolved by σ
− i.e. paths are of the form π s and σ(π) = (a)

Strategy σ1 picks action c the first time
− Pathσ1(s0) = { s0s1s2ω, s0s1s3ω }

Strategy σ2 picks action b the first time, then c
− Pathσ2(s0) = { s0s1s0s1s2ω, s0s1s0s1s3ω, s0s1s1s2ω, s0s1s1s3ω }
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Strategies - Induced DTMCs

For a given starting state s, a strategy σ of an MDP induces an 
infinite-state DTMC D(s,σ)

D(s,σ) = (Pathσfin(s),s,Pσ,L) where:
− states of the DTMC are the finite paths of the MDP starting in state s
− initial state is s (the path starting in s of length 0)
− Pσ(π, π’)=P(last(π),a)(s’) if π’= π          s’ and σ(π)=a
− Pσ(π, π’)=0 otherwise
− labelling of a path just given by the labelling of the last state of the path

1-to-1 correspondence between Pathσ(s) and paths of D(s,σ)
This therefore gives us a probability measure over Pathσ(s)

− by using probability measure over the paths of D(s,σ)

a
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Strategies - Examples

• Fragment of induced DTMC for strategy σ1
− σ1 picks action c the first time
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Strategies - Examples

• Fragment of induced DTMC for strategy σ2

− σ2 picks action b the first time, and then c
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Probabilistic Reachability

Probabilistic reachability
− fundamental concept in quantitative verification
− concerns probability of reaching a target set T

• Pσ(s,T) probability of reaching T under the strategy σ from state s
• as for DTMCs

MDP provides best-/worst-case analysis
− based on lower/upper bounds on probabilities over all strategies 
− Pmin(s,T) = infσ Pσ(s,T) 

• the minimum probability of reaching T over all strategies

− Pmax(s,T) = supσ Pσ(s,T)

• the maximum probability of reaching T over all strategies
− vectors: Pmin(T) and Pmax(T) values for all states of an MDP

21Simons Institute Bootcamp



Examples – target T equals {tails}

Consider strategy σi that first selects b the first i-1 times in state s1 and then c

Pσ1(s0,T) = 0.5

Pσ2(s0,T) = 0.5

…

Pmin(s0,T) = 0.0

Pmax(s0,T) = 0.5

s1s0

s2

s3

0.5

0.50.7

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

1

1

22Simons Institute Bootcamp



Examples – target T equals {tails}

Consider strategy σi that first selects b the first i-1 times in state s1 and then c

Pσ1(s0,T) = 0.5

Pσ2(s0,T) = 0.5

…

Pmin(s0,T) = 0.0

Pmax(s0,T) = 0.5

Pσ1(s0,T) = 0.5
Pσ2(s0,T) = 0.3+0.7· 0.5 = 0.65

Pσ3(s0,T) = 0.3+0.7·0.3+0.7·0.7· 0.5 = 0.755

…

Pmin(s0,T) = 0.5

Pmax(s0,T) = 1.0
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Memoryless strategies

Memoryless strategies always pick same choice in a state
− also known as: positional, Markov, simple
− can write as a mapping from states to available actions
− induced DTMC can be mapped to a |S|-state DTMC

From previous example:
− strategy σ1 (picks c in s1) is memoryless; σ2 is not
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Other classes of strategies

Finite-memory strategies
− finite number of modes, which can govern choices made
− formally defined by a deterministic finite automaton
− induced DTMC (for finite MDP) again mapped to finite DTMC

Randomised strategies
− maps finite paths to a probability distribution over available actions
− generalises deterministic schedulers
− still induces a (possibly infinite state) DTMC

Fair strategies
− fairness assumptions on resolution of nondeterminism
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Paths, strategies and probabilities for MDPs
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Qualitative probabilistic reachability

Consider the problem of determining states s for which
Pmin(s,T) or Pmax(s,T) is non-zero (or zero)

− max case: Smax>0 = { s ∈ S | Pmax(s,T)>0 }

− this is just (non-probabilistic) reachability

R := T

done := false

while (done = false) 

R’ = R ∪ { s∈S | ∃a∈A . ∃s’∈R .P(s,a)(s’)>0}
if (R’=R) then done := true

R := R’

endwhile

return R
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Qualitative probabilistic reachability

Consider the problem of determining states s for which
Pmin(s,T) or Pmax(s,T) is non-zero (or zero)

− min case: Smin>0 = { s ∈ S | Pmin(s,T)>0 }
note: quantification

over all choices

R := T

done := false

while (done = false) 

R’ = R ∪ { s∈S | ∀a∈A . ∃s’∈R .P(s,a)(s’)>0}
if (R’=R) then done := true

R := R’

endwhile

return R
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Probabilistic Reachability - Optimality equations

The values Pmin(s,T) are the unique solution of the equations:

1 if s∈T

xs =  0 if s∈S\Smin>0

mina∈A(s) { Σs’∈S P(s,a)(s’) ⋅ xs’ }  otherwise

This is an instance of the Bellman equation, the basis of dynamic 
programming techniques

optimal solution for state s uses 
optimal solution for successors s’ case when 

Pmin(s,T)=0

29Simons Institute Bootcamp



The values Pmax(s,T) are the unique solution of the equations:

1 if s∈T

xs =  0 if s∈S\Smax>0

maxa∈A(s) { Σs’∈S P(s,a)(s’) ⋅ xs’ }  otherwise

case when 
Pmax(s,T)=0
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Memoryless strategies

Recall memoryless strategies always pick same choice in a state

Memoryless strategies suffice for probabilistic reachability
− i.e. there exist memoryless strategies σmin and σmax such that:

− Pσmin(s,T) = Pmin(s,T) for all states s∈S
− Pσmax(s,T) = Pmax(s,T) for all states s∈S

Can construct memoryless strategies from optimal solution:
− σmin(s) = argmin { Σs∈S P(s,a)(s’)⋅Pmin(s,T) | a∈A(s) }

− σmax(s) = argmax { Σs∈S P(s,a)(s’)⋅Pmax(s,T) | a∈A(s) }
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Memoryless strategies

Memoryless strategies not always sufficient
− although they are sufficient for reachability in turn-based games

Finite-memory strategies are required for
− bounded properties
− LTL and automata-based properties

Randomized strategies are required for concurrent games

Finite-memory strategies and randomised strategies are required for
multi-objective properties
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Computing reachability probabilities

Several approaches…

Value iteration
− approximate with iterative solution method
− corresponds to fixed point computation

Reduction to a linear programming (LP) problem
− solve with linear optimisation techniques
− exact solution using well-known methods

Policy iteration
− iteration over strategies

Preferable
in practice,

e.g. in PRISM

better 
complexity;

good for small 
examples
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Method 1 - Value iteration (min)

For minimum probabilities Pmin(s,T) it can be shown that:
− Pmin(s,T) = limn➝∞ xs(n) where:

1 if s∈T

0 if s∈S\Smin>0

0 if n=0

mina∈A(s) { Σs’∈S P(s,a)(s’)⋅xs’(n-1) } otherwise

Approximate iterative solution technique 
− iterations terminated when solution converges sufficiently 

xs(n)=
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Method 1 - Value iteration (max)

For maximum probabilities Pmax(s,T) it can be shown that:
− Pmax(s,T) = limn➝∞ xs(n) where:

1 if s∈T

0 if s∈S\Smax>0

0 if n=0

maxa∈A(s) { Σs’∈S P(s,a)(s’)⋅xs’(n-1) } otherwise

Approximate iterative solution technique 
− iterations terminated when solution converges sufficiently 

xs(n)=
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Value iteration as a fixed point

Can view as a fixed point computation over vectors y ∈[0,1]S
− for example, for minimum consider the function F : [0,1]S ➝ [0,1]S

1 if s∈T

F(y)(s) = 0 if s∈S\Smin>0

mina∈A(s) { Σs’∈S P(s,a)(s’)⋅y(s’) } otherwise

If we let x(0)=0 and x(n+1)=F(x(n)) then we have that
• x(0) ≤ x(1) ≤ x(2) ≤ x(3) ≤ …

• Pmin(T) = limn➝∞ x(n)

• F(Pmin(T)) = Pmin(T) and it is the unique fixed point
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Example

Minimum/maximum probability of reaching T={s2}
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Example - Value iteration (min)
Compute: Pmin(si,T) where T={s2}
Smin>0 = {s0, s1, s2}

[ x0(n),x1(n),x2(n),x3(n) ]

n=0: [ 0, 0, 1, 0 ]

n=1: [min(1⋅0,0.25⋅0+0.25⋅0+0.5⋅1),0.01⋅0+0.5⋅0+0.4⋅1, 1, 0 ]
=[ 0, 0.4, 1, 0 ]

n=2: [ min(1⋅0.4,0.25⋅0+0.25⋅0+0.5⋅1),0.01⋅0+0.5⋅0.4+0.4⋅1, 1, 0 ]
=[ 0.4, 0.6, 1, 0 ]

n=3: …
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Example - Value iteration (min)

[ x0(n),x1(n),x2(n),x3(n) ]

n=0:  [ 0.000000, 0.000000, 1, 0 ]

n=1:  [ 0.000000, 0.400000, 1, 0 ]

n=2:  [ 0.400000, 0.600000, 1, 0 ]

n=3:  [ 0.600000, 0.740000, 1, 0 ]

n=4:  [ 0.650000, 0.830000, 1, 0 ]

n=5:  [ 0.662500, 0.880000, 1, 0 ]

n=6:  [ 0.665625, 0.906250, 1, 0 ]

n=7:  [ 0.666406, 0.919688, 1, 0 ]

n=8:  [ 0.666602, 0.926484, 1, 0 ]

…

n=20: [ 0.666667, 0.933332, 1, 0 ]

n=21: [ 0.666667, 0.933332, 1, 0 ]

≈ [ 2/3,      14/15,    1, 0 ]

Pmin(T)=[ 2/3, 14/15, 1, 0 ]
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Generating an optimal strategy

Minimum strategy σmin [ x0(n),x1(n),x2(n),x3(n) ]

…

n=20: [ 0.666667, 0.933332, 1, 0 ]

n=21: [ 0.666667, 0.933332, 1, 0 ]

≈ [ 2/3, 14/15, 1, 0 ]

s0 : min(1⋅14/15, 1/2⋅1+1/4⋅0+1/4⋅2/3)
= min(14/15, 2/3)

s3 ∈ S\Smin>0
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Generating an optimal strategy

• DTMC D(s0,σmin)

s0

s1 s2

s3
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[ x0(n),x1(n),x2(n),x3(n) ]

…

n=20: [ 0.666667, 0.933332, 1, 0 ]

n=21: [ 0.666667, 0.933332, 1, 0 ]

≈ [ 2/3, 14/15, 1, 0 ]

s0 : min(1⋅14/15, 1/2⋅1+1/4⋅0+1/4⋅2/3)
= min(14/15, 2/3)
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Linear programming

Linear programming
− optimisation of a linear objective function
− subject to linear (in)equality constraints

General form:
− n variables: x1, x2, …,xn
− maximise (or minimise): c1x1 + c2x2 + … + cnxn
− subject to constraints

• a11x1 + a12x2 + … + a1nxn ≤ b1
• a21x1 + a22x2 + … + a2nxn ≤ b2

• am1x1 + am2x2 + … + amnxn ≤ bm

Many standard solution 
techniques exist, e.g. 

Simplex, ellipsoid method,
interior point method

In matrix/vector form: 
Maximise (or minimise) 

c·x
subject to 
A·x ≤ b
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Method 2 - Linear programming problem

Minimum probabilities Pmin(s,T) can be computed as follows:
− Pmin(s,T)=1 if s∈T
− Pmin(s,T)=0 if s∈S\Smin>0

− values for remaining states S? can be obtained as the unique solution of 
the following linear programming problem:

maximize Σs∈S?xs subject to the constraints:

xs ≤ Σs’∈S?P(s,a)(s’)⋅xs’ + Σs’∈TP(s,a)(s’)

for all s∈S? and a∈A(s)
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Method 2 - Linear programming problem

Maximum probabilities Pmax(s,T) can be computed as follows:
− Pmax(s,T)=1 if s∈T
− Pmax(s,T)=0 if s∈S\Smax>0

− values for remaining states S? can be obtained as the unique solution of 
the following linear programming problem:

minimize Σs∈S?xs subject to the constraints:

xs ≥ Σs’∈S?P(s,a)(s’)⋅xs’ + Σs’∈TP(s,a)(s’)

for all s∈S? and a∈A(s)
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Example - Linear programming (min)

Let xi = Pmin(si,T)

T: x2=1, Smin=0: x3=0

For S? = {s0,s1}:

maximise x0+x1 subject to constraints:
● x0 ≤ x1
● x0 ≤ 1/4⋅x0 + 1/2

● x1 ≤ 1/10⋅x0 + 1/2⋅x1 + 2/5
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Example - Linear programming (min)

Let xi = Pmin(si,T)

T: x2=1, Smin=0: x3=0

For S? = {s0,s1}:

maximise x0+x1 subject to constraints:
● x0 ≤ x1
● 3/4⋅x0 ≤ 1/2
● 1/2⋅x1 ≤ 1/10⋅x0 + 2/5

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T

Smin=0
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Example - Linear programming (min)

Let xi = Pmin(si,T)

T: x2=1, Smin=0: x3=0

For S? = {s0,s1}:

maximise x0+x1 subject to constraints:
● x0 ≤ x1
● x0 ≤ 2/3

● x1 ≤ 1/5⋅x0 + 4/5

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T

Smin=0
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rearranging



Example - Linear programming (min)

x0

x1

0
0

1

12/3
x0

x1

0
0

1

1

4/5

x0

x1

0
0

1

1

x1 ≤ 1/5⋅x0
+ 4/5

x0 ≤ x1

x0 ≤ 2/3

Let xi = Pmin(si,T)

T: x2=1, Smin=0: x3=0

For S? = {s0,s1}:

maximise x0+x1 subject to constraints:
● x0 ≤ x1
● x0 ≤ 2/3

● x1 ≤ 1/5⋅x0 + 4/5

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T

Smin=0
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Example - Linear programming (min)

x0

x1

0
0

1

1

4/5

2/3

max

Solution: (x0,x1)=(2/3,14/15)

Pmin(T)

=[ 2/3, 14/15, 1, 0 ]

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T

Smin=0

Let xi = Pmin(si,T)

T: x2=1, Smin=0: x3=0

For S? = {s0,s1}:

maximise x0+x1 subject to constraints:
● x0 ≤ x1
● x0 ≤ 2/3

● x1 ≤ 1/5⋅x0 + 4/5
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Example - Value iteration + LP

[ x0(n),     x1(n),     x2(n), x3(n) ]

n=0: [ 0.000000, 0.000000, 1,   0 ]

n=1: [ 0.000000, 0.400000, 1,   0 ]

n=2: [ 0.400000, 0.600000, 1,   0 ]

n=3: [ 0.600000, 0.740000, 1,   0 ]

n=4: [ 0.650000, 0.830000, 1,   0 ]

n=5: [ 0.662500, 0.880000, 1,   0 ]

n=6: [ 0.665625, 0.906250, 1,   0 ]

n=7: [ 0.666406, 0.919688, 1,   0 ]

n=8: [ 0.666602, 0.926484, 1,   0 ]

…

n=20: [ 0.666667, 0.933332, 1,   0 ]

n=21: [ 0.666667, 0.933332, 1,   0 ]

≈ [ 2/3,      14/15,    1,   0 ]

x0

x1

0
0

2/3

1
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Let xi = Pmax(si,T)

T: x2=1, Smax=0: ∅
For S? = {s0,s1,s3}:

minimise x0+x1+x3 subject to constraints:
● x0 ≥ x1
● x0 ≥ 2/3 + 1/3⋅x3
● x1 ≥ 1/5⋅x0 + 4/5

Example - Linear programming (max)

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T

● x3 ≥ 1

● x3 ≥ x3
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Let xi = Pmax(si,T)

T: x2=1, Smax=0: ∅
For S? = {s0,s1,s3}:

minimise x0+x1+x3 subject to constraints:
● x0 ≥ x1
● x0 ≥ 2/3 + 1/3⋅1
● x1 ≥ 1/5⋅x0 + 4/5

Example - Linear programming (max)

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T

● x3 ≥ 1

● x3 ≥ x3
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Let xi = Pmax(si,T)

T: x2=1, Smax=0: ∅
For S? = {s0,s1,s3}:

minimise x0+x1+x3 subject to constraints:
● x0 ≥ x1
● x0 ≥ 1

● x1 ≥ 1/5⋅x0 + 4/5

Example - Linear programming (max)

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T

● x3 ≥ 1

● x3 ≥ x3
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Example - Linear programming (max)

x0

x1

0
0

1

1
x0

x1

0
0

1

1

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T

0 1
x0

x1

0

1

4/5

Let xi = Pmax(si,T)

T: x2=1, Smax=0: ∅
For S? = {s0,s1,s3}:

minimise x0+x1+x3 subject to constraints:
● x0 ≥ x1
● x0 ≥ 1

● x1 ≥ 1/5⋅x0 + 4/5

x1 ≥ 1/5⋅x0 + 4/5

x0 ≥ 1

x0 ≥ x1
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● x3 ≥ x3



Example - Linear programming (max)

x0 x0

x1

0
0

1

1

4/5

2/3

min

(only feasible) solution:
(x0,x1)=(1, 1)

Let xi = Pmax(si,T)

T: x2=1, Smax=0: ∅
For S? = {s0,s1,s3}:

minimise x0+x1+x3 subject to constraints:
● x0 ≥ x1
● x0 ≥ 1

● x1 ≥ 1/5⋅x0 + 4/5

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T
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● x3 ≥ 1

● x3 ≥ x3



Example - Linear programming (max)

Let xi = Pmax(si,T)

T: x2=1, Smax=0: ∅
For S? = {s0,s1,s3}:

minimise x0+x1+x3 subject to constraints:
● x0 ≥ x1
● x0 ≥ 1

● x1 ≥ 1/5⋅x0 + 4/5

Solution:
● (x0,x1,x2,x3) = (1, 1, ?, ?)

● x3 ≥ 1

● x3 ≥ x3

57Simons Institute Bootcamp

(only feasible) solution:
(x0,x1)=(1, 1)

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T



Example - Linear programming (max)

Let xi = Pmax(si,T)

T: x2=1, Smax=0: ∅
For S? = {s0,s1,s3}:

minimise x0+x1+x3 subject to constraints:
● x0 ≥ x1
● x0 ≥ 1

● x1 ≥ 1/5⋅x0 + 4/5

Solution:
● (x0,x1,x2,x3) = (1, 1, 1, 1)

● x3 ≥ 1

● x3 ≥ x3
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(only feasible) solution:
(x0,x1)=(1, 1)

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T



Example - Linear programming (max)

Let xi = Pmax(si,T)

T: x2=1, Smax=0: ∅
For S? = {s0,s1,s3}:

minimise x0+x1+x3 subject to constraints:
● x0 ≥ x1
● x0 ≥ 1

● x1 ≥ 1/5⋅x0 + 4/5

Solution:
● (x0,x1,x2,x3) = (1, 1, 1, 1)

● x3 ≥ 1

● x3 ≥ x3
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(only feasible) solution:
(x0,x1)=(1, 1)

s0

s1 s2

s3
1/2

1/4

1

1

1

2/5

1/2

1/10

1/4

1

T

Maximum memoryless 
adversary σmin



Example - Linear programming (max)

Let xi = Pmax(si,T)

T: x2=1, Smax=0: ∅
For S? = {s0,s1,s3}:

minimise x0+x1+x3 subject to constraints:
● x0 ≥ x1
● x0 ≥ 1

● x1 ≥ 1/5⋅x0 + 4/5

Solution:
● (x0,x1,x2,x3) = (1, 1, 1, 1)

● x3 ≥ 1

● x3 ≥ x3
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(only feasible) solution:
(x0,x1)=(1, 1)

s0

s1 s2

s3

1

1

1

2/5

1/2

1/10
1

T

DTMC D(s0,σmax)



Method 3 - Policy iteration

Value iteration:
− iterates over (vectors of) probabilities

Policy iteration:
− iterates over adversaries (“policies”)

1. start with an arbitrary (memoryless) adversary σ
2. compute the reachability probabilities Pσ(s,T) for σ
3. improve the adversary in each state
4. repeat steps 2 and 3 until no change in adversary

Termination:
− finite number of memoryless adversaries
− improvement (in min/max probabilities) each time
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More general probabilistic properties

For example, once can compute the minimum and maximum 
probability an LTL formula ψ is true

1. convert problem to one needing maximum probabilities
− e.g. to find a minimum probability Pmin=?[ψ] = 1 – Pmax=?[¬ψ]

2. Generate a deterministic Rabin automaton (DRA) for ψ (or ¬ψ)
3. Construct product MDP M⊗A

4. Identify accepting end components (ECs) of M⊗A

− an EC is a set of states such that there  is an strategy under which one 
remains in the set,   and visits all states infinitely often with probability 1

5. Compute maximum probability of reaching accepting ECs
− from all states of the M⊗A
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One last thing - Complexity and Rewards

When using linear programming
− main task solution of linear optimization problem of size |S|

• can be solved with ellipsoid method (polynomial in |S|)

− and qualitative algorithms (max |S| steps)

Reward Structures for MDPs
− reward accumulated in a state
− reward accumulated when performing a specific action in a state

Can then compute the minimum and maximum expected 
accumulated rewards before reaching a target

− solution methods as for probabilistic reachability
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