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Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)

Paths and probabilities for DTMCs

Probabilistic reachability for DTMCs

Rewards and expected reachability for DTMCs
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Discrete-time Markov chains

Kripke structures augmented with probabilities

States:
− represent possible configurations of the system being modelled
− labelled by atomic propositions (properties that hold in the states)

Transitions:
− model evolution of a system’s state
− occur in discrete time-steps

Probabilities:
− likelihood of making transitions between states are given by

discrete probability distributions
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Kripke structures

A Kripke structure is a tuple (S,s0,T,L) where 
− S is a finite set of states
− s0 is the initial state
− T⊆S×S is the transition relation

if (s,s’)∈T, then there is a transition from s to s’
− L:S➝2AP is the labelling function where AP is a set of atomic propositions
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Discrete-time Markov chains

A discrete-time Markov chain is a tuple (S,s0,P,L) where: 
− S is a finite set of states
− s0 is the initial state
− P:S×S➝[0,1] is the transition probability matrix

where P(s,s’) is the probability of making a transition from s to s’ 
• we require that Σs’∈S P(s,s’)=1 for all states s∈S

− L:S➝2AP is the labelling function where AP is a set of atomic propositions
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Simple DTMC example

Modelling a very simple communication protocol
− after one step, process starts trying to send a message
− with probability 0.1, channel unready so wait a step
− with probability 0.85, send message successfully and stop
− with probability 0.05, sending fails, then in next step it restarts
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Simple DTMC example

States: S = {s0,s1,s2,s3} 

Initial state: s0

Probability transition matrix:

Atomic propositions: AP = {try, fail, succ}
− labelling: L(s0)=∅, L(s1)={try}, L(s2)={fail} and L(s3)={succ}
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DTMC example 2 - Coins and dice

Modelling a 6-sided die using a fair coin
− algorithm due to Knuth/Yao
− start at s0, flip a coin
− upper branch when flip H
− lower branch when flip T

− repeat until value chosen
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DTMC example 2 - Coins and dice

Is this model correct?
− e.g. probability of obtaining a 4 equals 1/6
− is it guaranteed to terminate?

How efficient is it?
− what is the probability of needing

more than four coin flips?
− on average, how many

coin flips are needed?
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DTMC example 2 - Coins and dice

Is this model correct?
− e.g. probability of obtaining a 4 equals 1/6
− is it guaranteed to terminate?

How efficient is it?
− what is the probability of needing

more than four coin flips?
− on average, how many

coin flips are needed?
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Discrete time Markov chains

Discrete-time Markov chains (DTMCs)

Paths and probabilities for DTMCs

Probabilistic reachability for DTMCs

Rewards and expected reachability for DTMCs
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First some probability basics

Need an experiment…
− the sample space is the set of possible outcomes of the experiment
− an event is a subset of the sample space
− the probability of an event is the degree of certainty an event will occur 

Example: toss two coins
− sample space: {(H,H), (H,T), (T,H), (T,T)}
− event: “at least one H”
− probability: 1/2 + (1/2)⋅(1/2) = 3/4 

Example: toss a coin infinitely often
− sample space: set of infinite sequences of H/T
− event: “H in the first 3 throws”
− probability: 1/2 + (1/2)⋅(1/2) + (1/2)⋅(1/2)⋅(1/2) = 7/8 
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Probability space (Ω,Σ,Prob)

Sample space Ω is an arbitrary non-empty set

Event set Σ is family of subsets of Ω which is
− closed under complementation

• if A is in Σ, then the complement Ω∖A is in Σ
− closed under countable union

• if Ai is in Σ for i∈ℕ, then the union ∪iAi is in Σ
− contains the empty set (∅ is in Σ)

Elements of Σ are called measurable sets and Σ a σ-algebra on Ω

Probability measure Prob is a function Prob:Σ➝[0,1] such that
− Prob(Ω) = 1
− Prob(∪Ai)= Σi Prob(Ai) 

for any disjoint family of measurable sets A1,A2,…
Simons Institute Bootcamp
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Probability space - Simple example

Sample space Ω = ℕ = { 0, 1, 2, 3, 4, … }
− the natural numbers

Event set Σ = { ∅, “odd”, “even”, ℕ }
− (closed under complement/countable union, contains ∅)
− e.g.  “odd”∪“even” = ℕ and ℕ\“odd” = “even”

Probability measure Prob
− e.g. corresponding to picking a number uniformly at random
− Prob(“odd”)=1/2, Prob(“even”)=1/2, …

Simons Institute Bootcamp
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Back to DTMCs - Paths

A path in a DTMC represents an execution of the system
− i.e. one possible behaviour

Formally:
− infinite sequence of states s0s1s2s3…

such that P(si,si+1)>0 for all i≥0
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Back to DTMCs - Paths

A path in a DTMC represents an execution of the system
− i.e. one possible behaviour

Formally:
− infinite sequence of states s0s1s2s3…

such that P(si,si+1)>0 for all i≥0

Example execution:
− start, wait, fail, retry, start, succeed
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Back to DTMCs - Paths

A path in a DTMC represents an execution of the system
− i.e. one possible behaviour

Formally:
− infinite sequence of states s0s1s2s3…

such that P(si,si+1)>0 for all i≥0

Example execution:
− start, wait, fail, retry, start, succeed: s0s1

Simons Institute Bootcamp

s1s0

s2

s3

0.05

0.85

0.1

1

1

1

{fail}

{succ}

{try}



18

Back to DTMCs - Paths

A path in a DTMC represents an execution of the system
− i.e. one possible behaviour

Formally:
− infinite sequence of states s0s1s2s3…

such that P(si,si+1)>0 for all i≥0

Example execution:
− start, wait, fail, retry, start, succeed: s0s1s1
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Back to DTMCs - Paths

A path in a DTMC represents an execution of the system
− i.e. one possible behaviour

Formally:
− infinite sequence of states s0s1s2s3…

such that P(si,si+1)>0 for all i≥0

Example execution:
− start, wait, fail, retry, start, succeed: s0s1s1s2
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Back to DTMCs - Paths

A path in a DTMC represents an execution of the system
− i.e. one possible behaviour

Formally:
− infinite sequence of states s0s1s2s3…

such that P(si,si+1)>0 for all i≥0

Example execution:
− start, wait, fail, retry, start, succeed: s0s1s1s2s0
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Back to DTMCs - Paths

A path in a DTMC represents an execution of the system
− i.e. one possible behaviour

Formally:
− infinite sequence of states s0s1s2s3…

such that P(si,si+1)>0 for all i≥0

Example execution:
− start, wait, fail, retry, start, succeed: s0s1s1s2s0s1
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Back to DTMCs - Paths

A path in a DTMC represents an execution of the system
− i.e. one possible behaviour

Formally:
− infinite sequence of states s0s1s2s3…

such that P(si,si+1)>0 for all i≥0

Example execution:
− start, wait, fail, retry, start, succeed: s0s1s1s2s0s1s3…
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Back to DTMCs - Paths

A path in a DTMC represents an execution of the system
− i.e. one possible behaviour

Formally:
− infinite sequence of states s0s1s2s3…

such that P(si,si+1)>0 for all i≥0

Example execution:
− start, wait, fail, retry, start, succeed: s0s1s1s2s0s1s3s3…
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Probability space over paths

To reason about a DTMC when starting from some state s
− need to define a probability space over paths starting from the state s

Intuitively:
− sample space: infinite paths starting from the state s
− events: sets of infinite paths
− basic events: cylinder sets
− cylinder Cyl(ω) for a finite path ω equals the set of infinite paths 

that have ω as a prefix
− e.g. Cyl(ss1s2)
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Probability space over paths

Probability space (Paths, Σs, Probs)

Sample space: all infinite paths starting from the state s
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Probability space over paths

Probability space (Paths, Σs, Probs)

Sample space: all infinite paths starting from the state s

Event set: least σ-algebra including the cylinder Cyl(ω) of 
every finite path ω = ss1s2…sn

26Simons Institute Bootcamp
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Probability space over paths

Probability space (Paths, Σs, Probs)

Sample space: all infinite paths starting from the state s

Event set: least σ-algebra including the cylinder Cyl(ω) of 
every finite path ω = ss1s2…sn

Probability measure: unique extension of function Probs over 
cylinders where Probs(Cyl(ω)) = P(s,s1)⋅P(s1,s2)⋅⋅⋅P(sn-1,sn)

probability of a cylinder given by 
multiplying the probability of each 

transition of the finite path

27Simons Institute Bootcamp
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Paths and probabilities - Example

Paths where sending fails the first time
− all paths starting s0s1s2, i.e. the cylinder Cyl(s0s1s2)

Probability:
Probs0(Cyl(s0s1s2)) = P(s0,s1)⋅P(s1,s2) = 1 ⋅ 0.05 = 0.05
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Paths and probabilities - Example

Paths which are eventually successful with no failures
− infinite paths of the form s0 (s1)∗ s3ω

− i.e. the (disjoint) union of the cylinders:

Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ …

Probability:
Probs0(Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ … )
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Paths and probabilities - Example

Paths which are eventually successful with no failures
− infinite paths of the form s0 (s1)∗ s3ω

− i.e. the (disjoint) union of the cylinders:

Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ …

Probability:
Probs0(Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ … ) =

Probs0(Cyl(s0s1s3))+Probs0(Cyl(s0s1s1s3))+Probs0(Cyl(s0s1s1s1s3))+…

Simons Institute Bootcamp
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Paths and probabilities - Example

Paths which are eventually successful with no failures
− infinite paths of the form s0 (s1)∗ s3ω

− i.e. the (disjoint) union of the cylinders:

Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ …

Probability:
Probs0(Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ … ) =

Probs0(Cyl(s0s1s3))+Probs0(Cyl(s0s1s1s3))+Probs0(Cyl(s0s1s1s1s3))+…

= 1⋅0.85 + 1⋅(0.1)⋅0.85 + 1⋅(0.1⋅0.1)⋅0.85 + … + 1⋅(0.1)n⋅0.85 + …
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Paths and probabilities - Example

Paths which are eventually successful with no failures
− infinite paths of the form s0 (s1)∗ s3ω

− i.e. the (disjoint) union of the cylinders:

Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ …

Probability:
Probs0(Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ … ) =

Probs0(Cyl(s0s1s3))+Probs0(Cyl(s0s1s1s3))+Probs0(Cyl(s0s1s1s1s3))+…

= 1⋅0.85 + 1⋅(0.1)⋅0.85 + 1⋅(0.1⋅0.1)⋅0.85 + … + 1⋅(0.1)n⋅0.85 + …

= 0.85⋅(1 + 0.1 + … + 0.1n + … )
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Paths and probabilities - Example

Paths which are eventually successful with no failures
− infinite paths of the form s0 (s1)∗ s3ω

− i.e. the (disjoint) union of the cylinders:

Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ …

Probability:
Probs0(Cyl(s0s1s3) ∪ Cyl(s0s1s1s3) ∪ Cyl(s0s1s1s1s3) ∪ … ) =

Probs0(Cyl(s0s1s3))+Probs0(Cyl(s0s1s1s3))+Probs0(Cyl(s0s1s1s1s3))+…

= 1⋅0.85 + 1⋅(0.1)⋅0.85 + 1⋅(0.1⋅0.1)⋅0.85 + … + 1⋅(0.1)n⋅0.85 + …

= 0.85⋅(1 + 0.1 + … + 0.1n + … )

= 0.85 ⋅ 10/9 = 17/18
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Discrete time Markov chains

Discrete-time Markov chains (DTMCs)

Paths and probabilities for DTMCs

Probabilistic reachability for DTMCs

Rewards and expected reachability for DTMCs
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Probabilistic reachability

Fundamental property of DTMCs: probabilistic reachability
− probability of a path reaching some target set of states T

• P(s,T) probability of reaching T from state s
• vector: P(T) values for all states of a DTMC

− e.g. “probability of the algorithm terminating successfully?”
− e.g. “probability that an error occurs during execution?”

Dual of reachability: invariance
− probability of remaining within some class of states
− Prob(“remain in set I”) = 1 - Prob(“reach set S\I”)
− e.g. “probability that an error never occurs”

Also other variants of reachability
− step-bounded, constrained (“until”), …

Simons Institute Bootcamp
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Probabilistic reachability - Example

Modelling a 6-sided die using a fair coin
− algorithm due to Knuth/Yao
− start at s0, toss a coin
− upper branch when H
− lower branch when T

− repeat until value chosen
Is this algorithm correct?

− e.g. probability of reaching “4” equals 1/6
− event: all possible ways of reaching “4” from s0

Simons Institute Bootcamp
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Probabilistic reachability - Example

Modelling a 6-sided die using a fair coin
− algorithm due to Knuth/Yao
− start at s0, toss a coin
− upper branch when H
− lower branch when T

− repeat until value chosen
Is this algorithm correct?

− e.g. probability of reaching “4” equals 1/6
− event: all possible ways of reaching “4” from s0
− ways of reaching “4” :

THH, 
− probability of reaching “4” :

(1/2)3 + 
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Probabilistic reachability - Example

Modelling a 6-sided die using a fair coin
− algorithm due to Knuth/Yao
− start at s0, toss a coin
− upper branch when H
− lower branch when T

− repeat until value chosen
Is this algorithm correct?

− e.g. probability of reaching “4” equals 1/6
− event: all possible ways of reaching “4” from s0
− ways of reaching “4” : 

THH, TTTHH,
− probability of reaching “4” :

(1/2)3 + (1/2)5 +
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Probabilistic reachability - Example

Modelling a 6-sided die using a fair coin
− algorithm due to Knuth/Yao
− start at s0, toss a coin
− upper branch when H
− lower branch when T

− repeat until value chosen
Is this algorithm correct?

− e.g. probability of reaching “4” equals 1/6
− event: all possible ways of reaching “4” from s0
− ways of reaching “4” : 

THH, TTTHH, TTTTTHH, …
− probability of reaching “4” :

(1/2)3 + (1/2)5 + (1/2)7 +
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Probabilistic reachability - Example

Modelling a 6-sided die using a fair coin
− algorithm due to Knuth/Yao
− start at s0, toss a coin
− upper branch when H
− lower branch when T

− repeat until value chosen
Is this algorithm correct?

− e.g. probability of reaching “4” equals 1/6
− event: all possible ways of reaching “4” from s0
− ways of reaching “4” : 

THH, TTTHH, TTTTTHH, … , T(TT)nHH , …
− probability of reaching “4” :

(1/2)3 + (1/2)5 + (1/2)7 + … + (1/2)2n+3 + … = 1/6
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Probabilistic reachability – Computation

Computing an infinite sum not not feasible in practice

Alternative to calculate P(s,T): derive a linear equation system
− calculate probabilities for all states s∈S simultaneously

Let xs denote the probability of reaching T from state s

Simons Institute Bootcamp
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Probabilistic reachability – Computation

Computing an infinite sum not not feasible in practice

Alternative to calculate P(s,T): derive a linear equation system
− calculate probabilities for all states s∈S simultaneously

Let xs denote the probability of reaching T from state s
− if s∈T, then xs = 1

Simons Institute Bootcamp
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Probabilistic reachability – Computation

Computing an infinite sum not not feasible in practice

Alternative to calculate P(s,T): derive a linear equation system
− calculate probabilities for all states s∈S simultaneously

Let xs denote the probability of reaching T from state s
− if s∈T, then xs = 1 

− if T is not reachable from s, then xs = 0

i.e. no (finite) path from s to a state in T

Simons Institute Bootcamp
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Probabilistic reachability – Computation

Computing an infinite sum not not feasible in practice

Alternative to calculate P(s,T): derive a linear equation system
− calculate probabilities for all states s∈S simultaneously

Let xs denote the probability of reaching T from state s
− if s∈T, then xs = 1 

− if T is not reachable from s, then xs = 0

i.e. no (finite) path from s to a state in T
− otherwise xs = Σs’∈S P(s,s’) ⋅ xs’

Simons Institute Bootcamp
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summation over all states s’ of the probability of making a transition to s’
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Probabilistic reachability – Computation

Can view as a least fixed point computation over vectors y ∈[0,1]S
− consider the function F : [0,1]S ➝ [0,1]S where

1 if s∈T

Σs’∈S P(s,s’)⋅y(s’) otherwise

If we let x(0)=0 and x(n+1)=F(x(n)) then we have that
− x(0) ≤ x(1) ≤ x(2) ≤ x(3) ≤ …

− P(T) = limn➝∞ x(n)

• recall P(T) is the vector of probabilities (P(s,T))s∈S
− P(T) is the least fixed point of F

45Simons Institute Bootcamp

F(y)(s) = a vector of 
probabilities in 

each state
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Probabilistic reachability - Example

Probability of
reaching {4}

− i.e. tossing a four

Simons Institute Bootcamp

xs denotes the probability of reaching T from s

- if s∈T, then xs = 1

- if T is not reachable from s, then xs = 0

- otherwise xs = Σs’∈S P(s,s’) ⋅ xs’

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6
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Probabilistic reachability - Example

Probability of
reaching {4}

− i.e. tossing a four

• x4 = 1

Simons Institute Bootcamp

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

xs denotes the probability of reaching T from s

- if s∈T, then xs = 1

- if T is not reachable from s, then xs = 0

- otherwise xs = Σs’∈S P(s,s’) ⋅ xs’
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Probabilistic reachability - Example

Probability of
reaching {4}

− i.e. tossing a four

• x4 = 1
• only s0, s2, s5 and s6 reach {4}

therefore xs = 0 for all other states
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s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

xs denotes the probability of reaching T from s

- if s∈T, then xs = 1

- if T is not reachable from s, then xs = 0

- otherwise xs = Σs’∈S P(s,s’) ⋅ xs’
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Probabilistic reachability - Example

Probability of
reaching {4}

− i.e. tossing a four

• x4 = 1
• only s0, s2, s5 and s6 reach {4}

therefore xs = 0 for all other states
• xs0 = 1/2⋅0 + 1/2⋅xs2
• xs2 = 1/2⋅xs5 + 1/2⋅xs6
• xs5 = 1/2⋅1 + 1/2⋅0
• xs6 = 1/2⋅xs2 + 1/2⋅0

Simons Institute Bootcamp

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

xs denotes the probability of reaching T from s

- if s∈T, then xs = 1

- if T is not reachable from s, then xs = 0

- otherwise xs = Σs’∈S P(s,s’) ⋅ xs’
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Probabilistic reachability - Example

Probability of
reaching {4}

− i.e. tossing a four

• x4 = 1
• only s0, s2, s5 and s6 reach {4}

therefore xs = 0 for all other states
• xs0 = 1/2⋅xs2
• xs2 = 1/2⋅xs5 + 1/2⋅xs6
• xs5 = 1/2

• xs6 = 1/2⋅xs2

Simons Institute Bootcamp

simplifying

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

xs denotes the probability of reaching T from s

- if s∈T, then xs = 1

- if T is not reachable from s, then xs = 0

- otherwise xs = Σs’∈S P(s,s’) ⋅ xs’
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Probabilistic reachability - Example

Probability of
reaching {4}

− i.e. tossing a four

• x4 = 1
• only s0, s2, s5 and s6 reach {4}

therefore xs = 0 for all other states
• xs0 = 1/2⋅xs2
• xs2 = (1/2)⋅(1/2) + (1/2)⋅(1/2⋅xs2)
• xs5 = 1/2

• xs6 = 1/2⋅xs2
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substituting the values of 
xs5 and xs6 into xs2

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

xs denotes the probability of reaching T from s

- if s∈T, then xs = 1

- if T is not reachable from s, then xs = 0

- otherwise xs = Σs’∈S P(s,s’) ⋅ xs’
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Probabilistic reachability - Example

Probability of
reaching {4}

− i.e. tossing a four

• x4 = 1
• only s0, s2, s5 and s6 reach {4}

therefore xs = 0 for all other states
• xs0 = 1/2⋅xs2
• (3/4)⋅xs2 = 1/4 

• xs5 = 1/2

• xs6 = 1/2⋅xs2
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simplifying

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

xs denotes the probability of reaching T from s

- if s∈T, then xs = 1

- if T is not reachable from s, then xs = 0

- otherwise xs = Σs’∈S P(s,s’) ⋅ xs’
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Probabilistic reachability - Example

Probability of
reaching {4}

− i.e. tossing a four

• x4 = 1
• only s0, s2, s5 and s6 reach {4}

therefore xs = 0 for all other states
• xs0 = 1/2⋅xs2
• xs2 = (1/4)/(3/4) = 1/3

• xs5 = 1/2

• xs6 = 1/2⋅xs2
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simplifying again

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

xs denotes the probability of reaching T from s

- if s∈T, then xs = 1

- if T is not reachable from s, then xs = 0

- otherwise xs = Σs’∈S P(s,s’) ⋅ xs’
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Probabilistic reachability - Example

Probability of
reaching {4}

− i.e. tossing a four

• x4 = 1
• only s0, s2, s5 and s6 reach {4}

therefore xs = 0 for all other states
• xs0 = 1/2⋅xs2 = (1/2)⋅(1/3) = 1/6
• xs2 = 1/3

• xs5 = 1/2

• xs6 = 1/2⋅xs2 = (1/2)⋅(1/3) = 1/6

Simons Institute Bootcamp
substituting the value of xs2

into the other equations

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

xs denotes the probability of reaching T from s

- if s∈T, then xs = 1

- if T is not reachable from s, then xs = 0

- otherwise xs = Σs’∈S P(s,s’) ⋅ xs’
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Probabilistic reachability - Example

Probability of
reaching {4}

− i.e. tossing a four

• x4 = 1
• only s0, s2, s5 and s6 reach {4}

therefore xs = 0 for all other states
• xs0 = 1/2⋅xs2 = 1/2⋅1/3 = 1/6
• xs2 = 1/3

• xs5 = 1/2

• xs6 = 1/2⋅xs2 = 1/2⋅1/3 = 1/6

Simons Institute Bootcamp probability of a tossing a four is 1/6

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

xs denotes the probability of reaching T from s

- if s∈T, then xs = 1

- if T is not reachable from s, then xs = 0

- otherwise xs = Σs’∈S P(s,s’) ⋅ xs’
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Probabilistic reachability - Example

Probability of reaching {4}, as a least fixpoint
− x(0)=0 and x(n+1)=F(x(n)) where

1 if s∈T
Σs’∈S P(s,a)(s’)⋅y(s’) otherwise
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F(y)(s) =

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6
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Probabilistic reachability - Complexity

Computing reachability probabilities for DTMCs reduces to 
− graph-based analysis (finding the states that can reach the target)
− solving a linear equation system

Graph based analysis
− linear in the size of the DTMC (simple backwards traversal to find 

the states that can reach the target)

Solving a system of linear equations
− polynomial (cubic) in the size of the DTMC (Gaussian elimination)

In practice iterative methods are used for solving large linear 
equation systems

− power method (i.e. as a least fixed point), Gauss-Siedel
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More general probabilistic properties

For example can compute the probability an LTL formula ψ is true
− P=?[ ψ ] “what is the probability that ψ holds?”
− need to compute Prob { ω ∈ Path | ω satisfies ψ }

Such sets of path are measurable (elements of the event set) 
− therefore probability is well defined

s0

¬ψ

ψ
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LTL model checking for DTMCs

Model check LTL specification ψ against a DTMC

1. Generate a deterministic Rabin automaton (DRA) for ψ
− build nondeterministic Büchi automaton (NBA) for ψ [VW94]
− convert the NBA to a DRA [Saf88]

2. Construct product DTMC D⊗A

3. Identify accepting BSCCs of D⊗A

− BSCC: bottom strongly connected components
• these are sets of states such that any state can be reached from any other 

state and once entered one cannot leave the set

4. Compute probability of reaching accepting BSCCs
− from all states of the D⊗A
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Discrete time Markov chains

Discrete-time Markov chains (DTMCs)

Paths and probabilities for DTMCs

Probabilistic reachability for DTMCs

Rewards and expected reachability for DTMCs
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Reward structures

We augment DTMCs with rewards (or, conversely, costs)
− real-valued quantities assigned to states and/or transitions
− these can have a wide range of possible interpretations

Some examples:
− elapsed time, power consumption, size of message queue, number 

of messages successfully delivered, net profit, …

Costs? or rewards?
− mathematically, no distinction between rewards and costs
− when interpreted normally desirable to minimise costs

and maximise rewards
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DTMC reward structures

For a DTMC a reward structure is a pair (r,R)
− r:S➝ℝ≥0 is the state reward function (vector over states)
− R:S×S➝ℝ≥0 is the transition reward function (matrix over states)

r(s) – the reward associated with state s
R(s,s’) – the reward associated with the transition from s to s’
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DTMC reward structures

For a DTMC a reward structure is a pair (r,R)
− r:S➝ℝ≥0 is the state reward function (vector over states)
− R:S×S➝ℝ≥0 is the transition reward function (matrix over states)

Examples 
− “time-steps”: r is not used and R returns 1 for all transitions
− “number of messages lost”: r is not used and R maps transitions

corresponding to a message loss to 1
− “power consumption”: r is defined as the per-time-step

energy consumption in each state and R as the energy cost of
each transition
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Probability basics - Expectations

Recall a probability space is a tuple (Ω,Σ,Prob)
− Ω is the sample space
− Σ is the event set 
− Prob:Σ➝[0,1] is the probability measure 

Real valued random variable X over the probability space is a 
(measurable) function X:Ω➝ℝ

maps elements of the sample space to real values
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Probability basics - Expectations

Recall a probability space is a tuple (Ω,Σ,Prob)
− Ω is the sample space
− Σ is the event set 
− Prob:Σ➝[0,1] is the probability measure 

Real valued random variable X over the probability space is a 
(measurable) function X:Ω➝ℝ

Expected (“average”) value of the random variable:
Exp(X) = ∫ω∈Ω X(ω) dProb

measurability needed for integral to be well-defined
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Probability basics - Expectations

Recall a probability space is a tuple (Ω,∑,Prob)
− Ω is the sample space
− Σ is the event set 
− Prob:Σ➝[0,1] is the probability measure 

Real valued random variable X over the probability space is a 
(measurable) function X:Ω➝ℝ

Expected (“average”) value of the random variable:
Exp(X) = ∫ω∈Ω X(ω) dProb

= ∑ω∈Ω X(ω)⋅Prob(ω)

if the probability space is discrete, e.g. finite
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Probability basics - Expectations

Example: expected (average) value of a die when tossed

Probability space
− sample space: possible values {“1”,“2”,“3”,“4”,“5”,“6”}
− events: subsets of the sample space
− probability measure: Prob(“1”) = Prob(“2”) = … = Pr(“6”) = 1/6

Random variable X:Ω➝ℝ
− the value of the die: X(“1”) = 1, X(“2”) = 2,… , X(“6”) = 6

Expected value of the random variable
− i.e. the expected (average) value of the die when thrown
− E(X) = Prob(“1”)⋅X(“1”)+Prob(“2”)⋅X(“2”)+ … +Prob(“6”)⋅X(“2”)

= 1/6⋅1 + 1/6⋅2 + … + 1/6⋅6 = 21/6 = 3⅓
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Expected reward properties

Probability space for DTMCs
− sample space is the set infinite paths Path
− therefore random variables of the form X:Path➝ℝ

Consider any infinite path ω=s0s1s2…

Cumulative (reachability)
− “reward cumulated before reaching a target set T”
− random variable X where

X(ω) equals r(s0) + ⋅⋅⋅ + r(sk-1) + R(s0,s1) + ⋅⋅⋅ + R(sk-1,sk)
if k = min{ j | sj∈T } exists

find the first time that a state in T is reached along the path 

function from 
infinite paths to 

real values
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Expected reward properties

Probability space for DTMCs
− sample space is the set infinite paths Path
− therefore random variables of the form X:Path➝ℝ

Consider any infinite path ω=s0s1s2…

Cumulative (reachability)
− “reward cumulated before reaching a target set T”
− random variable X where

X(ω) equals r(s0) + ⋅⋅⋅ + r(sk-1) + R(s0,s1) + ⋅⋅⋅ + R(sk-1,sk)
if k = min{ j | sj∈T } exists

summation of rewards up until T is reached for the first time

function from 
infinite paths to 

real values
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Expected reward properties

Probability space for DTMCs
− sample space is the set infinite paths Path
− therefore random variables of the form X:Path➝ℝ

Consider any infinite path ω=s0s1s2…

Cumulative (reachability)
− “reward cumulated before reaching a target set T”
− random variable X where

X(ω) equals r(s0) + ⋅⋅⋅ + r(sk-1) + R(s0,s1) + ⋅⋅⋅ +  R(sk-1,sk)
if k = min{ j | sj∈T } exists and infinity otherwise

summation of rewards up until T is reached for the first time
however, if T is never reached the cumulated reward is infinity

function from 
infinite paths to 

real values
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Computing the expected rewards

Computing expected cumulated reward before reaching a state in T
− graph-based analysis and solving a system of linear equations
− compute the expectations for all states

Let ys denote the value of E(X) when starting from state s
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Computing the expected rewards

Computing expected cumulated reward before reaching a state in T
− graph-based analysis and solving a system of linear equations
− compute the expectations for all states

Let ys denote the value of E(X) when starting from state s
− if s is in T, then ys = 0

we have reached a state in T so no rewards to cumulate
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Computing the expected rewards

Computing expected cumulated reward before reaching a state in T
− graph-based analysis and solving a system of linear equations
− compute the expectations for all states

Let ys denote the value of E(X) when starting from state s
− if s is in T, then ys = 0

− if s does not reach T with probability 1, then ys = ∞

follows from the fact that if no state in T is reached 
we set the cumulated reward to infinity for the path
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Computing the expected rewards

Computing expected cumulated reward before reaching a state in T
− graph-based analysis and solving a system of linear equations
− compute the expectations for all states

Let ys denote the value of E(X) when starting from state s
− if s is in T, then ys = 0

− if s does not reach a state in T with probability 1, then ys = ∞

− otherwise ys = r(s) + Σs’∈S P(s,s’)⋅R(s,s’) + Σs’∈S P(s,s’)⋅ys’

state reward 
associated with s

average (expected) 
transition reward 

when leaving state s

average of the 
expectations in 
successor states
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Expected rewards - Example

Expected
number of
coin flips

− reward structure R(s,s’)=1 for all states labelled done

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

if s is in T, then ys = 0
if s does not reach T with probability 1, then ys = ∞
otherwise ys = r(s) + Σs’∈SP(s,s’)⋅R(s,s’) + Σs’∈SP(s,s’)⋅ys’

{done}

{done}

{done}

{done}

{done}

{done}
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Expected rewards - Example

Expected
number of
coin flips

− reward structure R(s,s’)=1 for all states labelled done

• ys = 0 for all states labelled done
s3

1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

{done}

{done}

{done}

{done}

{done}

{done}

if s is in T, then ys = 0
if s does not reach T with probability 1, then ys = ∞
otherwise ys = r(s) + Σs’∈SP(s,s’)⋅R(s,s’) + Σs’∈SP(s,s’)⋅ys’
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Expected rewards - Example

Expected
number of
coin flips

− reward structure R(s,s’)=1 for all states labelled done

• ys = 0 for all states labelled done
• all states reach done with

probability 1 therefore no 
state has value infinity 

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

{done}

{done}

{done}

{done}

{done}

{done}

if s is in T, then ys = 0
if s does not reach T with probability 1, then ys = ∞
otherwise ys = r(s) + Σs’∈SP(s,s’)⋅R(s,s’) + Σs’∈SP(s,s’)⋅ys’
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Expected rewards - Example

Expected
number of
coin flips

− reward structure R(s,s’)=1 for all states labelled done

• ys = 0 for all states labelled done
• ys0 = 1/2⋅1+1/2⋅1 + 1/2⋅ys1+1/2⋅ys2 s3

1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

{done}

{done}

{done}

{done}

{done}

{done}

if s is in T, then ys = 0
if s does not reach T with probability 1, then ys = ∞
otherwise ys = r(s) + Σs’∈SP(s,s’)⋅R(s,s’) + Σs’∈SP(s,s’)⋅ys’
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Expected rewards - Example

Expected
number of
coin flips

− reward structure R(s,s’)=1 for all states labelled done

• ys = 0 for all states labelled done
• ys0 = 1 + 1/2⋅ys1 + 1/2⋅ys2 s3

1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

{done}

{done}

{done}

{done}

{done}

{done}

if s is in T, then ys = 0
if s does not reach T with probability 1, then ys = ∞
otherwise ys = r(s) + Σs’∈SP(s,s’)⋅R(s,s’) + Σs’∈SP(s,s’)⋅ys’
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Expected rewards - Example

Expected
number of
coin flips

− reward structure R(s,s’)=1 for all states labelled done

• ys = 0 for all states labelled done
• ys0 = 1 + 1/2⋅ys1 + 1/2⋅ys2
• ys1 = 1 + 1/2⋅ys3 + 1/2⋅ys4
• ys2 = 1 + 1/2⋅ys5 + 1/2⋅ys6
• ys3 = 1 + 1/2⋅ys1 + 1/2⋅0
• ys4 = 1 + 1/2⋅0 + 1/2⋅0
• ys5 = 1 + 1/2⋅0 + 1/2⋅0
• ys6 = 1/2+1/2 + 1/2⋅0+1/2⋅ys2

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

{done}

{done}

{done}

{done}

{done}

{done}

if s is in T, then ys = 0
if s does not reach T with probability 1, then ys = ∞
otherwise ys = r(s) + Σs’∈SP(s,s’)⋅R(s,s’) + Σs’∈SP(s,s’)⋅ys’
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Expected rewards - Example

Expected
number of
coin flips

− reward structure R(s,s’)=1 for all states labelled done

• ys = 0 for all states labelled done
• ys0 = 1 + 1/2⋅ys1 + 1/2⋅ys2
• ys1 = 1 + 1/2⋅ys3 + 1/2⋅ys4
• ys2 = 1 + 1/2⋅ys5 + 1/2⋅ys6
• ys3 = 1 + 1/2⋅ys1
• ys4 = 1

• ys5 = 1

• ys6 = 1 + 1/2⋅ys2 simplifying

if s is in T, then ys = 0
if s does not reach T with probability 1, then ys = ∞
otherwise ys = r(s) + Σs’∈SP(s,s’)⋅R(s,s’) + Σs’∈SP(s,s’)⋅ys’

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

{done}

{done}

{done}

{done}

{done}

{done}
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Expected rewards - Example

Expected
number of
coin flips

− reward structure R(s,s’)=1 for all states labelled done

• ys = 0 for all states labelled done
• ys0 = 1 + 1/2⋅ys1 + 1/2⋅ys2
• ys1 = 1 + 1/2⋅(1+1/2⋅ys1) + 1/2
• ys2 = 1 + 1/2 + 1/2⋅(1+1/2⋅ys2)
• ys3 = 1 + 1/2⋅ys1
• ys4 = 1

• ys5 = 1

• ys6 = 1 + 1/2⋅ys2 substituting 
the values of 
ys3, ys4, ys5

and ys6

if s is in T, then ys = 0
if s does not reach T with probability 1, then ys = ∞
otherwise ys = r(s) + Σs’∈SP(s,s’)⋅R(s,s’) + Σs’∈SP(s,s’)⋅ys’

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

{done}

{done}

{done}

{done}

{done}

{done}
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Expected rewards - Example

Expected
number of
coin flips

− reward structure R(s,s’)=1 for all states labelled done

• ys = 0 for all states labelled done
• ys0 = 1 + 1/2⋅ys1 + 1/2⋅ys2
• ys1 = 8/3

• ys2 = 8/3

• ys3 = 1 + 1/2⋅ys1
• ys4 = 1

• ys5 = 1

• ys6 = 1 + 1/2⋅ys2

simplifying

if s is in T, then ys = 0
if s does not reach T with probability 1, then ys = ∞
otherwise ys = r(s) + Σs’∈SP(s,s’)⋅R(s,s’) + Σs’∈SP(s,s’)⋅ys’

83Simons Institute Bootcamp

s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

{done}

{done}

{done}

{done}

{done}

{done}



Expected rewards - Example

Expected
number of
coin flips

− reward structure R(s,s’)=1 for all states labelled done

• ys = 0 for all states labelled done
• ys0 = 1 + 1/2⋅(8/3) + 1/2⋅(8/3)
• ys1 = 8/3

• ys2 = 8/3

• ys3 = 1 + 1/2⋅(8/3)
• ys4 = 1

• ys5 = 1

• ys6 = 1 + 1/2⋅(8/3)

substituting 
the values of 
ys1 and ys2

if s is in T, then ys = 0
if s does not reach T with probability 1, then ys = ∞
otherwise ys = r(s) + Σs’∈SP(s,s’)⋅R(s,s’) + Σs’∈SP(s,s’)⋅ys’
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s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

{done}

{done}

{done}

{done}

{done}

{done}



Expected rewards - Example

Expected
number of
coin flips

− reward structure R(s,s’)=1 for all states labelled done

• ys = 0 for all states labelled done
• ys0 = 11/3

• ys1 = 8/3

• ys2 = 8/3

• ys3 = 7/3

• ys4 = 1

• ys5 = 1

• ys6 = 7/3
expected number 

of coin flips 
equals 11/3

if s is in T, then ys = 0
if s does not reach T with probability 1, then ys = ∞
otherwise ys = r(s) + Σs’∈SP(s,s’)⋅R(s,s’) + Σs’∈SP(s,s’)⋅ys’
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s3
1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

{done}

{done}

{done}

{done}

{done}

{done}
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Expected reachability - Complexity

Computing expected reachability values for DTMCs reduces to 
− graph-based analysis (find states that reach the target with probability 1)
− solving a linear equation system

Graph based analysis
− linear in the size of the DTMC (simple backwards traversal to find 

the states that can reach the target)

Solving a system of linear equations
− polynomial (cubic) in the size of the DTMC (Gaussian elimination)
− again in practice use iterative methods
− as for probabilistic reachability can express as a least fixed point

Simons Institute Bootcamp



87

Additional Reward Properties

Instantaneous
− “the expected value of the state reward at time-step k”
− e.g. “the expected queue size after exactly 90 seconds”

Cumulative (time-bounded)
− “the expected reward cumulated up to time-step k”
− e.g. “the expected power consumption over one hour”

Also long run average and multi-objective properties
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In the next video

Markov decision processes
− extend DTMCs to allow the modelling of non-deterministic behaviour
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