Probabilistic Systems

Part 2: Markov decision processes

Dr. Gethin Norman School of Computing Science University of Glasgow gethin.norman@glasgow.ac.uk

Markov Decision Processes

Markov Decision Processes (MDPs)

Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs

- − qualitative probabilistic reachability
- − optimality equations
- − computing reachability probabilities

Some aspects of a system may not be probabilistic and therefore should not be modelled probabilistically; for example:

Concurrency - scheduling of parallel components

− e.g. randomised distributed algorithms - multiple probabilistic processes operating asynchronously

Unknown environments

− e.g. probabilistic security protocols - unknown adversary

Underspecification - unknown model parameters

− e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}

Abstraction

− e.g. partition DTMC into similar (but not identical) states

Probability vs. nondeterminism

Labelled transition system

- $-$ (S, s₀, T, L) where T⊆S×S
- − choice is nondeterministic

Discrete-time Markov chain

- $−$ (S, s₀, P, L) where P: S×S → [0, 1]
- − choice is probabilistic

How to combine?

Markov decision processes

Markov decision processes (MDPs)

− extension of DTMCs which allow nondeterministic choices

Like DTMCs:

- − discrete set of states representing possible configurations of the system being modelled
- − transitions between states occur in discrete time-steps

Probabilistic and nondeterministic behaviour in each state:

- − a nondeterministic choice between available actions
- − once an action is chosen the successor state is chosen probabilistically based on the action and the current state

Markov decision processes

Formally, an MDP M is a tuple (S, s_0, P, L) where:

- − S is a finite set of states ("state space")
- $-$ s₀∈S is a initial state
- − L:S➝2AP is a labelling function
- − P:S×A➝Dist(S) is a (partial) transition probability function where A is a set of actions and $Dist(S)$ is the set of discrete probability distributions over the set of states S
	- \cdot in state s, action a is available (can be performed) if $P(s, a)$ is defined
	- \cdot we denote by A(s) the available actions in state s

Modification of the simple DTMC communication protocol

- − after one step, process starts trying to send a message
- − then, a nondeterministic choice between: (a) waiting a step because the channel is busy; (b) sending the message
- − if the latter, with probability 0.99 send successfully and stops and with probability 0.01, message sending fails, and protocol restarts

Another simple MDP example with four states

- $-$ from state s_0 , move directly to s_1 (action a)
- $-$ in state s_1 , nondeterministic choice between actions **b** and **c**
- $-$ action b gives a probabilistic choice: self-loop or return to s_0
- − action c gives a 50-50 random choice between heads/tails

Simple MDP example 2

 $M = (S, S_0, P, L)$ $S = \{S_0, S_1, S_2, S_3\}$ $P(s_0, a) = [s_1 \mapsto 1]$ $P(s_1,b) = [s_0 \mapsto 0.7, s_1 \mapsto 0.3]$ $P(s_1, c) = [s_2 \mapsto 0.5, s_3 \mapsto 0.5]$ $P(s_2, a) = [s_2 \mapsto 1]$ $P(s_3, a) = [s_3 \mapsto 1]$ $AP = \{init, heads, tails\}$ $L(S_0) = \{init\}$ $L(S_1)=\emptyset$ $L(s_2)$ ={heads} $L(S_3) = \{ \text{tail } | \text{s} \}$ S_1 $S₂$ 0.5 0.7 b $\left(\begin{array}{cc} 0.5 \end{array}\right)$ 1 {tails} {heads} {init} 0.3 1 a b c

Simons Institute Bootcamp 9 and 1990 states and 1990 states and 1990s states and 1990s states and 1990s states $\frac{9}{9}$

 S_3

1

a

a

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here

Markov Decision Processes

Markov Decision Processes (MDPs)

Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs

- − qualitative probabilistic reachability
- − optimality equations
- − computing reachability probabilities

A (finite or infinite) path through an MDP

- $-$ is a sequence $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ a_0 a_1 a_2 a_3
- − such that $P(s, a_i)(s_{i+1})>0$ for all $i\ge 0$
- − represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling

Path(s) is the set of all infinite paths of MDP starting from state **s**

 $-$ Path_{fin}(s) is the set of all finite paths starting from state s

Paths resolve both nondeterministic and probabilistic choices

− how to reason about probabilities?

Strategies

To consider the probability of some behaviour of the MDP

- − first need to resolve the nondeterministic choices
- − … which results in a DTMC
- − … for which we can define a probability measure over paths

A strategy resolves nondeterministic choice in an MDP

− also known as a "scheduler", "policy" or "adversary"

Formally:

- $-$ a strategy σ of an MDP is a function mapping every finite path $\pi = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_{n-1}} s_n$ to an available action of s_n a_0 a_1 a_{n-1}
	- i.e. resolves nondeterminism based on execution history
	- given what has happened (the history) what action to perform next

Strategies - Examples

Consider the previous example MDP

- $-$ note s_1 is the only state for which there is more than one available action
	- \cdot i.e. S_1 is the only state for which a strategy makes a choice

Strategy σ_1 picks action c the first time

 σ_1 (S₀S₁)=C

Strategy σ2 picks action **b** the first time, then **c**

- σ_2 (S₀S₁)=b
- σ_2 (S₀S₁S₁)=C
- σ_2 (S₀S₁S₀S₁)=C

Note: actions omitted from paths for clarity

Pathσ(s) ⊆ **Path(s)**

 $-$ (infinite) paths from s where nondeterminism resolved by σ

 $-$ i.e. paths are of the form $\pi \xrightarrow{a} s$ and $\sigma(\pi) = (a)$

Strategy σ_1 picks action c the first time

 $-$ Path^{$\sigma_1(s_0) = \{ s_0 s_1 s_2^{\omega}, s_0 s_1 s_3^{\omega} \}$}

Strategy σ2 picks action **b** the first time, then **c**

 $-$ Path^{σ 2}(s₀) = { s₀S₁S₀S₁S₂^ω, s₀S₁S₀S₁S₃^ω, s₀S₁S₁S₃^ω}

For a given starting state s, a strategy σ of an MDP induces an infinite-state DTMC **D(s,σ)**

D(s,σ) = (Path^σ fin(s),s,Pσ**,L)** where:

- − states of the DTMC are the finite paths of the MDP starting in state s
- − initial state is **s** (the path starting in **s** of length 0)
- $-$ **P**^{σ}(π, π')=P(last(π),a)(s') if $\pi' = \pi \frac{a}{a}$ s' and $\sigma(\pi)$ =a
- $-$ P^{σ}(π, π')=0 otherwise
- − labelling of a path just given by the labelling of the last state of the path

1-to-1 correspondence between **Path**σ**(s)** and paths of **D(s,σ)**

This therefore gives us a probability measure over **Path**σ**(s)**

 $-$ by using probability measure over the paths of D(s, σ)

Strategies - Examples

- Fragment of induced DTMC for strategy σ**¹**
	- $-\sigma_1$ picks action c the first time

Strategies - Examples

Markov Decision Processes (MDPs)

Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs

- − qualitative probabilistic reachability
- − optimality equations
- − computing reachability probabilities

Probabilistic Reachability

Probabilistic reachability

- − fundamental concept in quantitative verification
- − concerns probability of reaching a target set T
	- **P**σ(s,T) probability of reaching T under the strategy σ from state s • as for DTMCs

MDP provides best-/worst-case analysis

- − based on lower/upper bounds on probabilities over all strategies
- $-$ **P**^{min}(s,T) = inf_σ **P**^{σ}(s,T)
	- \cdot the minimum probability of reaching T over all strategies
- $-$ **P**^{max}(s,T) = sup_σ **P**^{σ}(s,T)
	- \cdot the maximum probability of reaching T over all strategies
- − vectors: P^{min}(T) and P^{max}(T) values for all states of an MDP

Examples – target **T** equals **{tails}**

Consider strategy σ_i that first selects **b** the first **i-1** times in state s_1 and then **c**

 $P^{\circ 1}(s_0,T) = 0.5$ $P^{\sigma2}(s_0,T) = 0.5$ … $P^{min}(s_0, T) = 0.0$ $P^{max}(s_0, T) = 0.5$

Examples – target **T** equals **{tails}**

Consider strategy σ_i that first selects **b** the first **i-1** times in state s_1 and then **c**

Memoryless strategies always pick same choice in a state

- − also known as: positional, Markov, simple
- − can write as a mapping from states to available actions
- − induced DTMC can be mapped to a |S|-state DTMC

From previous example:

− strategy σ_1 (picks c in s₁) is memoryless; σ_2 is not

Other classes of strategies

Finite-memory strategies

- − finite number of modes, which can govern choices made
- − formally defined by a deterministic finite automaton
- − induced DTMC (for finite MDP) again mapped to finite DTMC

Randomised strategies

- − maps finite paths to a probability distribution over available actions
- − generalises deterministic schedulers
- − still induces a (possibly infinite state) DTMC

Fair strategies

− fairness assumptions on resolution of nondeterminism

Markov Decision Processes (MDPs)

Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs

- − qualitative probabilistic reachability
- − optimality equations
- − computing reachability probabilities

Qualitative probabilistic reachability

Consider the problem of determining states **s** for which **Pmin(s,T)** or **Pmax(s,T)** is non-zero (or zero)

- − max case: $S^{max>0} = \{ s \in S | P^{max}(s,T) > 0 \}$
- − this is just (non-probabilistic) reachability

```
R := Tdone := false
while (done = false) 
    R' = R \cup \{ s \in S \mid \exists a \in A \quad \exists s' \in R \quad P(s,a)(s') > 0 \}if (R'=R) then done := true
    R := R'endwhile
return R
```
Qualitative probabilistic reachability

Consider the problem of determining states **s** for which **Pmin(s,T)** or **Pmax(s,T)** is non-zero (or zero)

Probabilistic Reachability - Optimality equations

The values P^{min}(s, T) are the unique solution of the equations:

This is an instance of the Bellman equation, the basis of dynamic programming techniques

Probabilistic Reachability – Optimality equations

The values **Pmax(s,T)** are the unique solution of the equations:

Recall memoryless strategies always pick same choice in a state

Memoryless strategies suffice for probabilistic reachability

- − i.e. there exist memoryless strategies σ_{min} and σ_{max} such that:
- $-P^{\sigma_{\text{min}}}(s,T) = P^{\text{min}}(s,T)$ for all states $s \in S$
- $-P^{\sigma_{max}}(s,T) = P^{\text{max}}(s,T)$ for all states $s \in S$

Can construct memoryless strategies from optimal solution:

- $-\sigma_{\min}(s)$ = argmin { $\Sigma_{s\in S}$ P(s,a)(s')⋅P^{min}(s,T) | a∈A(s) }
- $-\sigma_{\text{max}}(s)$ = argmax { Σ_{SES} P(s,a)(s')⋅Pmax(s,T) | a∈A(s) }

Memoryless strategies not always sufficient

− although they are sufficient for reachability in turn-based games

Finite-memory strategies are required for

- − bounded properties
- − LTL and automata-based properties

Randomized strategies are required for concurrent games

Finite-memory strategies and randomised strategies are required for multi-objective properties

Markov Decision Processes (MDPs)

Paths, strategies and probabilities for MDPs

Probabilistic reachability for MDPs

- − qualitative probabilistic reachability
- − optimality equations
- − computing reachability probabilities

Computing reachability probabilities

Method 1 - Value iteration (min)

For minimum probabilities $P^{min}(s, T)$ it can be shown that:

 $- P^{min}(s, T) = \lim_{n \to \infty} x_s^{(n)}$ where:

Approximate iterative solution technique

− iterations terminated when solution converges sufficiently

Method 1 - Value iteration (max)

For maximum probabilities **Pmax(s,T)** it can be shown that:

```
- P<sup>max</sup>(s,T) = lim<sub>n→∞</sub> x_s^{(n)} where:
```


Approximate iterative solution technique

− iterations terminated when solution converges sufficiently

Value iteration as a fixed point

Can view as a fixed point computation over vectors $y \in [0,1]^S$

− for example, for minimum consider the function $F : [0,1]^s \rightarrow [0,1]^s$

$$
F(y)(s) = \begin{cases} 1 & \text{if } s \in T \\ 0 & \text{if } s \in S \setminus S^{\min>0} \\ & \text{min}_{a \in A(s)} \{ \sum_{s' \in S} P(s, a) (s') \cdot y(s') \} & \text{otherwise} \end{cases}
$$

If we let $x^{(0)}=0$ and $x^{(n+1)}=F(x^{(n)})$ then we have that

- $X^{(0)}$ < $X^{(1)}$ < $X^{(2)}$ < $X^{(3)}$ < ...
- P^{min}(T) = $\lim_{n \to \infty} x^{(n)}$
- $F(P^{min}(T)) = P^{min}(T)$ and it is the unique fixed point

Minimum/maximum probability of reaching **T={s2}**

Example - Value iteration (min)

```
Compute: P^{min}(s_i, T) where T = \{s_2\}S^{\text{min}>0} = \{S_0, S_1, S_2\}\left[ X_0^{(n)}, X_1^{(n)}, X_2^{(n)}, X_3^{(n)} \right]n=0: [ 0, 0, 1, 0 ]
n=1: [min(1⋅0,0.25⋅0+0.25⋅0+0.5⋅1),0.01⋅0+0.5⋅0+0.4⋅1, 1, 0 ]
     =[ 0, 0.4, 1, 0 ]
n=2: [ min(1⋅0.4,0.25⋅0+0.25⋅0+0.5⋅1),0.01⋅0+0.5⋅0.4+0.4⋅1, 1, 0 ]
     =[ 0.4, 0.6, 1, 0 ]n=3: …
                                                               1/2
                                                                            T
```


Example - Value iteration (min)

 $P^{min}(T) = [2/3, 14/15, 1, 0]$

Generating an optimal strategy

Minimum strategy σ_{min}

 (n) , $X_1^{(n)}$, $X_2^{(n)}$, $X_3^{(n)}$]

- n=20: [0.666667, 0.933332, 1, 0] n=21: [0.666667, 0.933332, 1, 0]
	- \approx [2/3, 14/15, 1, 0]
- s₀ : min(1⋅14/15, 1/2⋅1+1/4⋅0+1/4⋅2/3) $= min(14/15, 2/3)$

 $s_3 \in S \setminus S^{min>0}$

…

Generating an optimal strategy

…

• DTMC $D(s_0, \sigma_{min})$

 $\left[X_0^{(n)}, X_1^{(n)}, X_2^{(n)}, X_3^{(n)} \right]$

- n=20: [0.666667, 0.933332, 1, 0] n=21: [0.666667, 0.933332, 1, 0]
	- \approx [2/3, 14/15, 1, 0]
- s_0 : min(1⋅14/15, 1/2⋅1+1/4⋅0+1/4⋅2/3) $= min(14/15, 2/3)$

Linear programming

- − optimisation of a linear objective function
- − subject to linear (in)equality constraints

General form:

- $-$ n variables: x_1 , x_2 , …, x_n
- $-$ maximise (or minimise): $c_1x_1 + c_2x_2 + ... + c_nx_n$
- − subject to constraints
	- \cdot a₁₁X₁ + a₁₂X₂ + \cdot + a_{1n}X_n \leq b₁ \cdot a₂₁X₁ + a₂₂X₂ + … + a_{2n}X_n \leq b₂ ÷ … …• $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \le b_m$

Many standard solution techniques exist, e.g. Simplex, ellipsoid method, interior point method

In matrix/vector form: Maximise (or minimise) c·x subject to $A \cdot x \leq b$

Method 2 - Linear programming problem

Minimum probabilities **Pmin(s,T)** can be computed as follows:

- $-$ P^{min}(s, T)=1 if s∈T
- $-\mathsf{P}^{\min}(\mathsf{s},\mathsf{T})=0$ if $\mathsf{s}\in\mathsf{S}\backslash\mathsf{S}^{\min>0}$
- − values for remaining states S[?] can be obtained as the unique solution of the following linear programming problem:

maximize $\Sigma_{\text{scS}2}$ x_s subject to the constraints: $x_s ≤ Σ_{s'∈S?}P(s,a)(s')·x_{s'} + Σ_{s'∈T}P(s,a)(s')$

for all $s \in S^2$ and $a \in A(s)$

Method 2 - Linear programming problem

Maximum probabilities **Pmax(s,T)** can be computed as follows:

- $-$ P^{max}(s, T)=1 if s∈T
- − Pmax(s,T)=0 if s∈S\Smax>0
- $-$ values for remaining states S^2 can be obtained as the unique solution of the following linear programming problem:

- Let $x_i = P^{min}(s_i, T)$ T: $x_2=1$, $S^{\min=0}$: $x_3=0$ For $S^2 = \{S_0, S_1\}$: maximise x_0+x_1 subject to constraints:
	- $X_0 \leq X_1$
	- $x_0 \leq 1/4 \cdot x_0 + 1/2$
	- $x_1 \leq 1/10 \cdot x_0 + 1/2 \cdot x_1 + 2/5$

Let $x_i = P^{min}(s_i, T)$ T: $x_2=1$, $S^{\min=0}$: $x_3=0$ For $S^2 = \{s_0, s_1\}$: maximise x_0+x_1 subject to constraints:

- $X_0 \leq X_1$
- $3/4 \cdot x_0 \leq 1/2$
- $1/2 \cdot x_1 \leq 1/10 \cdot x_0 + 2/5$

rearranging

Let $x_i = P^{min}(s_i, T)$ T: $x_2=1$, $S^{min=0}$: $x_3=0$ For $S^2 = \{s_0, s_1\}$: maximise x_0+x_1 subject to constraints: • $X_0 \leq X_1$

$$
\bullet \ \mathsf{X}_0 \ \leq \ 2/3
$$

•
$$
x_1 \leq 1/5 \cdot x_0 + 4/5
$$

rearranging

Simons Institute Bootcamp 49

Example - Value iteration + LP

Let $x_i = P^{max}(s_i, T)$

$$
T: x_2=1, S^{max=0}: \emptyset
$$

For
$$
S^2 = \{s_0, s_1, s_3\}
$$
:

minimise $x_0+x_1+x_3$ subject to constraints:

• $x_0 \ge x_1$ • $x_3 \ge 1$

•
$$
x_0 \ge 2/3 + 1/3 \cdot x_3
$$
 • $x_3 \ge x_3$

•
$$
x_1 \geq 1/5 \cdot x_0 + 4/5
$$

Let $x_i = P^{max}(s_i, T)$

T:
$$
x_2=1
$$
, $S^{max=0}$: \emptyset

For
$$
S^2 = \{s_0, s_1, s_3\}
$$
:

minimise $x_0+x_1+x_3$ subject to constraints:

• $x_0 \ge x_1$ • $x_3 \ge 1$

•
$$
x_0 \geq 2/3 + 1/3 \cdot 1
$$
 • $x_3 \geq x_3$

•
$$
x_1 \ge 1/5 \cdot x_0 + 4/5
$$

rearranging

Let $x_i = P^{max}(s_i, T)$ T: $x_2=1$, $S^{max=0}$: Ø

For
$$
S^2 = \{s_0, s_1, s_3\}
$$
:

minimise $x_0+x_1+x_3$ subject to constraints:

 \bullet $X_0 \geq X_1$ • $x_3 \ge 1$

$$
\bullet \ \ X_0 \ \geq \ 1 \qquad \qquad \bullet \ \ X_3 \ \geq \ X_3
$$

•
$$
x_1 \ge 1/5 \cdot x_0 + 4/5
$$

rearranging

Simons Institute Bootcamp 55

Let $X_i = P^{max}(S_i, T)$ T: $x_2=1$, $S^{max=0}$: Ø For $S^2 = \{S_0, S_1, S_3\}$: minimise $x_0+x_1+x_3$ subject to constraints:

• $X_0 \geq X_1$ • $X_3 \geq 1$

• $x_0 \geq 1$ • $X_3 \geq X_3$

•
$$
x_1 \ge 1/5 \cdot x_0 + 4/5
$$

Solution:

• $(x_0, x_1, x_2, x_3) = (1, 1, ?, ?)$

(only feasible) solution:

 $(x_0, x_1) = (1, 1)$

Let $x_i = P^{max}(s_i, T)$ T: $x_2=1$, $S^{max=0}$: Ø For $S^2 = \{s_0, s_1, s_3\}$:

minimise $x_0+x_1+x_3$ subject to constraints:

• $X_0 \geq X_1$ • $X_3 \geq 1$

•
$$
x_0 \ge 1
$$
 • $x_3 \ge x_3$

•
$$
x_1 \ge 1/5 \cdot x_0 + 4/5
$$

Solution:

•
$$
(x_0, x_1, x_2, x_3) = (1, 1, 1, 1)
$$

(only feasible) solution:

 $(x_0, x_1) = (1, 1)$

Let $X_i = P^{max}(S_i, T)$ T: $x_2=1$, $S^{max=0}$: Ø For $S^2 = \{S_0, S_1, S_3\}$:

minimise $x_0+x_1+x_3$ subject to constraints:

• $X_0 \geq X_1$ \bullet $X_3 \geq 1$

•
$$
x_0 \ge 1
$$
 • $x_3 \ge x_3$

•
$$
x_1 \ge 1/5 \cdot x_0 + 4/5
$$

Solution:

$$
\bullet \ (x_0, x_1, x_2, x_3) = (1, 1, 1, 1)
$$

(only feasible) solution:

 $(x_0, x_1) = (1, 1)$

Maximum memoryless adversary σ_{\min}

Let $x_i = P^{max}(s_i, T)$ T: $x_2=1$, $S^{max=0}$: Ø For $S^2 = \{s_0, s_1, s_3\}$: minimise $x_0+x_1+x_3$ subject to constraints:

• $x_0 \ge x_1$ • $x_3 \ge 1$

•
$$
X_0 \ge 1
$$
 • $X_3 \ge X_3$

•
$$
x_1 \ge 1/5 \cdot x_0 + 4/5
$$

Solution:

$$
\bullet \ (x_0, x_1, x_2, x_3) = (1, 1, 1, 1)
$$

(only feasible) solution:

 $(x_0, x_1) = (1, 1)$

DTMC $D(s_0, \sigma_{max})$

Simons Institute Bootcamp 60 and the state of the sta

Method 3 - Policy iteration

Value iteration:

− iterates over (vectors of) probabilities

Policy iteration:

- − iterates over adversaries ("policies")
- 1. start with an arbitrary (memoryless) adversary σ
- 2. compute the reachability probabilities $P^{\sigma}(s, T)$ for σ
- 3. improve the adversary in each state
- 4. repeat steps 2 and 3 until no change in adversary

Termination:

- − finite number of memoryless adversaries
- − improvement (in min/max probabilities) each time

More general probabilistic properties

For example, once can compute the minimum and maximum probability an LTL formula ψ is true

- 1. convert problem to one needing maximum probabilities
	- $-$ e.g. to find a minimum probability $P_{min=?}[\psi] = 1 P_{max=?}[\neg \psi]$
- 2. Generate a deterministic Rabin automaton (DRA) for ψ (or $\neg \psi$)
- 3. Construct product MDP **M**⊗**A**
- 4. Identify accepting end components (ECs) of **M**⊗**A**
	- − an EC is a set of states such that there is an strategy under which one remains in the set, and visits all states infinitely often with probability 1
- 5. Compute maximum probability of reaching accepting ECs
	- − from all states of the M⊗A

One last thing – Complexity and Rewards

When using linear programming

- − main task solution of linear optimization problem of size |S|
	- \cdot can be solved with ellipsoid method (polynomial in $|S|$)
- − and qualitative algorithms (max |S| steps)

Reward Structures for MDPs

- − reward accumulated in a state
- − reward accumulated when performing a specific action in a state

Can then compute the minimum and maximum expected

accumulated rewards before reaching a target

− solution methods as for probabilistic reachability