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Reinforcement Learning in Medicine

» Sepsis (extreme bodily reaction to infection) is 3rd leading
cause of death worldwide! =
P> Best treatment strategy unclear &
» Lots of subtle symptoms, many levers, effect heterogeneity

» Opportunity for reinforcement learning! @ #"

Treating sepsis: the latest evidence
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Off-Policy RL and the Curse of Horizon

» In medicine and other high-stakes domains, exploration is
limited and simulation unreliable
> Must rely on existing data like EHRs laihl ~
» E.g., Komorowski et al. '18 proposed the “Al Clinician™ for
sepsis treatment by applying RL to observational ICU data
P Scrutiny, skepticism from RL and medical communities
> Biggest gripe: unreliable due to curse of horizon
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Statistically Efficient Offline RL

» Aim: Overcome fundamental limits in offline RL by leveraging
Markovian, time-invariant, and ergodic structure
> Theme: given limited data try to use it efficiently, and
what's efficient depends on structure

» Contributions
» Study efficiency limits in offline RL in MDPs for first time
> Insight into when the curse of horizon bites
» Problem-dependent phenomenon; not estimator-dependent
> First efficient estimators for policy value/gradient in MDP in
both finite- and infinite-horizon settings

» Efficient even when nuisances estimated at slow rates by
blackbox ML
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This Talk

Problem Setup



Setup
©0®0000

Markov Decision Processes

sl

ag ~ 7r(at ‘ St)

Tt Np(Tt ’ Staat)
Se1 ~ P(St41 | St a4)
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Off-Policy Evaluation and Gradients

) w/\ ) w/\ 7
( S0 i»—%» To w:/ S1 »+> w:/ So ..

» MDP (state and reward probabilities)
+ policy (action probabilities)
= joint distribution p, over (sg, ag,ro, $1,a1, ... )
» Policy value: Jp(m) = ﬁlﬁ:pw [Ztho ’Yt”}
» Joo(m) = limp_o0 Jp(m)
» Off-policy evaluation: given 7, estimate Jp(m) from N
observations of (sg, ag, o, ..., ar,rr) from po
» Behavior policy p,» may be known or unknown
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» MDP (state and reward probabilities)
+ policy (action probabilities)
= joint distribution p, over (sg, ag,ro, $1,a1, ... )

» Policy value: Jp(m) = ﬁlﬁ: o [Ztho ,Ytrt}
» Joo(m) = limp_o0 Jp(m)
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» Behavior policy p,» may be known or unknown
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Off-Policy Evaluation and Gradients

» For learning, suppose given policy class IT = {#? : § € ©}
> Let Jp(0) = Jr(n?)
» Off-policy gradient: given N observations of
(s0, 0,70, --.,ar,r7) from p_s, estimate

Zr(0) = VoJr(0)



Setup
00000

Off-Policy Evaluation and Gradients

» For learning, suppose given policy class IT = {#? : § € ©}
> Let Jp(0) = Jr(n?)
» Off-policy gradient: given N observations of
(s0, 0,70, --.,ar,r7) from p_s, estimate

Zr(0) = VoJr(0) = ﬁﬂ%re [Ztho Yre > ho gk}

gt = Vglogn®(as | s;) (policy score)



Setup
00000

Off-Policy Evaluation and Gradients

» For learning, suppose given policy class IT = {#? : § € ©}
> Let JT(Q) = JT(TI'G)
> Off-policy gradient: given N observations of
(s0,a0,70,-..,ar,rr) from p_» , estimate
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Off-Policy Evaluation and Gradients

» For learning, suppose given policy class IT = {#? : § € ©}
> Let JT(H) = JT(TI'G)
> Off-policy gradient: given N observations of
(s0,a0,70,-..,ar,rr) from p_» , estimate

Z1(0) = VoJr(0) = ZT 07 |:Zt 07Tt e ogk}

gt = Vologn¥(ay | s¢) (policy score)

» Can be used for off-policy learning via gradient ascent

> (Policy gradient methods have driven a lot of recent RL
successes in online settings with experimentation/simulation)
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» (OPE) SIS estimator: J; () = —EN[ZtTZO VAT ]

1
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> pp = LEZQ‘Z;’ At = [h—o Pk is the cumulative density ratio
» Changes measure from E, , to E, ,
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Existing Approaches (very abridged version @)

» (OPE) SIS estimator: J; () = ﬁEN[ZtTZO VAT ]

7% (ailst)

> pr= T (at|st)’

» Changes measure from Ep , to E, ,
» (OPE) “Doubly Robust” (“DR") estimator: J(f) =

T . .
fmtEN [tho 7t ()\t(rt - Qt) + /\t—lEatwr‘? [Qt | St] ]

> ¢ =E,, [Zfit v =try, | st,a4] is g-function; §; an estimator

» Notice ¢; = ¢ is independent of ¢ for T' = oo
» [ots of variants: Jiang & Li '16, Thomas & Brunskill '16, K

'18, Farajtabar et EJI. '18, K & Uehara '19,

» (OPG)REINFORCE: Z7(0) = Zt EN[Z,: 0 /\trt Zk ng]

> (OPG) Off-PAC: Z7(0) = '~ EN[Zt 07 Mgidi]

» Naive view of curse of horizon: if % ~C >~7! we get

Ist)

t = [Th_o Px is the cumulative density ratio

At &~ C", and all of the above explode exponentially )
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Existing Approaches (very abridged version @)

» Direct method: En[Eqy~r<[G(s0,a0) | So]]
» Can directly bake-in MDP structure into g-model

» Liu et al. (2018): importance sampling using stationary
density ratios in infinite horizons
Xie et al. (2019): importance sampling using marginalized
density ratios in time-varying MDPs and finite state spaces

» All of the above leverage MDP structure! &
» Motivates our current study
» But still not efficient &
> Will generally have suboptimal leading constant
» In non-tabular settings, will generally even have slow rate

(w((NT)~1/%)) @
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» Consider model M and parameter of interest 7: M — R

> Given iid data X; ~ P € M, want a good estimator
Tn(X1,...,X,) for 7(P) that uses data to the mostest
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» Consider model M and parameter of interest 7: M — R

> Given iid data X; ~ P € M, want a good estimator
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» Semiparametric efficiency says: any estimator that works for
all instances P € M (is regular) must satisfy for each P € M:
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Efficiency (very abridged version &)

» Consider model M and parameter of interest 7: M — R

> Given iid data X; ~ P € M, want a good estimator
Tn(X1,...,X,) for 7(P) that uses data to the mostest

» Semiparametric efficiency says: any estimator that works for
all instances P € M (is regular) must satisfy for each P € M:
liminfn - E[(7,(X1.) — 7(P))?] > E[0*(X;P)],
—_——

Efficiency bound

Efficient influence function ) is the least-norm derivative of 7
» For us: 7= Jp(8), Zr(0), M = set of all p,» for all MDPs

> Will actually also be insightful to consider other models ...
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Three Nested Models: MDP C TMDP C NMDP

» M;: Non-Markov Decision Process (NMDP)

Ha, = (50,00, ...,5t, at)
st ~ (st | Hay)
Tt ~ pt(Tt I Hat)

' ap ~me(ar | Hsy)

> Msy: Time- Varying Markov Decision Process (TMDP)
pi(st I za,) = Ptgst || St,at;
pe(r ar) =pe(re | se,a
@ T 3 S a5

» Ms: Time-Invariant Markov Decision Process (MDP)

( " =p(s' | s,0)
”‘ pt \ | SS aa = pp(rs| ssa;l
(50 ﬁy_.‘ (51—~ a 1 al|s)=m(a|s)
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Efficiency Bounds for Infinite-Horizon OPE/OPG

» Setting: observe N trajectories of length T', estimate J.. ()

Model Efficient MSE Assumptions
Ny
NMDP oo Yg¥ exp(Eflog(p¢)]) = 1/
_ N — oo,
O/N) G N=o0) 1 i)

N — o0,

TMDP O(l/N) & E[)‘t ‘ St a/t] = O(,y_t)a T = w(logl/Q(N))

MDP  O(1/(NT)) @) T — oo, N > 1, Ergodic

0

» Recall p;, = %, At = [Theo 2
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Efficiency Bounds for Infinite-Horizon OPE/OPG

> Setting: observe N trajectories of length T', estimate J..(7)

Model Efficient MSE

NMDP ST
TMDP O(1/N) &

MDP  O(1/(NT)) &)
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Efficient OPE via Double RL



Overview

» Derive the efficient influence function (EIF) 1 for each case:
{MDP, TMDP,NMDP} x {OPE,OPG} x {T < 00, T = o0}
» EIFs involve some unknown nuisances: 1 = ¢, — T
» E.g., the g-function is a nuisance in all of the cases

» If knew 7, 7 = En|[¢,] would be an efficient estimator
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Overview

» Derive the efficient influence function (EIF) 1 for each case:
{MDP, TMDP,NMDP} x {OPE,OPG} x {T < 00, T = o0}
» EIFs involve some unknown nuisances: 1 = ¢, — T
» E.g., the g-function is a nuisance in all of the cases

» If knew 7, 7 = En|[¢,] would be an efficient estimator
» ldea: estimate 7) and use 7 = Ey[¢;]
> But need to make sure this works
» Prove that the EIFs satisfy double robustness
» For OPE: 7 = E[¢(, 0] = E[¢(x)] (Special case for OPG)
» — 0yE[¢,] |;y=y= 0 so 7 is insensitive to errors in 7

» To enable flexible ML estimators for 7}, use cross-fitting
(Double ML; Chernozhukov et al., 2018)

» (Special case for infinite horizon due to dependent data)
» Result: Efficient Estimation via Double RL



DRL for OPE in MDP

» Step 1: Split the data into folds

Two folds over many trajectories Four folds over one trajectory
t=0, o T t=0, . T
1=1,
N=1| Dy | Dy | D3 | Dy
Dy
D,
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DRL for OPE in MDP

» Step 1: Split the data into folds
t=0, T

N=1 Dy D, Dy D,

> Let w(s) be the ratio of the v-discounted average visitation
distribution at s under 7¥ and the undiscounted stationary
distribution at s under 7°

» (This is slightly different than the ratio in Liu et al. 2018)

» For each fold j, construct* estimators @) and ¢¥) for w and
q based only on the training data D;



DRL for OPE in MDP

» Step 1: Split the data into folds
t=0, T

N =1 Dy D, Ds D,

> Set jDRL(MDP) (8) to

3
L))

Qt, Ty, St415; W 7q( ))

]:O teD;

where ¢(s,a,r,s";w,q) = (1 —v)Ep, [Eoyre[q(s0, a0) | 0]
+ w(s)p(a, s) (r + 1 Eyrelq(s',a’) | 81— q(s,a))



Efficiency of DRL in MDP

Db, Pre induce Haris ergodic chains, corresponding w is a bounded
r.v., and w9, G are bounded

Assume [|§9) — qllz = 0,(NT) ™), [0 — wllz = 0,((NT)~*),
a; >0, ap > 0,01 + a3 > 1/2, and pe is a strongly p-mixing
process. Then, VNT (Joruaup)(0) — J(0)) 2 N (0, E[Y2mp)).
Key feature: no assumptions on ¢, w, just a slow rate

= can use black-box ML to fit nuisances
(Works without cross-fold if we impose Donsker conditions)
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Double Robustness of DRL

Assume ¢(-, -, -, ;W qU)) € Fy almost surely where F is
VC-major. Assume ||\ — wt|ly = 0,(1), |GV — ¢'||2 = 0,(1),

and either w' = w or ¢' = q. Then, Jorrvipp)(0) = J(0).
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Double Robustness of DRL

Assume ¢(-, -, -, W), qU)) € Fy almost surely where F is
VC-major. Assume ||\ — wt|ly = 0,(1), |GV — ¢'||2 = 0,(1),

and either w' = w or ¢' = q. Then, Jprropp)(0) — J(0).




Guarantees for DRL

» Examples cases:

» Tabular case in (T)MDP: If state and action spaces finite,
can obtain Op(n_l/Q) rate for nuisances and get efficient
estimates (don't even need cross-fold)

P Finite state space, known behavior policy in TMDP: Xie et
al. (2019) provide O,(n~'/2) rate for marginalized density
ratio, so only need 0,(1) for g-estimate (no rate)

» Boundedness is enough — can use kernel regression estimates

P General non-parametric case: can use flexible ML estimates;
e.g., ¥*DICE; more generally: w, q defined by conditional
moment restrictions so can use Newey (1990), Ai and Chen
(2003), Bennett, K, Schnabel (2019).



Guarantees for DRL

» More results in papers...

>

vvyyvyy

Efficiency in M1, Mo, M3
Efficiency under various conditions on plug-in estimators
Finite-sample guarantees (PAC-style)
Finite horizon
Inefficiency of other estimators
» IS, Marginalized IS, Stationary IS
> “DR" in Mo, M3



This Talk

Efficient OPG & Policy Learning



Efficient Off-Policy Policy Gradients

» Need additional nuisances:
> ¢, w as before; Also d? = Vyq, d* = Vow
» Estimation technique similar to before:

» Cross-fold estimate ¢, w, d?, d¥
» Plug into EIF that we derived

Theorem (Efficiency)

199 —wl| = 0p(NT)™**), [|d*) = d|| = op(NT) ™),
149 = qll = 0p(NT) ™), |d9W) — d¥|| = o, (NT) ).

If min (o, Buw) + min(og, Bg) > 1/2 and oy, B, g, By > 0. Then,

VNT(Z(0) — Z(6)) —a N (0, E[rippl)



Robustness Guarantees

Theorem (3-way Double Robustness)

'I,Z)(']) — 'LUT, dwf(]) — dw’T, q(]) — qT, Cz%(]) — dQ:T

Then, Z(0) —, Z(0) as long as one of the of following hold:
wh=w,d*t =d¥; ¢t =¢q,d*"=d?; orw'=w,q" =q.

4
<




Robustness Guarantees

Theorem (3-way Double Robustness)

'I,Z)(']) — /LUT, Cwa(]) — dw’T, q(]) — qT, Cz%(]) — dQ:T

Then, Z(0) —, Z(0) as long as one of the of following hold:
wh=w,d*t =d¥; ¢t =¢q,d*"=d?; orw'=w,q" =q.

4
<

Also suggests three new
(inefficient) policy gradient
methods given by using any
good (blue) combination of
only two nuisances




Efficient Off-Policy Gradient Ascent

» Consider the efficiently-estimated-gradient ascent algorithm:
91'4_1 = Proj@(Hi + OZZZA(&L))

> Run for K steps and return 6 = 6; with probability o «;

Suppose J(8) is differentiable and M-smooth, M < 1/(4a;), ¢ is a.s.
differentiable with bounded gradient, © compact. Then, with

probability at least 1 — §:

4(maxg J(0) — J(01)) = clog(1/9)
1Z@)I < e e
> If J(A) concave: Regret(d) = O,(1/log(NT)/(NT))

> More generally: global optlmallty of policy gradient ascent
(Agarwal et al., 2019; Bhandari and Russo, 2019)
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This Talk

@B Experimental Results
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Experiments: OpenAl Gym, Finite Horizon

» Two OpenAl Gym Environments
» Mountain Car

» Cliff Walk

r=-1} safe path

optimal path

S The Cliff




Experiments
[eeY Yolole}

Experiments: OpenAl Gym, Finite Horizon

» Cliff Walking: RMSE (and std errs)
DM PMIS PDRL(M,)
2.63 (0.01) 12.8 (4.96) 1.44 (0.29)

5.92 (0.78) 0.22 (0.34)
0.075 (0.008)

Size p1s PDRL(M;)

500 18.8 (7.67) 3.78(1.14)
1000 7.99 (0.89) 0.28 (0.026)  1.27 (0.002)
1500 7.64 (1.63) 0.098 (0.013) 1.01 (0.001) 5.55 (1.10)

» Mountain Car: RMSE (and std errs)

n p1s PDRL(M,) ApM pmIS PDRL(Ms)

500 6.85(0.13) 3.72 (0.08) 4.30 (0.05) 6.82 (0.12) 3.53 (0.12)
1000 4.73 (0.07) 2.12(0.04) 3.40 (0.008) 4.83 (0.06) 2.07 (0.04)
1500 3.41 (0.04) 1.82(0.02) 3.30 (0.008) 3.40 (0.05) 1.69 (0.03)




Experiments
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Simulation: Infinite Horizon OPE

» N =1, T varies

g-model wrong w-model wrong
0 0
- 5 e e ey e Y
DRL1 DAL1
-1 +- M5 1 +- MS
—— DM —— DM
+ DRL3 & DRL3
¥ 2 ¥ -
= =
Q =]
g g
o o
<] 2
-3 -3
-a » \\
48 50 52 54 56 48 50 52 54 56

logl0Samplesize log10Samplesize
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Simulation: Infinite Horizon OPG (MSE)

® REINFORCE

1- ® PG
-— _ _ EOPPG g, d9
i ~ @ EOPPG,dH
0- EOPPG d¥, d4

\ ® EOPPG

Log MSE with 95% ClI
I
AR

7.0 7:5 8r0 8.5
Log Sample Size



Experiments
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Simulation: Infinite Horizon Learning (Regret)

Log Regret with 95% ClI

® REINFORCE
® PG
EOPPGgq, d9

® EOPPGu,d¥
- EOPPG dH, d9
® EOPPG

. = —
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Statistically Efficient Offline Reinforcement Learning

» Aim: Overcome fundamental limits in offline RL by leveraging
Markovian, time-invariant, and ergodic structure

> Theme: What's efficient depends on structure

» Contributions
» Study efficiency limits of OPE/OPG in MDPs for first time
» Insight into when the curse of horizon bites
» Problem-dependent phenomenon; not estimator-dependent
» Provide the first efficient OPE/OPG estimator in MDPs
> Remains efficient even when nuisances estimated at slow
rates by blackbox ML

» Enjoys double robustness guarantees
» Efficient OPG + gradient ascent leads to learning guarantees
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