Simons Institute, Dec 2020

Statistical Efficiency in Offline Reinforcement Learning

Nathan Kallus Cornell University

Joint work with Masatoshi Uehara

- Based on "Double Reinforcement Learning for Efficient Off-Policy Evaluation in Markov Decision Processes" Kallus & Uehara,
 - "Efficiently Breaking the Curse of Horizon: Double Reinforcement Learning in Infinite-Horizon Processes" Kallus & Uehara
 - "Statistically Efficient Off-Policy Policy Gradients" Kallus & Uehara

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
● 00					

Reinforcement Learning in Medicine

- Sepsis (extreme bodily reaction to infection) is 3rd leading cause of death worldwide!
 - Best treatment strategy unclear 😕
 - Lots of subtle symptoms, many levers, effect heterogeneity
 - Opportunity for reinforcement learning!

Off-Policy RL and the Curse of Horizon

- In medicine and other high-stakes domains, exploration is limited and simulation unreliable
 - Must rely on existing data like EHRs III -/

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000					

Off-Policy RL and the Curse of Horizon

- In medicine and other high-stakes domains, exploration is limited and simulation unreliable
 - Must rely on existing data like EHRs IIII
- E.g., Komorowski et al. '18 proposed the "AI Clinician" for sepsis treatment by applying RL to observational ICU data

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000					

Off-Policy RL and the Curse of Horizon

- In medicine and other high-stakes domains, exploration is limited and simulation unreliable
 - Must rely on existing data like EHRs IIII
- E.g., Komorowski et al. '18 proposed the "AI Clinician" for sepsis treatment by applying RL to observational ICU data
 - Scrutiny, skepticism from RL and medical communities
 - Biggest gripe: unreliable due to curse of horizon

"Fig. 2: effective sample size" from Gottesman et al. 19
 Intro
 Setup
 Efficiency
 DRL OPE
 DRL OPG
 Experiments

 00●
 000000
 00
 000000
 000000
 000000
 000000

Statistically Efficient Offline RL

- Aim: Overcome fundamental limits in offline RL by leveraging Markovian, time-invariant, and ergodic structure
 - Theme: given limited data try to use it *efficiently*, and what's efficient depends on *structure*
- Contributions
 - Study efficiency limits in offline RL in MDPs for first time
 - Insight into when the curse of horizon bites
 - Problem-dependent phenomenon; not estimator-dependent
 - First efficient estimators for policy value/gradient in MDP in both finite- and infinite-horizon settings
 - Efficient even when nuisances estimated at slow rates by blackbox ML

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000	●00000	00		0000	000000
This	Talk				

- 1 Introduction
- 2 Problem Setup
- **3** Efficiency Bounds
- I Efficient OPE via Double RL
- **5** Efficient OPG & Policy Learning
- 6 Experimental Results

Markov Decision Processes

Setup	Efficiency	DRL OPE	DRL OPG	Experiments
00000				

MDP (state and reward probabilities)

+ policy (action probabilities)
= joint distribution p_π over (s₀, a₀, r₀, s₁, a₁,...)

Policy value: J_T(π) = 1/∑_{t=0}^T γ^t E_{p_π} [∑_{t=0}^T γ^tr_t]
J_∞(π) = lim_{T→∞} J_T(π)
Off-policy evaluation: given π, estimate J_T(π) from N observations of (s₀, a₀, r₀, ..., a_T, r_T) from p_{π^b}

• Behavior policy p_{π^b} may be known or unknown

Setup	Efficiency	DRL OPE	DRL OPG	Experiments
00000				

• Behavior policy p_{π^b} may be known or unknown

Setup	Efficiency	DRL OPE	DRL OPG	Experiments
00000				

• For learning, suppose given policy class $\Pi = \{\pi^{\theta} : \theta \in \Theta\}$

• Let
$$J_T(\theta) = J_T(\pi^{\theta})$$

▶ Off-policy gradient: given N observations of (s₀, a₀, r₀, ..., a_T, r_T) from p_{π^b}, estimate

$$Z_T(\theta) = \nabla_\theta J_T(\theta)$$

Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000000				

- For learning, suppose given policy class $\Pi = \{\pi^{\theta} : \theta \in \Theta\}$
 - Let $J_T(\theta) = J_T(\pi^{\theta})$
 - ▶ Off-policy gradient: given N observations of (s₀, a₀, r₀, ..., a_T, r_T) from p_{π^b}, estimate

$$Z_{T}(\theta) = \nabla_{\theta} J_{T}(\theta) = \frac{1}{\sum_{t=0}^{T} \gamma^{t}} \mathbb{E}_{p_{\pi}\theta} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \sum_{k=0}^{t} g_{k} \right]$$
$$g_{t} = \nabla_{\theta} \log \pi^{\theta}(a_{t} \mid s_{t}) \quad \text{(policy score)}$$

Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000000				

• For learning, suppose given policy class $\Pi = \{\pi^{\theta} : \theta \in \Theta\}$

• Let
$$J_T(\theta) = J_T(\pi^{\theta})$$

▶ Off-policy gradient: given N observations of (s₀, a₀, r₀,..., a_T, r_T) from p_{π^b}, estimate

$$Z_{T}(\theta) = \nabla_{\theta} J_{T}(\theta) = \frac{1}{\sum_{t=0}^{T} \gamma^{t}} \mathbb{E}_{\substack{\boldsymbol{p}_{\pi}\theta}} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \sum_{k=0}^{t} g_{k} \right]$$
$$g_{t} = \nabla_{\theta} \log \pi^{\theta} (a_{t} \mid s_{t}) \quad \text{(policy score)}$$

Setup	Efficiency	DRL OPE	DRL OPG	Experiments
00000				

• For learning, suppose given policy class $\Pi = \{\pi^{\theta} : \theta \in \Theta\}$

• Let
$$J_T(\theta) = J_T(\pi^{\theta})$$

► Off-policy gradient: given N observations of (s₀, a₀, r₀,..., a_T, r_T) from p_{π^b}, estimate

$$Z_{T}(\theta) = \nabla_{\theta} J_{T}(\theta) = \frac{1}{\sum_{t=0}^{T} \gamma^{t}} \mathbb{E}_{\substack{\boldsymbol{p}_{\pi}\theta}} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \sum_{k=0}^{t} g_{k} \right]$$
$$g_{t} = \nabla_{\theta} \log \pi^{\theta}(a_{t} \mid s_{t}) \quad \text{(policy score)}$$

- Can be used for off-policy learning via gradient ascent
 - (Policy gradient methods have driven a lot of recent RL successes in *online* settings with experimentation/simulation)

• $\rho_t = \frac{\pi^{\theta}(a_t|s_t)}{\pi^{b}(a_t|s_t)}, \lambda_t = \prod_{k=0}^t \rho_k$ is the *cumulative density ratio*

 \blacktriangleright Changes measure from $\mathbb{E}_{p_{\pi^b}}$ to $\mathbb{E}_{p_{\pi^\theta}}$

- $q_t = \mathbb{E}_{p_{\pi^{\theta}}} [\sum_{k=t}^{T} \gamma^{k-t} r_k \mid s_t, a_t]$ is *q-function*; \hat{q}_t an estimator • Notice $q_t = q$ is independent of t for $T = \infty$
- Lots of variants: Jiang & Li '16, Thomas & Brunskill '16, K '18, Farajtabar et al. '18, K & Uehara '19, ...

Notice $q_t = q$ is independent of t for $T = \infty$

Lots of variants: Jiang & Li '16, Thomas & Brunskill '16, K '18, Farajtabar et al. '18, K & Uehara '19, ...

• (OPG) REINFORCE:
$$\hat{Z}_T(\theta) = \frac{1}{\sum_{t=0}^T \gamma^t} \mathbb{E}_N[\sum_{t=0}^T \gamma^t \lambda_t r_t \sum_{k=0}^t g_k]$$

Existing Approaches (very abridged version 🤗

- Direct method: $\mathbb{E}_N[\mathbb{E}_{a_0 \sim \pi^e}[\hat{q}(s_0, a_0) \mid s_0]]$
 - Can directly bake-in MDP structure into q-model
- Liu et al. (2018): importance sampling using stationary density ratios in infinite horizons
 Xie et al. (2019): importance sampling using marginalized density ratios in time-varying MDPs and finite state spaces
- All of the above leverage MDP structure!
 - Motivates our current study
 - But still not efficient
 - Will generally have suboptimal leading constant
 - ▶ In non-tabular settings, will generally even have *slow* rate $(\omega((NT)^{-1/2}))$

• Consider model \mathcal{M} and parameter of interest $\tau : \mathcal{M} \to \mathbb{R}$

• Given iid data $X_i \sim \mathbb{P} \in \mathcal{M}$, want a good estimator $\hat{\tau}_n(X_1, \ldots, X_n)$ for $\tau(\mathbb{P})$ that uses data to the mostest

Intro Setup Efficiency DRL OPE DRL OPG Experiments OOO OOO OO OOO OOO OOO OOO Efficiency (very abridged version OO OOO OOO OOO OOO

• Consider model \mathcal{M} and parameter of interest $\tau : \mathcal{M} \to \mathbb{R}$

- Given iid data $X_i \sim \mathbb{P} \in \mathcal{M}$, want a good estimator $\hat{\tau}_n(X_1, \ldots, X_n)$ for $\tau(\mathbb{P})$ that uses data to the mostest
- Semiparametric efficiency says: any estimator that works for all instances $\mathbb{P} \in \mathcal{M}$ (is regular) must satisfy for each $\mathbb{P} \in \mathcal{M}$:

$$\liminf n \cdot \mathbb{E}[(\hat{\tau}_n(X_{1:n}) - \tau(\mathbb{P}))^2] \ge \underbrace{\mathbb{E}[\psi^2(X;\mathbb{P})]}_{\text{Efficiency bound}},$$

Efficient influence function ψ is the least-norm derivative of τ

Intro Setup Efficiency DRL OPE DRL OPG Experiments OOO OOO OO OOO OOO OOO OOO Efficiency (very abridged version OO OOO OOO OOO OOO

- Consider model \mathcal{M} and parameter of interest $\tau : \mathcal{M} \to \mathbb{R}$
 - Given iid data $X_i \sim \mathbb{P} \in \mathcal{M}$, want a good estimator $\hat{\tau}_n(X_1, \ldots, X_n)$ for $\tau(\mathbb{P})$ that uses data to the mostest
- Semiparametric efficiency says: any estimator that works for all instances $\mathbb{P} \in \mathcal{M}$ (is regular) must satisfy for each $\mathbb{P} \in \mathcal{M}$:

$$\liminf n \cdot \mathbb{E}[(\hat{\tau}_n(X_{1:n}) - \tau(\mathbb{P}))^2] \ge \underbrace{\mathbb{E}[\psi^2(X;\mathbb{P})]}_{\text{Efficiency bound}},$$

Efficient influence function ψ is the least-norm derivative of τ For us: $\tau = J_T(\theta), Z_T(\theta), \mathcal{M} = \text{set of all } p_{\pi^b}$ for all MDPs

Intro Setup Efficiency DRL OPE DRL OPG Experiments Coord Coord Coord Coord Coord Coord Coord Efficiency (very abridged version Coord Coord Coord Coord Coord

• Consider model \mathcal{M} and parameter of interest $\tau : \mathcal{M} \to \mathbb{R}$

- Given iid data $X_i \sim \mathbb{P} \in \mathcal{M}$, want a good estimator $\hat{\tau}_n(X_1, \ldots, X_n)$ for $\tau(\mathbb{P})$ that uses data to the mostest
- Semiparametric efficiency says: any estimator that works for all instances $\mathbb{P} \in \mathcal{M}$ (is regular) must satisfy for each $\mathbb{P} \in \mathcal{M}$:

$$\liminf n \cdot \mathbb{E}[(\hat{\tau}_n(X_{1:n}) - \tau(\mathbb{P}))^2] \ge \underbrace{\mathbb{E}[\psi^2(X;\mathbb{P})]}_{\text{Efficiency bound}},$$

Efficient influence function ψ is the least-norm derivative of τ
For us: τ = J_T(θ), Z_T(θ), M = set of all p_{π^b} for all MDPs
Will actually also be insightful to consider other models ...

▶ M₂: Time-Varying Markov Decision Process (TMDP)

▶ M₃: Time-Invariant Markov Decision Process (MDP)

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000	000000	●○	000000	0000	000000
This	Talk				

- 1 Introduction
- 2 Problem Setup
- **3** Efficiency Bounds
- I Efficient OPE via Double RL
- **5** Efficient OPG & Policy Learning
- 6 Experimental Results

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000	000000	⊙●		0000	000000
Efficier	ncy Bou	inds for Ir	nfinite-Hor	izon OPE,	/OPG

▶ Setting: observe N trajectories of length T, estimate $J_{\infty}(\pi)$

Model	Efficient MSE	Assumptions	

NMDP

TMDP

MDP

Model	Efficient MSE	Assumptions
NMDP	∞ (\mathcal{Q})	$\exp(\mathbb{E}[\log(\rho_t)]) \ge 1/\gamma$
TMDP		
MDP		
Recall	$\rho_t = \frac{\pi^{\theta}(a_t s_t)}{\pi^{b}(a_t s_t)}, \ \lambda_t$	$=\prod_{k=0}^t ho_k$

▶ Setting: observe N trajectories of length T, estimate $J_{\infty}(\pi)$

Model	Efficient MSE	Assumptions
NMDP	∞ $()$	$\exp(\mathbb{E}[\log(\rho_t)]) \ge 1/\gamma$
	$\mathcal{O}(1/N)$	$\lambda_t = o(\gamma^{-t}), \substack{N \to \infty, \\ T = \omega(\log^{1/2}(N))}$
TMDP		
MDP		

• Recall
$$\rho_t = \frac{\pi^{\theta}(a_t|s_t)}{\pi^{b}(a_t|s_t)}, \ \lambda_t = \prod_{k=0}^t \rho_k$$

	_				
000	000000	0•	000000	0000	000000
Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments

▶ Setting: observe N trajectories of length T, estimate $J_{\infty}(\pi)$

Model	Efficient MSE	Assumptions	
NMDP	∞ $\textcircled{2}$	$\exp(\mathbb{E}[\log(\rho_t)]) \ge 1/\gamma$	
	$\mathcal{O}(1/N)$	$\lambda_t = o(\gamma^{-t}), \stackrel{N \to \infty,}{T = \omega(\log^{1/2}(N))}$	
TMDP	$\mathcal{O}(1/N)$	$\mathbb{E}[\lambda_t \mid s_t, a_t] = o(\gamma^{-t}), \substack{N \to \infty, \\ T = \omega(\log^{1/2}(N))}$	

MDP

• Recall
$$\rho_t = \frac{\pi^{\theta}(a_t|s_t)}{\pi^{b}(a_t|s_t)}, \ \lambda_t = \prod_{k=0}^t \rho_k$$

	_				
000	000000	0•	000000	0000	000000
Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments

▶ Setting: observe N trajectories of length T, estimate $J_{\infty}(\pi)$

Model	Efficient MSE	Assumptions	
NMDP	∞ \textcircled{P}	$\exp(\mathbb{E}[\log(\rho_t)]) \ge 1/\gamma$	
	$\mathcal{O}(1/N)$	$\lambda_t = o(\gamma^{-t}), \substack{N \to \infty, \\ T = \omega(\log^{1/2}(N))}$	
TMDP	$\mathcal{O}(1/N)$ 💩	$\mathbb{E}[\lambda_t \mid s_t, a_t] = o(\gamma^{-t}), \substack{N \to \infty, \\ T = \omega(\log^{1/2}(N))}$	

MDP

• Recall
$$\rho_t = \frac{\pi^{\theta}(a_t|s_t)}{\pi^{b}(a_t|s_t)}, \ \lambda_t = \prod_{k=0}^t \rho_k$$

	_				
		00			
Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments

▶ Setting: observe N trajectories of length T, estimate $J_{\infty}(\pi)$

Model	Efficient MSE	Assumptions			
NMDP	∞ $$	$\exp(\mathbb{E}[\log(\rho_t)]) \ge 1/\gamma$			
	$\mathcal{O}(1/N)$	$\lambda_t = o(\gamma^{-t}), \substack{N \to \infty, \\ T = \omega(\log^{1/2}(N))}$			
TMDP	$\mathcal{O}(1/N)$ 💩	$\mathbb{E}[\lambda_t \mid s_t, a_t] = o(\gamma^{-t}), \substack{N \to \infty, \\ T = \omega(\log^{1/2}(N))}$			
MDP	$\mathcal{O}(1/(NT))$	$T \to \infty, N \ge 1, {\rm Ergodic}$			
• Recall $\rho_t = \frac{\pi^{\theta}(a_t s_t)}{\pi^{b}(a_t s_t)}, \ \lambda_t = \prod_{k=0}^t \rho_k$					

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000	000000	⊙●	000000	0000	000000

• Setting: observe N trajectories of length T, estimate $J_{\infty}(\pi)$

Model	Efficient MSE
NMDP	∞ Ye
TMDP	$\mathcal{O}(1/N)$ 💩
MDP	$\mathcal{O}(1/(NT))$

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000	000000	00	●00000	0000	000000
This	Talk				

- 1 Introduction
- 2 Problem Setup
- **3** Efficiency Bounds
- 4 Efficient OPE via Double RL
- **5** Efficient OPG & Policy Learning
- 6 Experimental Results

Overvi	ew/				
Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000	000000	00		0000	000000

• **Derive** the efficient influence function (EIF) ψ for each case: {MDP,TMDP,NMDP} × {OPE,OPG} × { $T < \infty$, $T = \infty$ }

• EIFs involve some unknown *nuisances*: $\psi = \phi_{\eta} - \tau$

E.g., the q-function is a nuisance in all of the cases

• If knew η , $\tilde{\tau} = \mathbb{E}_N[\phi_\eta]$ would be an efficient estimator

•	•				
Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000	000000	00	o●oooo	0000	000000

- **Derive** the efficient influence function (EIF) ψ for each case: {MDP,TMDP,NMDP} × {OPE,OPG} × { $T < \infty$, $T = \infty$ }
 - EIFs involve some unknown *nuisances*: $\psi = \phi_{\eta} \tau$
 - E.g., the q-function is a nuisance in all of the cases
 - If knew η , $\tilde{\tau} = \mathbb{E}_N[\phi_\eta]$ would be an efficient estimator
- Idea: estimate $\hat{\eta}$ and use $\hat{\tau} = \mathbb{E}_N[\phi_{\hat{\eta}}]$
 - But need to make sure this works

Overv	iew				
Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000	000000	00	○●○○○○	0000	000000

- **Derive** the efficient influence function (EIF) ψ for each case: {MDP,TMDP,NMDP} × {OPE,OPG} × { $T < \infty$, $T = \infty$ }
 - EIFs involve some unknown *nuisances*: $\psi = \phi_{\eta} \tau$
 - E.g., the q-function is a nuisance in all of the cases

• If knew η , $\tilde{\tau} = \mathbb{E}_N[\phi_\eta]$ would be an efficient estimator

- Idea: estimate $\hat{\eta}$ and use $\hat{\tau} = \mathbb{E}_N[\phi_{\hat{\eta}}]$
 - But need to make sure this works
- Prove that the EIFs satisfy double robustness
 - ► For OPE: $\tau = \mathbb{E}[\phi_{(\eta_1,\star)}] = \mathbb{E}[\phi_{(\star,\eta_2)}]$ (Special case for OPG)
 - $\blacktriangleright \implies \partial_{\eta'} \mathbb{E}[\phi_{\eta'}] \mid_{\eta'=\eta} = 0 \text{ so } \hat{\tau} \text{ is insensitive to errors in } \hat{\eta}$

000	Setup 000000	Efficiency 00	DRL OPG 0000	Experiments 000000
Overv	view			

- **Derive** the efficient influence function (EIF) ψ for each case: {MDP,TMDP,NMDP} × {OPE,OPG} × { $T < \infty, T = \infty$ }
 - EIFs involve some unknown *nuisances*: $\psi = \phi_{\eta} \tau$
 - E.g., the q-function is a nuisance in all of the cases

• If knew η , $\tilde{\tau} = \mathbb{E}_N[\phi_\eta]$ would be an efficient estimator

- Idea: estimate $\hat{\eta}$ and use $\hat{\tau} = \mathbb{E}_N[\phi_{\hat{\eta}}]$
 - But need to make sure this works
- Prove that the EIFs satisfy double robustness
 - ► For OPE: $\tau = \mathbb{E}[\phi_{(\eta_1,\star)}] = \mathbb{E}[\phi_{(\star,\eta_2)}]$ (Special case for OPG) ► $\implies \partial_{\eta'} \mathbb{E}[\phi_{\eta'}]|_{\eta'=\eta} = 0$ so $\hat{\tau}$ is insensitive to errors in $\hat{\eta}$
- To enable flexible ML estimators for η̂, use cross-fitting (Double ML; Chernozhukov et al., 2018)

(Special case for infinite horizon due to dependent data)

Result: Efficient Estimation via Double RL

Step 1: Split the data into folds

Two folds over many trajectories

Four folds over one trajectory

$$t = 0, \qquad \dots \qquad T$$
$$N = 1 \boxed{\begin{array}{ccc} \mathcal{D}_0 & \mathcal{D}_1 & \mathcal{D}_3 & \mathcal{D}_2 \end{array}}$$

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000	000000	00	oo●ooo	0000	000000
DRI	for OPF	in MDP			

Step 1: Split the data into folds $t = 0, \qquad \dots \qquad T$ N = 1 D_0 D_1 D_3 D_2

 Intro
 Setup
 Efficiency
 DRL OPE
 DRL OPG
 Experiments

 OOD
 OOD
 OOD
 OOD
 OOD
 OOD
 OOD

 DRL for OPE in MDP
 Image: Comparison of the set of the

Step 1: Split the data into folds $t = 0, \dots$ N = 1 D_0 D_1 D_3

Let w(s) be the ratio of the γ-discounted average visitation distribution at s under π^θ and the undiscounted stationary distribution at s under π^b

(This is slightly different than the ratio in Liu et al. 2018)

T

 \mathcal{D}_2

▶ For each fold j, construct* estimators ŵ^(j) and q̂^(j) for w and q based only on the training data D_j

DRL OPG Setup Efficiency DRL OPE Experiments 000000

DRL for OPE in MDP

Step 1: Split the data into folds t = 0.T. . . N=1 \mathcal{D}_0 \mathcal{D}_1 \mathcal{D}_3 \mathcal{D}_2

$$\frac{1}{(T+1)} \sum_{j=0}^{3} \sum_{t \in \mathcal{D}_j} \phi(s_t, a_t, r_t, s_{t+1}; \hat{w}^{(3-j)}, \hat{q}^{(3-j)})$$

where $\phi(s, a, r, s'; w, q) = (1 - \gamma) \mathbb{E}_{p_0}[\mathbb{E}_{a_0 \sim \pi^{\theta}}[q(s_0, a_0) \mid s_0]]$ $+ w(s)\rho(a,s)(r + \gamma \mathbb{E}_{a' \sim \pi^{\theta}}[q(s',a') \mid s'] - q(s,a))$

Setup	Efficiency	DRL OPE	DRL OPG	Experiments
		000000		

Efficiency of DRL in MDP

Assumption

 $p_{\pi^b}, p_{\pi^\theta}$ induce Haris ergodic chains, corresponding w is a bounded r.v., and $\hat{w}^{(j)}, \hat{q}^{(j)}$ are bounded

Theorem

Assume $\|\hat{q}^{(j)} - q\|_2 = o_p((NT)^{-\alpha_1}), \|\hat{w}^{(j)} - w\|_2 = o_p((NT)^{-\alpha_2}), \alpha_1 > 0, \alpha_2 > 0, \alpha_1 + \alpha_2 \ge 1/2, \text{ and } p_{\pi^b} \text{ is a strongly } \rho\text{-mixing}$ process. Then, $\sqrt{NT}(\hat{J}_{DRL(MDP)}(\theta) - J(\theta)) \xrightarrow{d} \mathcal{N}(0, \mathbb{E}[\psi^2_{MDP}]).$

Key feature: no assumptions on \hat{q}, \hat{w} , just a slow rate \implies can use black-box ML to fit nuisances (Works without cross-fold if we impose Donsker conditions)

Setup	Efficiency	DRL OPE	DRL OPG	Experiments
		000000		

Double Robustness of DRL

Theorem

Assume $\phi(\cdot, \cdot, \cdot, \cdot; \hat{w}^{(j)}, \hat{q}^{(j)}) \in \mathcal{F}_{\phi}$ almost surely where \mathcal{F}_{ϕ} is VC-major. Assume $\|\hat{w}^{(j)} - w^{\dagger}\|_2 = o_p(1)$, $\|\hat{q}^{(j)} - q^{\dagger}\|_2 = o_p(1)$, and either $w^{\dagger} = w$ or $q^{\dagger} = q$. Then, $\hat{J}_{DRL(MDP)}(\theta) \rightarrow J(\theta)$.

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
			000000		

Double Robustness of DRL

Theorem

Assume $\phi(\cdot, \cdot, \cdot, \cdot; \hat{w}^{(j)}, \hat{q}^{(j)}) \in \mathcal{F}_{\phi}$ almost surely where \mathcal{F}_{ϕ} is VC-major. Assume $\|\hat{w}^{(j)} - w^{\dagger}\|_2 = o_p(1)$, $\|\hat{q}^{(j)} - q^{\dagger}\|_2 = o_p(1)$, and either $w^{\dagger} = w$ or $q^{\dagger} = q$. Then, $\hat{J}_{DRL(MDP)}(\theta) \rightarrow J(\theta)$.

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000	000000	00	00000●	0000	000000
Guar	antees for				

Examples cases:

- ► Tabular case in (T)MDP: If state and action spaces finite, can obtain O_p(n^{-1/2}) rate for nuisances and get efficient estimates (don't even need cross-fold)
- Finite state space, known behavior policy in TMDP: Xie et al. (2019) provide $O_p(n^{-1/2})$ rate for marginalized density ratio, so only need $o_p(1)$ for *q*-estimate (no rate)

Boundedness is enough – can use kernel regression estimates

General non-parametric case: can use flexible ML estimates; e.g., *DICE; more generally: w, q defined by conditional moment restrictions so can use Newey (1990), Ai and Chen (2003), Bennett, K, Schnabel (2019).

Cuar	ontoos for			0000	000000
Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments

- More results in papers...
 - Efficiency in $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3$
 - Efficiency under various conditions on plug-in estimators
 - Finite-sample guarantees (PAC-style)
 - Finite horizon
 - Inefficiency of other estimators
 - IS, Marginalized IS, Stationary IS
 - "DR" in $\mathcal{M}_2, \mathcal{M}_3$

000	000000	00	000000	0000	000000
This	Talk				

- 1 Introduction
- 2 Problem Setup
- **3** Efficiency Bounds
- Efficient OPE via Double RL
- **5** Efficient OPG & Policy Learning
- 6 Experimental Results

Setup	Efficiency	DRL OPE	DRL OPG	Experiments
			0000	

Efficient Off-Policy Policy Gradients

Need additional nuisances:

• q, w as before; Also $d^q = \nabla_{\theta} q$, $d^w = \nabla_{\theta} w$

Estimation technique similar to before:

- Cross-fold estimate q, w, d^q, d^w
- Plug into EIF that we derived

Theorem (Efficiency)

$$\|\hat{w}^{(j)} - w\| = o_p((NT)^{-\alpha_w}), \ \|\hat{d}^{w,(j)} - d^w\| = o_p((NT)^{-\beta_w}), \|\hat{q}^{(j)} - q\| = o_p((NT)^{-\alpha_q}), \ \|\hat{d}^{q,(j)} - d^q\| = o_p((NT)^{-\beta_q}).$$

If $\min(\alpha_w, \beta_w) + \min(\alpha_q, \beta_q) \ge 1/2$ and $\alpha_w, \beta_w, \alpha_q, \beta_q > 0$. Then,

$$\sqrt{NT}(\hat{Z}(\theta) - Z(\theta)) \rightarrow_d \mathcal{N}(0, \mathbb{E}[\psi_{MDP}^2])$$

0000 000000 000 000000		
	0000	

Robustness Guarantees

Theorem (3-way Double Robustness)

$$\hat{w}^{(j)} \rightarrow w^{\dagger}, \ \hat{d}^{w,(j)} \rightarrow d^{w,\dagger}, \ \hat{q}^{(j)} \rightarrow q^{\dagger}, \ \hat{d}^{q,(j)} \rightarrow d^{q,\dagger}$$

 $\begin{array}{l} \text{Then, } \hat{Z}(\theta) \rightarrow_p Z(\theta) \text{ as long as one of the of following hold:} \\ w^{\dagger} = w, d^{w,\dagger} = d^w; \quad q^{\dagger} = q, d^{q,\dagger} = d^q; \quad \text{or } w^{\dagger} = w, q^{\dagger} = q. \end{array}$

0000 000000 000 000000		
	0000	

Robustness Guarantees

Theorem (3-way Double Robustness)

$$\hat{w}^{(j)} \rightarrow w^{\dagger}, \quad \hat{d}^{w,(j)} \rightarrow d^{w,\dagger}, \quad \hat{q}^{(j)} \rightarrow q^{\dagger}, \quad \hat{d}^{q,(j)} \rightarrow d^{q,\dagger}$$

 $\begin{array}{l} \textit{Then, } \hat{Z}(\theta) \rightarrow_p Z(\theta) \textit{ as long as one of the of following hold:} \\ w^{\dagger} = w, d^{w,\dagger} = d^w; \quad q^{\dagger} = q, d^{q,\dagger} = d^q; \quad \textit{or } w^{\dagger} = w, q^{\dagger} = q. \end{array}$

Also suggests three new (inefficient) policy gradient methods given by using any good (blue) combination of only *two* nuisances
 Intro
 Setup
 Efficiency
 DRL OPE
 DRL OPG
 Experiments

 000
 000000
 00
 000000
 000000
 000000
 000000

Efficient Off-Policy Gradient Ascent

Consider the efficiently-estimated-gradient ascent algorithm:

$$\theta_{i+1} = \operatorname{Proj}_{\Theta}(\theta_i + \alpha_i \hat{Z}(\theta_i))$$

• Run for K steps and return $\hat{\theta} = \theta_i$ with probability $\propto \alpha_i$

Theorem

Suppose $J(\theta)$ is differentiable and M-smooth, $M < 1/(4\alpha_i)$, ψ is a.s. differentiable with bounded gradient, Θ compact. Then, with probability at least $1 - \delta$:

$$\|Z(\hat{\theta})\|^2 \le \frac{4(\max_{\theta} J(\theta) - J(\theta_1))}{K} + \frac{c \log(1/\delta)}{KNT}$$

• If $J(\theta)$ concave: $\operatorname{Regret}(\hat{\theta}) = O_p(\sqrt{\log(NT)/(NT)})$

 More generally: global optimality of policy gradient ascent (Agarwal et al., 2019; Bhandari and Russo, 2019)

Intro	Setup	Efficiency	DRL OPE	DRL OPG	Experiments
000	000000	00		0000	•00000
This	Talk				

- Introduction
- 2 Problem Setup
- **3** Efficiency Bounds
- I Efficient OPE via Double RL
- **5** Efficient OPG & Policy Learning

6 Experimental Results

Experiments: OpenAl Gym, Finite Horizon

- Two OpenAI Gym Environments
- Mountain Car

 Intro
 Setup
 Efficiency
 DRL OPE
 DRL OPG
 Experiments

 000
 000000
 00
 000000
 00000
 000000
 000000

Experiments: OpenAl Gym, Finite Horizon

Cliff Walking: RMSE (and std errs)

Size	$\hat{ ho}_{\mathrm{IS}}$	$\hat{ ho}_{\mathrm{DRL}(\mathcal{M}_1)}$	$\hat{ ho}_{\mathrm{DM}}$	$\hat{ ho}_{\mathrm{MIS}}$	$\hat{ ho}_{\mathrm{DRL}(\mathcal{M}_2)}$
500	18.8 (7.67)	3.78(1.14)	2.63 (0.01)	12.8 (4.96)	1.44 (0.29)
1000	7.99 (0.89)	0.28 (0.026)	1.27 (0.002)	5.92 (0.78)	0.22 (0.34)
1500	7.64 (1.63)	0.098 (0.013)	1.01 (0.001)	5.55 (1.10)	0.075 (0.008)

Mountain Car: RMSE (and std errs)

n	$\hat{ ho}_{\mathrm{IS}}$	$\hat{ ho}_{\mathrm{DRL}(\mathcal{M}_1)}$	$\hat{ ho}_{\mathrm{DM}}$	$\hat{ ho}_{\mathrm{MIS}}$	$\hat{ ho}_{\mathrm{DRL}(\mathcal{M}_2)}$
500	6.85 (0.13)	3.72 (0.08)	4.30 (0.05)	6.82 (0.12)	3.53 (0.12)
1000	4.73 (0.07)	2.12 (0.04)	3.40 (0.008)	4.83 (0.06)	2.07 (0.04)
1500	3.41 (0.04)	1.82 (0.02)	3.30 (0.008)	3.40 (0.05)	1.69 (0.03)

Simulation: Infinite Horizon OPE

\blacktriangleright N = 1, T varies

q-model wrong

 Intro
 Setup
 Efficiency
 DRL OPE
 DRL OPG
 Experiments

 000
 000000
 00
 000000
 000000
 000000

Simulation: Infinite Horizon OPG (MSE)

 Intro
 Setup
 Efficiency
 DRL OPE
 DRL OPG
 Experiments

 000
 000000
 00
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000</t

Simulation: Infinite Horizon Learning (Regret)

Statistically Efficient Offline Reinforcement Learning

- Aim: Overcome fundamental limits in offline RL by leveraging Markovian, time-invariant, and ergodic structure
 - Theme: What's *efficient* depends on *structure*
- Contributions
 - Study efficiency limits of OPE/OPG in MDPs for first time
 - Insight into when the curse of horizon bites
 - Problem-dependent phenomenon; not estimator-dependent
 - Provide the *first* efficient OPE/OPG estimator in MDPs
 - Remains efficient even when nuisances estimated at slow rates by blackbox ML
 - Enjoys double robustness guarantees
 - Efficient OPG + gradient ascent leads to learning guarantees

