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Markov Decision Processes

Markov Decision Processes (MDPs)
Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs
— qualitative probabilistic reachability
— optimality equations
— computing reachability probabilities
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Nondeterminism

Some aspects of a system may not be probabilistic and therefore
should not be modelled probabilistically; for example:

Concurrency - scheduling of parallel components

— e.g. randomised distributed algorithms - multiple probabilistic processes
operating asynchronously

Unknown environments
— e.g. probabilistic security protocols - unknown adversary
Underspecification - unknown model parameters

— e.g. a probabilistic communication protocol designed for message
propagation delays of between d,i, and dyax

Abstraction

— e.g. partition DTMC into similar (but not identical) states
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Probability vs. nondeterminism

Labelled transition system “@
— (S,s0,T,L) where T&SxS @ @
— choice is nondeterministic ' @,

Discrete-time Markov chain 1 {fail}
— (S,s0,P,L) where P:SxS—[0,1]
— choice is probabilistic

: 0.01 tsucc
How to combine?
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Markov decision processes

Markov decision processes (MDPs)
— extension of DTMCs which allow nondeterministic choices

Like DTMCs:

— discrete set of states representing possible configurations of the system
being modelled

— transitions between states occur in discrete time-steps

Probabilistic and nondeterministic behaviour in each state:
— a hondeterministic choice between available actions

— once an action is chosen the successor state is chosen probabilistically
based on the action and the current state
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Markov decision processes

Formally, an MDP M is a tuple (S, sq,P,L) where:
— Sis a finite set of states (“state space”)
— speS is a initial state
— L:S—2APis a labelling function
— P:SxA—-Dist(S) is a (partial) transition probability function

where A is a set of actions and Dist(S) is the set of discrete probability
distributions over the set of states S

. in state s, action a is available (can be performed) if P(s,a) is defined

. we denote by A(s) the available actions in state s

{heads}

Simons Institute Bootcamp ' {tails}



Simple MDP example

Modification of the simple DTMC communication protocol
— after one step, process starts trying to send a message
— then, a nondeterministic choice between: (a) waiting a step because the
channel is busy; (b) sending the message
— if the latter, with probability 0.99 send successfully and stops and

with probability 0.01, message sending fails, and protocol restarts

restart

{fail}

1
4@ start {succ}
1 . @ stop

wait
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Simple MDP example 2

Another simple MDP example with four states
— from state sy, move directly to s; (action a)
— in state s;, nondeterministic choice between actions b and c
— action b gives a probabilistic choice: self-loop or return to s

— action c gives a 50-50 random choice between heads/tails

0.3 {tails} 1
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Simple MDP example 2

M = (S,sq,P,L) AP = {1'.n1'.t,heads,taﬂs}
S — {SO! Sl! SZ! 53} L(SO)={-|n-|t}
L(s.)=0

L(s,)={heads}
L(s;)={tails}
P(sy,a) = [s;~1]

P(Sl,b) = [SOHO.7,S]_|—)O.3]
P(s;,c) = [s,~0.5,s5;-0.5]

P(s; a) = [s,~1]
P(s;,a) = [s3~1] tinit]

0.3 {tails} 1
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Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

1
1
(e
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Example - Parallel composition

1
Asynchronous parallel g 1/2 )
composition of two

3-state DTMCs

Action labels
omitted here

Simons Institute Bootcamp
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Markov Decision Processes

Markov Decision Processes (MDPs)
Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs
— qualitative probabilistic reachability
— optimality equations
— computing reachability probabilities
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Paths and probabilities

A (finite or infinite) path through an MDP
— IS a sequence sy _%o , S1 4, S5 %2 ,
— such that P(s,a;) (s;,1)>0 for all 1>0

— represents an execution (i.e. one possible behaviour) of the system which
the MDP is modelling

Path(s) is the set of all infinite paths of MDP starting from state s

— Path¢i,(s) is the set of all finite paths starting from state s

Paths resolve both nondeterministic and probabilistic choices

— how to reason about probabilities?
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Strategies

To consider the probability of some behaviour of the MDP
— first need to resolve the nondeterministic choices
— ... which results in a DTMC

— ... for which we can define a probability measure over paths

A strategy resolves nondeterministic choice in an MDP

b 14

— also known as a “scheduler”, “policy” or “adversary”
Formally:
— a strategy o of an MDP is a function mapping every finite path
™ = Sy 20, Sq LN S s, to an available action of s,
. i.e. resolves nondeterminism based on execution history

. given what has happened (the history) what action to perform next

Simons Institute Bootcamp
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Strategies — Examples

Consider the previous example MDP

— note sq is the only state for which there is more than one available action

. i.e. s; is the only state for which a strategy makes a choice

{heads}

Strategy o, picks action c the first time

— 01(SpS1)=C
Strategy o, picks action b the first time, thenc  0-3 (tails}

— 02(s0S1)=b

— 02(S0S151)=C

— 02(S0S150S1)=C

Note: actions omitted from paths for clarity
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Strategies and paths

Pathe(s) < Path(s)
— (infinite) paths from s where nondeterminism resolved by o
— i.e. paths are of the form —2 % 5 and o(m) = (a)

{heads}

Strategy o, picks action c the first time
— Pathoi(sy) = { s¢S1S5,%, S0S1S3* 1}

Strategy o, picks action b the first time, then c

— Patho2(sg) = { S051505152%, S0515051S3%”, S0S1S1S2%®, S0S1S1S3™ }
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Strategies — Induced DTMCs

For a given starting state s, a strategy o of an MDP induces an
infinite-state DTMC D(s, o)

D(s,0) = (Patho;,(s),s,P,L) where:

— states of the DTMC are the finite paths of the MDP starting in state s

— initial state is s (the path starting in s of length 0)

— Po(mr, m’)=P(last(m),a)(s’) if m'=m—> s’ and o(mM)=a

— Po(1r, 11)=0 otherwise

— labelling of a path just given by the labelling of the last state of the path
1-to-1 correspondence between Path?(s) and paths of D(s, o)

This therefore gives us a probability measure over Pathc(s)

— by using probability measure over the paths of D(s, 0)

Simons Institute Bootcamp
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Strategies — Examples

Fragment of induced DTMC for strategy o;
— 07 picks action c the first time

Simons Institute Bootcamp
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Strategies — Examples

Fragment of induced DTMC for strategy o,
— 0, picks action b the first time, and then c

Simons Institute Bootcamp
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Markov Decision Processes

Markov Decision Processes (MDPs)
Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs
— qualitative probabilistic reachability
— optimality equations
— computing reachability probabilities
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Probabilistic Reachability

Probabilistic reachability
— fundamental concept in quantitative verification

— concerns probability of reaching a target set T
P°(s,T) probability of reaching T under the strategy o from state s
as for DTMCs

MDP provides best-/worst-case analysis

— based on lower/upper bounds on probabilities over all strategies

— P"n(s,T) = infs; P9(s,T)
the minimum probability of reaching T over all strategies

— P"X(s,T) = sups P9(s,T)
the maximum probability of reaching T over all strategies

— vectors: P""(T) and P"(T) values for all states of an MDP

Simons Institute Bootcamp
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Examples - target T equals {tails}

Consider strategy o; that first selects b the first i-1 times in state s; and then c

Po1(sy,T) = 0.5 {heads} 1
POZCSO,T) = 0.5

Pm"in(s,,T) = 0.0
P"aX(sy,T) = 0.5

Simons Institute Bootcamp 22



Examples - target T equals {tails}

Consider strategy o; that first selects b the first i-1 times in state s; and then c

PO]'(SO,T) = 05
POZCSO,T) = 0.5

Pm"in(s,,T) = 0.0
P"aX(sy,T) = 0.5

{heads} 1

P1(s0,T) = 0.5
P-2(s,,T) = 0.3+0.7- 0.5 = 0.65
P93(se,T) = 0.3+0.7-0.3+0.7-0.7- 0.5 = 0.755

P"in(sy,T) = 0.5
P"ax(sy,T) = 1.0

Simons Institute Bootcamp
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Memoryless strategies

Memoryless strategies always pick same choice in a state

— also known as: positional, Markov, simple
— cah write as a mapping from states to available actions
— induced DTMC can be mapped to a |S|-state DTMC

From previous example:
— strategy o (picks c in s;) is memoryless; o, is not

{heads} {heads}

{tails} {tails}
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Other classes of strategies

Finite-memory strategies
— finite number of modes, which can govern choices made

— formally defined by a deterministic finite automaton
— induced DTMC (for finite MDP) again mapped to finite DTMC

Randomised strategies

— maps finite paths to a probability distribution over available actions
— generalises deterministic schedulers
— still induces a (possibly infinite state) DTMC

Fair strategies
— fairness assumptions on resolution of nondeterminism

Simons Institute Bootcamp
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Markov Decision Processes

Markov Decision Processes (MDPs)
Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs
— qualitative probabilistic reachability
— optimality equations
— computing reachability probabilities
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Qualitative probabilistic reachability

Consider the problem of determining states s for which
Pmin(s,T) or P"x(s,T) is non-zero (or zero)

— max case; Smax>0 = { 5 & S | Pmax(s T)>0 }

— this is just (non-probabilistic) reachability

R =T
done := false
while (done = false)
if (R'=R) then done :=
R := R’
endwhile
return R

R" = RuU { s&S | 3acA .

3s’ eR .P(s,a) (s’ )>0}
true
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Qualitative probabilistic reachability

Consider the problem of determining states s for which
Pmin(s,T) or P"x(s,T) is non-zero (or zero)

— min case; Smn>0 = { 5 & S | Pmin(s,T)>0 }

note: quantification
over all choices

R =T

done := false

while (done = false)
R" =R U { seS | vaeA . 3s'eR .P(s,a) (s’ )>0}
if (R'=R) then done := true
R := R’

endwhile

return R

Simons Institute Bootcamp
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Probabilistic Reachability - Optimality equations

The values Pmin(s, T) are the unique solution of the equations:

4 1 1f seT

Xxs = < 0 if seS\Smin-0

MiNzeacs) 1 2s'es P(s,a)(s’) - Xs» } otherwise
.

optimal solution for state s uses

optimal solution for successors s’ case when
pmin(s,T)=0

This is an instance of the Bellman equation, the basis of dynamic
programming techniques
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Probabilistic Reachability - Optimality equations

The values Pmax(s,T) are the unique solution of the equations:

4 1 1f seT

Xs = < 0 if seS\Smax>0

MaXaeacs) 1 2s'es P(s,a)(s’) - Xs } otherwise
.

case when
pmax(s,T)=0

Simons Institute Bootcamp 30



Memoryless strategies

Recall memoryless strategies always pick same choice in a state

Memoryless strategies suffice for probabilistic reachability
— i.e. there exist memoryless strategies 0,i, and 0,.x such that:
— Pomin(s,T) = Pmin(s,T) for all states s&S
— Pomax(s,T) = Pmax(s,T) for all states s&S

Can construct memoryless strategies from optimal solution:

— Opin(s) =argmin { Zses P(s,a)(s’)-Pm"in(s,T) | a€eA(s) }
— Opax(S) =argmax { Zses P(s,a)(s’)-Pmx(s,T) | aeA(s) }

Simons Institute Bootcamp
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Memoryless strategies

Memoryless strategies not always sufficient

— although they are sufficient for reachability in turn-based games

Finite-memory strategies are required for

— bounded properties

— LTL and automata-based properties

Randomized strategies are required for concurrent games

Finite-memory strategies and randomised strategies are required for
multi-objective properties

Simons Institute Bootcamp
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Markov Decision Processes

Markov Decision Processes (MDPs)
Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs
— qualitative probabilistic reachability
— optimality equations
— computing reachability probabilities
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Computing reachability probabilities

Several approaches...

Preferable

_ _ / in practice,
Value iteration e.g. in PRISM

— approximate with iterative solution method
— corresponds to fixed point computation

Reduction to a linear programming (LP) problem
— solve with linear optimisation techniques
— exact solution using well-known methods

o _ better
Policy iteration complexity;
— iteration over strategies good for small
examples

Simons Institute Bootcamp
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Method 1 - Value iteration (min)

For minimum probabilities P"in(s,T) it can be shown that:
— Pmin(s,T) = Timyoe X where:

g 1 1f seT
0 if seS\Smin-0
XS(n)= <
0 it n=0
L MiNaeacs) 1 Zs'es P(s,a)(s’)xs: (D} otherwise

Approximate iterative solution technique
— iterations terminated when solution converges sufficiently

Simons Institute Bootcamp
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Method 1 - Value iteration (max)

For maximum probabilities P"ax(s,T) it can be shown that:
— Pmax(s,T) = Tim,_, X< where:

g 1 1f seT
0 if seS\Smax>0
XS(n)= <
0 it n=0
L MaXaeacs) 1 2s'es P(s,a)(s’)xs: (D} otherwise

Approximate iterative solution technique
— iterations terminated when solution converges sufficiently

Simons Institute Bootcamp
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Value iteration as a fixed point

Can view as a fixed point computation over vectors y €[0,1]5
— for example, for minimum consider the function F : [0,1]> — [0,1]°

FCy) (s) =<

f

1 if seT
0 1f seS\Smin>0
\minaeA(s) { 3575 P(s,a)(s’)-y(s’) } otherwise

If we let x(®=0 and x("+D=F(x(M) then we have that

. X0 < x
prin(T) = 1
FCP™n(T))

< X(Z) < X(3) < .
My, XM
= Pmin(T) and it is the unique fixed point
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Example

Minimum/maximum probability of reaching T={s,}

Simons Institute Bootcamp
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Example - Value iteration (min)

Compute: P"in(s;,T) where T={s,}

Smin>0 = {sq, s1, S»}

[ Xo(n) , X1 (M x5 () ,X3(”) ]

n=0: [ 0, 0, 1, 0 ]

n=1: [min(1.0,0.25-:0+0.25-0+0.5-1),0.01-0+0.5-:0+0.4-1, 1, 0 ]
=[ 0, 0.4, 1, 0 ]

2: [ mn(1-0.4,0.25-0+0.25-0+0.5-1),0.01-:0+0.5-0.4+0.4-1, 1, 0 ]
=[ 0.4, 0.6, 1, 0 ]

n

Il
w

n
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Example - Value iteration (min)

[ XM, x1(M %M x3(m) ]

n=0:
n=1:
n=2:
n=3:
n=4:
n=>5:
n=6:
n=7:
n=_8:

r 1 111

0.000000,
.000000,
.400000,
.600000,
.650000,
.662500,
.0665625,
. 6664006,
.0666602,

© O O O O O O O

0.666667,
0.666667,
2/3,

0.000000,
.400000,
.600000,
. 740000,
.830000,
.880000,
.906250,
. 919688,
.926484,

O O O O O O O O

0.933332,
0.933332,
14/15,

Simons Institute Bootcamp
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o O
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pmin(T)=[ 2/3, 14/15, 1, 0 ]




Generating an optimal strategy

Minimum strategy Oy, [ Xo™, XM, %, , x5 ]

n=20: [ 0.666667, 0.933332, 1, 0 ]
n=21: [ 0.666667, 0.933332, 1, 0 ]
~ [ 2/3, 14/15, 1, 0 ]

So : min(1.14/15, 1/2:-1+1/4-0+1/4-2/3)
= min(14/15, 2/3)

S3 € S\Smi n>0

Simons Institute Bootcamp
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Generating an optimal strategy

+ DTMC D(s¢,0min) [ %™, XM, %, x5 ]

n=20: [ 0.666667, 0.933332, 1, 0 ]
n=21: [ 0.666667, 0.933332, 1, 0 ]
~ [ 2/3, 14/15, 1, 0 ]

sg : min(1.14/15, 1/2:-1+1/4-0+1/4-2/3)
= min(14/15, 2/3)

Simons Institute Bootcamp
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Linear programming

Linear programming
— optimisation of a linear objective function
— subject to linear (in)equality constraints

General form:
— nvariables: x1, x>, ..,X,
— maximise (or minimise): c;x1 + CyX> + -
— subject to constraints

IA
o
[y

- d11X71 + Ad12Xo + - 4+ dipnXp
- dy1X1 + dAypXo + - 4+ dAypnX, =< bz

A
o
3

* am]_Xl + am2X2 + - + aman )

Simons Institute Bootcamp

Many standard solution
techniques exist, e.q.
Simplex, ellipsoid method,
interior point method

In matrix/vector form:
Maximise (or minimise)
C-X
subject to
A-x < b
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Method 2 - Linear programming problem

Minimum probabilities P"n(s,T) can be computed as follows:
— pPmin(s, T)=1 if seT
— Pmin(s,T)=0 if s&S\Snin>0
— values for remaining states S? can be obtained as the unique solution of
the following linear programming problem:

maximize >..s»>Xs subject to the constraints:
Xs < 257es2P(5,2) (s7)Xs» + 25:e7P(s,2)(S7)

for all s&S?” and acA(s)

Simons Institute Bootcamp
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Method 2 - Linear programming problem

Maximum probabilities P"ax(s, T) can be computed as follows:
— Pmax(s,T)=1 if seT
— Pmax(s,T)=0 if s&S\Smax>0
— values for remaining states S? can be obtained as the unique solution of
the following linear programming problem:

minimize >..s>X< subject to the constraints:
A

Xs > 2s'es7?P(5,a) (S ) Xs» + 2Z5c7P(s,a) (S7)

ﬁ for all s&S?” and acA(s)

differences
from min case

Simons Institute Bootcamp
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Example - Linear programming (min)

Simons Institute Bootcamp

Let X'i = Pm-in(S-i,T)
T: x,=1, S™n=0: x;=0
For S” = {sq,s:}:

maximise X,+x; subject to constraints:

e« Xo £ Xg

46



Example - Linear programming (min)

Let X'i = Pm-in(S-i,T)
T: x,=1, S™n=0: x;=0
For S” = {sq,s:}:

maximise X,+x; subject to constraints:

e« Xo £ Xg

| rearranging

Simons Institute Bootcamp
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Example - Linear programming (min)

Let X'i = Pm-in(S-i,T)
T: x,=1, S™n=0: x;=0
For S” = {sq,s:}:

maximise X,+x; subject to constraints:

e« Xo £ Xg
.« Xo £ 2/3

| rearranging

Simons Institute Bootcamp
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Example - Linear programming (min)

Let X'i = Pm-in(S-i,T)
T: x,=1, S™n=0: x;=0
For S” = {sq,s:}:

maximise X,+x; subject to constraints:

e Xo £ Xg
.« Xo £ 2/3
X1
11&
4/57
| xo < 2/3 | x1 < 1/5%
' ' + 4/5
0 ¥————" x, oOFb—mm——x, o+r——
0 1 0 0 2/3 1 0 0 1

Simons Institute Bootcamp

49



Example - Linear programming (min)

Let x; = P"n(s.,T)

T: x,=1, SMn=0: x;=0

For S” = {sq,s:}:

maximise X,+x; subject to constraints:
e Xo £ X3
.« Xo £ 2/3
e X3 < 1/5%, + 4/5

Solution: (x¢,x;)=(2/3,14/15)

Pmin(T)
=[ 2/3, 14/15, 1, 0 ]

_ _ 0 2/3 1
Simons Institute Bootcamp 50



Example - Value iteration + LP

O T T T T > n=20:
0 2/3 Xo  n=21:

Simons Institute Bootcamp

(s T e TR s T s TR s Y e T s T e O e B ey |
O O O O O O O O O

i

Xo(n) ;

.000000,
.000000,
.400000,
.600000,
.650000,
.662500,
.0665625,
.6664006,
.666602,

0.666667,
0.666667,

2/3,

Xl(n) ,
0.000000,
0.400000,
0.600000,
0.740000,
0.830000,
0.880000,
0.906250,
0.919688,
0.926484,

0.933332,
0.933332,
14/15,

X, X3 ]

1
1
1
1
1,
1
1
1
1

1,
1,
1,

O O O O O O O O O
— L L L L L L L

]
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Example - Linear programming (max)

Simons Institute Bootcamp

Let X'i = PmaX(S-i,T)
T: xp=1, S"ax=0: ¢
For S = {s;,S:,S3}:

minimise X,+x;+X; subject to constraints:

e Xo = Xy e X3 = 1
° XO = 2/3 + 1/3X3 ° X3 > X3

52



Example - Linear programming (max)

Let X'i = PmaX(S-i,T)
T: xp=1, S"ax=0: ¢
For S = {s;,S:,S3}:

minimise X,+x;+X; subject to constraints:

e Xo = Xy e X3 = 1
° XO = 2/3 + 1/31 ° X3 > X3

| rearranging

Simons Institute Bootcamp
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Example - Linear programming (max)

Let X'i = PmaX(S-i,T)
T: xp=1, S"ax=0: ¢
For S = {s;,S:,S3}:

minimise X,+x;+X; subject to constraints:

e Xo = Xy e X3 = 1
e Xg = 1 « X3 = X3

| rearranging

Simons Institute Bootcamp
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Example - Linear programming (max)

Let x; = P"*(s;,T)

T: x,=1, S"x=0; @

For S” = {s;,S1,S3}:

minimise X,+x;+X; subject to constraints:

e Xo = Xy e X3 = 1
e Xg = 1 « X3 = X3
e X3 = 1/5X%, + 4/5
X1 X1 %y = 1/5X% + 4/5
1 1
4/5
Xo = 1
Xo = X3
0 ——— X O > Xg 0 > Xg
0 1 0 1 0 1

Simons Institute Bootcamp
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Example - Linear programming (max)

Simons Institute Bootcamp

Let x; = P"*(s;,T)

T: x,=1, S"x=0; @

For S” = {s;,S1,S3}:

minimise X,+x;+X; subject to constraints:

e Xo = Xy e X3 = 1
e Xg = 1 « X3 = X3

mi:/

(X, X1)=(1, 1)

2/3 1

\_(only feasible) solution:
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Example - Linear programming (max)

Simons Institute Bootcamp

Let x; = P"x(s;,T)

T: x,=1, S"x=0; @

For S = {sy,S1,S3}:

minimise X,+X;+X; subject to constraints:

o« Xo = Xy e X3 = 1
e Xg = 1 o« X3 = X3
e X3 = 1/5X%, + 4/5

Solution:

L4 (XO!X1!X2!X3) = (11 l! ?5 ?)

(only feasible) solution:

(Xo,xp)=(C1, 1)
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Example - Linear programming (max)

Simons Institute Bootcamp

Let x; = P"x(s;,T)

T: x,=1, S"x=0: ¢

For S = {sy,S1,S3}:

minimise X,+X;+X; subject to constraints:

o« Xo = Xy e X3 = 1
e Xg = 1 o« X3 = X3
e X3 = 1/5X%, + 4/5

Solution:

L4 (XO!X1!X2!X3) = (l’ 1! 15 1)

(only feasible) solution:

(X, X1)=(1, 1)
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Example - Linear programming (max)

Maximum memoryless
adversary o,

Simons Institute Bootcamp

Let x; = P"x(s;,T)

T: x,=1, S"x=0; @

For S = {sy,S1,S3}:

minimise X,+X;+X; subject to constraints:

o« Xo = Xy e X3 = 1
e Xg = 1 o« X3 = X3
e X3 = 1/5X%, + 4/5

Solution:

L4 (XO!X1!X2!X3) = (11 l! 15 1)

(only feasible) solution:

(X, X1)=(1, 1)
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Example - Linear programming (max)

DTMC D(sg,0max)

Simons Institute Bootcamp

Let x; = P"x(s;,T)

T: x,=1, S"x=0; @

For S = {sy,S1,S3}:

minimise X,+X;+X; subject to constraints:

o« Xo = Xy e X3 = 1
e Xg = 1 o« X3 = X3
e X3 = 1/5X%, + 4/5

Solution:

L4 (XO!X1!X2!X3) = (11 l! 15 1)

(only feasible) solution:

(X, X1)=(1, 1)
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Method 3 - Policy iteration

Value iteration:

— iterates over (vectors of) probabilities
Policy iteration:

— iterates over adversaries (“policies”)

. start with an arbitrary (memoryless) adversary o
compute the reachability probabilities Po(s,T) for o
. improve the adversary in each state

. repeat steps 2 and 3 until no change in adversary

A W N =

Termination:
— finite number of memoryless adversaries
— improvement (in min/max probabilities) each time

Simons Institute Bootcamp
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More general probabilistic properties

For example, once can compute the minimum and maximum

probability an LTL formula @ is true

1. convert problem to one needing maximum probabilities
— e.g. to find a minimum probability Pyin-2[W] = 1 — Ppaye? [—W]
2. Generate a deterministic Rabin automaton (DRA) for @ (or —\)
3. Construct product MDP M®A
4. Identify accepting end components (ECs) of MQA

— an EC is a set of states such that there is an strategy under which one
remains in the set, and visits all states infinitely often with probability 1

5. Compute maximum probability of reaching accepting ECs
— from all states of the MKA

Simons Institute Bootcamp
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One last thing - Complexity and Rewards

When using linear programming
— main task solution of linear optimization problem of size |S|
. can be solved with ellipsoid method (polynomial in |S|)

— and qualitative algorithms (max |S| steps)

Reward Structures for MDPs

— reward accumulated in a state

— reward accumulated when performing a specific action in a state

Can then compute the minimum and maximum expected

accumulated rewards before reaching a target

— solution methods as for probabilistic reachability

Simons Institute Bootcamp

63



