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Reinforcement Learning in Medicine

I Sepsis (extreme bodily reaction to infection) is 3rd leading
cause of death worldwide! ☠️
I Best treatment strategy unclear 😕

I Lots of subtle symptoms, many levers, effect heterogeneity
I Opportunity for reinforcement learning! 🤖💉



Intro Setup Efficiency DRL OPE DRL OPG Experiments

Off-Policy RL and the Curse of Horizon
I In medicine and other high-stakes domains, exploration is

limited and simulation unreliable
I Must rely on existing data like EHRs 🏥📊📈

I E.g., Komorowski et al. ’18 proposed the “AI Clinician” for
sepsis treatment by applying RL to observational ICU data
I Scrutiny, skepticism from RL and medical communities
I Biggest gripe: unreliable due to curse of horizon 👻

“Fig. 2: effective
sample size” from
Gottesman et al. 19
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Statistically Efficient Offline RL

I Aim: Overcome fundamental limits in offline RL by leveraging
Markovian, time-invariant, and ergodic structure
I Theme: given limited data try to use it efficiently, and

what’s efficient depends on structure
I Contributions

I Study efficiency limits in offline RL in MDPs for first time
I Insight into when the curse of horizon bites
I Problem-dependent phenomenon; not estimator-dependent

I First efficient estimators for policy value/gradient in MDP in
both finite- and infinite-horizon settings

I Efficient even when nuisances estimated at slow rates by
blackbox ML
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This Talk

1 Introduction

2 Problem Setup

3 Efficiency Bounds

4 Efficient OPE via Double RL

5 Efficient OPG & Policy Learning

6 Experimental Results
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Off-Policy Evaluation and Gradients

s0 a0 r0 s1 a1 r1 s2 …‖

‖

‖
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‖

‖
I MDP (state and reward probabilities)

+ policy (action probabilities)
= joint distribution pπ over (s0, a0, r0, s1, a1, . . . )

I Policy value: JT (π) = 1∑T
t=0 γ

t
Epπ

[∑T
t=0 γ

trt

]
I J∞(π) = limT→∞ JT (π)

I Off-policy evaluation: given π, estimate JT (π) from N
observations of (s0, a0, r0, . . . , aT , rT ) from pπb

I Behavior policy pπb may be known or unknown
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Off-Policy Evaluation and Gradients

I For learning, suppose given policy class Π = {πθ : θ ∈ Θ}
I Let JT (θ) = JT (π

θ)
I Off-policy gradient: given N observations of

(s0, a0, r0, . . . , aT , rT ) from pπb , estimate

ZT (θ) = ∇θJT (θ)

= 1∑T
t=0 γ

t
E
[∑T

t=0 γ
trt

∑t
k=0 gk

]
gt = ∇θ logπθ(at | st) (policy score)

I Can be used for off-policy learning via gradient ascent
I (Policy gradient methods have driven a lot of recent RL

successes in online settings with experimentation/simulation)
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Existing Approaches (very abridged version 😅)
I (OPE) SIS estimator: ĴT (θ) = 1∑T

t=0 γ
t
EN [

∑T
t=0 γ

tλtrt]

I ρt =
πθ(at|st)
πb(at|st) , λt =

∏t
k=0 ρk is the cumulative density ratio

I Changes measure from Ep
πb

to Ep
πθ

I (OPE) “Doubly Robust” (“DR”) estimator: ĴT (θ) =
1∑T

t=0 γ
t
EN [

∑T
t=0 γ

t (λt(rt − q̂t) + λt−1Eat∼πθ [q̂t | st])]
I qt = Ep

πθ
[
∑T

k=t γ
k−trk | st, at] is q-function; q̂t an estimator

I Notice qt = q is independent of t for T = ∞
I Lots of variants: Jiang & Li ’16, Thomas & Brunskill ’16, K

’18, Farajtabar et al. ’18, K & Uehara ’19, ...
I (OPG)REINFORCE: ẐT (θ) =

1∑T
t=0 γ

t
EN [

∑T
t=0 γ

tλtrt
∑t

k=0 gk]

I (OPG) Off-PAC: ẐT (θ) =
1∑T

t=0 γ
t
EN [

∑T
t=0 γ

tλtgtq̂t]

I Naïve view of curse of horizon: if πθ(at|st)
πb(at|st) ≈ C > γ−1, we get

λt ≈ Ct, and all of the above explode exponentially 😱
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1∑T
t=0 γ

t
EN [

∑T
t=0 γ

tλtrt
∑t

k=0 gk]

I (OPG) Off-PAC: ẐT (θ) =
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Existing Approaches (very abridged version 😅)

I Direct method: EN [Ea0∼πe [q̂(s0, a0) | s0]]
I Can directly bake-in MDP structure into q-model

I Liu et al. (2018): importance sampling using stationary
density ratios in infinite horizons
Xie et al. (2019): importance sampling using marginalized
density ratios in time-varying MDPs and finite state spaces

I All of the above leverage MDP structure! 😎
I Motivates our current study
I But still not efficient 😕
I Will generally have suboptimal leading constant
I In non-tabular settings, will generally even have slow rate

(ω((NT )−1/2)) 😫
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Efficiency (very abridged version 😅)

I Consider model M and parameter of interest τ : M → R
I Given iid data Xi ∼ P ∈ M, want a good estimator

τ̂n(X1, . . . , Xn) for τ(P) that uses data to the mostest

I Semiparametric efficiency says: any estimator that works for
all instances P ∈ M (is regular) must satisfy for each P ∈ M:

lim infn · E[(τ̂n(X1:n)− τ(P))2] ≥ E[ψ2(X;P)]︸ ︷︷ ︸
Efficiency bound

,

Efficient influence function ψ is the least-norm derivative of τ
I For us: τ = JT (θ), ZT (θ), M = set of all pπb for all MDPs

I Will actually also be insightful to consider other models ...
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Three Nested Models: MDP ⊆ TMDP ⊆ NMDP

I M1: Non-Markov Decision Process (NMDP)

s0 a0 r0 s1 a1 r1 s2

Hat = (s0, a0, . . . , st, at)
st ∼ pt(st | Hat )
rt ∼ pt(rt | Hat )
at ∼ πt(at | Hst )

I M2: Time-Varying Markov Decision Process (TMDP)

s0 a0 r0 s1 a1 r1 s2

pt(st | Hat ) = pt(st | st, at)
pt(rt | Hat ) = pt(rt | st, at)
πt(at | Hst ) = πt(at | st)

I M3: Time-Invariant Markov Decision Process (MDP)

s0 a0 r0 s1 a1 r1 s2‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

pt(s′ | s, a) = p(s′ | s, a)
pt(r | s, a) = p(r | s, a)
πt(a | s) = π(a | s)
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This Talk
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2 Problem Setup

3 Efficiency Bounds

4 Efficient OPE via Double RL

5 Efficient OPG & Policy Learning
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Efficiency Bounds for Infinite-Horizon OPE/OPG

I Setting: observe N trajectories of length T , estimate J∞(π)

Model Efficient MSE Assumptions

NMDP

∞
👻

exp(E[log(ρt)]) ≥ 1/γ

O(1/N)
👾

λt = O(γ−t),
N → ∞,

T = ω(log1/2(N))

TMDP

O(1/N) E[λt | st, at] = O(γ−t),
N → ∞,

T = ω(log1/2(N))

MDP

O(1/(NT ))
🤑

T → ∞, N ≥ 1, Ergodic

I Recall ρt = πθ(at|st)
πb(at|st) , λt =

∏t
k=0 ρk
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MDP O(1/(NT ))
🤑

T → ∞, N ≥ 1, Ergodic

I Recall ρt = πθ(at|st)
πb(at|st) , λt =

∏t
k=0 ρk
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Overview
I Derive the efficient influence function (EIF) ψ for each case:

{MDP,TMDP,NMDP} × {OPE,OPG} × {T <∞, T = ∞}
I EIFs involve some unknown nuisances: ψ = φη − τ

I E.g., the q-function is a nuisance in all of the cases
I If knew η, τ̃ = EN [φη] would be an efficient estimator

I Idea: estimate η̂ and use τ̂ = EN [φη̂]
I But need to make sure this works

I Prove that the EIFs satisfy double robustness
I For OPE: τ = E[φ(η1,?)] = E[φ(?,η2)] (Special case for OPG)
I =⇒ ∂η′E[φη′ ] |η′=η= 0 so τ̂ is insensitive to errors in η̂

I To enable flexible ML estimators for η̂, use cross-fitting
(Double ML; Chernozhukov et al., 2018)
I (Special case for infinite horizon due to dependent data)

I Result: Efficient Estimation via Double RL
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DRL for OPE in MDP

I Step 1: Split the data into folds

D0

D1

Two folds over many trajectories

t = 0, . . . T
i = 1,

...

N

N = 1 D0 D1 D3 D2

Four folds over one trajectory

t = 0, . . . T
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DRL for OPE in MDP

I Step 1: Split the data into folds

N = 1 D0 D1 D3 D2

t = 0, . . . T

I Let w(s) be the ratio of the γ-discounted average visitation
distribution at s under πθ and the undiscounted stationary
distribution at s under πb

I (This is slightly different than the ratio in Liu et al. 2018)
I For each fold j, construct* estimators ŵ(j) and q̂(j) for w and

q based only on the training data Dj
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DRL for OPE in MDP

I Step 1: Split the data into folds

N = 1 D0 D1 D3 D2

t = 0, . . . T

I Set ĴDRL(MDP)(θ) to

1

(T + 1)

3∑
j=0

∑
t∈Dj

φ(st, at, rt, st+1; ŵ
(3−j), q̂(3−j))

where φ(s, a, r, s′;w, q) = (1− γ)Ep0 [Ea0∼πθ [q(s0, a0) | s0]]
+ w(s)ρ(a, s) (r + γEa′∼πθ [q(s′, a′) | s′]− q(s, a))
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Efficiency of DRL in MDP

Assumption
pπb , pπθ induce Haris ergodic chains, corresponding w is a bounded
r.v., and ŵ(j), q̂(j) are bounded

Theorem
Assume ‖q̂(j) − q‖2 = op((NT )

−α1), ‖ŵ(j) − w‖2 = op((NT )
−α2),

α1 > 0, α2 > 0, α1 + α2 ≥ 1/2, and pπb is a strongly ρ-mixing
process. Then,

√
NT (ĴDRL(MDP)(θ)− J(θ))

d→ N (0,E[ψ2
MDP]).

Key feature: no assumptions on q̂, ŵ, just a slow rate
=⇒ can use black-box ML to fit nuisances
(Works without cross-fold if we impose Donsker conditions)
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Double Robustness of DRL

Theorem
Assume φ(·, ·, ·, ·; ŵ(j), q̂(j)) ∈ Fφ almost surely where Fφ is
VC-major. Assume ‖ŵ(j) − w†‖2 = op(1), ‖q̂(j) − q†‖2 = op(1),
and either w† = w or q† = q. Then, ĴDRL(MDP)(θ) → J(θ).

w q
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Guarantees for DRL

I Examples cases:
I Tabular case in (T)MDP: If state and action spaces finite,

can obtain Op(n
−1/2) rate for nuisances and get efficient

estimates (don’t even need cross-fold)
I Finite state space, known behavior policy in TMDP: Xie et

al. (2019) provide Op(n
−1/2) rate for marginalized density

ratio, so only need op(1) for q-estimate (no rate)
I Boundedness is enough – can use kernel regression estimates

I General non-parametric case: can use flexible ML estimates;
e.g., *DICE; more generally: w, q defined by conditional
moment restrictions so can use Newey (1990), Ai and Chen
(2003), Bennett, K, Schnabel (2019).
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Guarantees for DRL

I More results in papers...
I Efficiency in M1,M2,M3

I Efficiency under various conditions on plug-in estimators
I Finite-sample guarantees (PAC-style)
I Finite horizon
I Inefficiency of other estimators

I IS, Marginalized IS, Stationary IS
I “DR” in M2,M3
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Efficient Off-Policy Policy Gradients

I Need additional nuisances:
I q, w as before; Also dq = ∇θq, dw = ∇θw

I Estimation technique similar to before:
I Cross-fold estimate q, w, dq, dw
I Plug into EIF that we derived

Theorem (Efficiency)

‖ŵ(j) − w‖ = op((NT )−αw), ‖d̂w,(j) − dw‖ = op((NT )−βw),

‖q̂(j) − q‖ = op((NT )−αq), ‖d̂q,(j) − dq‖ = op((NT )−βq).

If min(αw, βw) + min(αq, βq) ≥ 1/2 and αw, βw, αq, βq > 0. Then,
√
NT (Ẑ(θ)− Z(θ)) →d N (0, E[ψ2

MDP])
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Robustness Guarantees

Theorem (3-way Double Robustness)

ŵ(j) → w†, d̂w,(j) → dw,†, q̂(j) → q†, d̂q,(j) → dq,†

Then, Ẑ(θ) →p Z(θ) as long as one of the of following hold:
w† = w, dw,† = dw; q† = q, dq,† = dq; or w† = w, q† = q.

q dq

w dw

Also suggests three new
(inefficient) policy gradient
methods given by using any
good (blue) combination of
only two nuisances
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Then, Ẑ(θ) →p Z(θ) as long as one of the of following hold:
w† = w, dw,† = dw; q† = q, dq,† = dq; or w† = w, q† = q.

q dq

w dw Also suggests three new
(inefficient) policy gradient
methods given by using any
good (blue) combination of
only two nuisances



Intro Setup Efficiency DRL OPE DRL OPG Experiments

Efficient Off-Policy Gradient Ascent
I Consider the efficiently-estimated-gradient ascent algorithm:

θi+1 = ProjΘ(θi + αiẐ(θi))

I Run for K steps and return θ̂ = θi with probability ∝ αi

Theorem
Suppose J(θ) is differentiable and M -smooth, M < 1/(4αi), ψ is a.s.
differentiable with bounded gradient, Θ compact. Then, with
probability at least 1− δ:

‖Z(θ̂)‖2 ≤ 4(maxθ J(θ)− J(θ1))

K
+
c log(1/δ)
KNT

I If J(θ) concave: Regret(θ̂) = Op(
√

log(NT )/(NT ))
I More generally: global optimality of policy gradient ascent

(Agarwal et al., 2019; Bhandari and Russo, 2019)
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Experiments: OpenAI Gym, Finite Horizon

I Two OpenAI Gym Environments
I Mountain Car

I Cliff Walk

9 
 

 

Method 

In order to perform a comparison of the different parts of the Actor-Critic algorithms under 
different levels of complexity, both the algorithms and the environments need to be chosen. 
Here, algorithms will be tested in two different environments, and three algorithms will be 
compared to each other. 

Setting up the environment and the algorithms  
 
  Choosing the environments: To test the hypothesis if increasing complexity makes 
any difference for the parts in an Actor-Critic algorithm, two environments were chosen. The 
two environments are one with low complexity, and one environment with high complexity to 
be able to test for the difference in complexity.  
  When choosing an environment with low complexity, the cliff walking environment 
from Sutton & Barto (2017) was chosen. The cliff walking environment have few possible 
actions, and few state variables making both the values and actions low in complexity. The 
cliff walking environment starts the agent at grid location S and the goal is to go tile G where 
the maximum reward is. For each step the agent loses -1 in reward and if the agent goes to a 
grid area called the cliff, it gets -100 in reward.  Depending on the algorithm used the agent 
usually starts learning by going a far way around the cliff to avoid the big penalty of -100, but 
eventually learns the quickest way right above the cliff.  

 

Figure 5. The cliff walking environment from (Sutton and Barto, 2017). In the cliff walking 
environment, the performance is measured on how many points the agent has when it gets to 
the goal.  
 
  For the high complexity environment, the Vizdoom environment from the Vizdoom 
team (2018) was chosen. The Vizdoom environment have a high complexity in both the 
action space and the state value space. Vizdoom is a simplified version of the game DOOM 
for testing reinforcement learning. In this scenario the goal is to defend the center. The player 
can only rotate to look left or right, as well as shoot or not shoot. Monsters spawn randomly 
and start approaching the player and can harm the player if not dealt with. The amount of 
ammunition started with is also limited to 25 shots.  
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Experiments: OpenAI Gym, Finite Horizon

I Cliff Walking: RMSE (and std errs)
Size ρ̂IS ρ̂DRL(M1) ρ̂DM ρ̂MIS ρ̂DRL(M2)

500 18.8 (7.67) 3.78(1.14) 2.63 (0.01) 12.8 (4.96) 1.44 (0.29)
1000 7.99 (0.89) 0.28 (0.026) 1.27 (0.002) 5.92 (0.78) 0.22 (0.34)
1500 7.64 (1.63) 0.098 (0.013) 1.01 (0.001) 5.55 (1.10) 0.075 (0.008)

I Mountain Car: RMSE (and std errs)
n ρ̂IS ρ̂DRL(M1) ρ̂DM ρ̂MIS ρ̂DRL(M2)

500 6.85 (0.13) 3.72 (0.08) 4.30 (0.05) 6.82 (0.12) 3.53 (0.12)
1000 4.73 (0.07) 2.12 (0.04) 3.40 (0.008) 4.83 (0.06) 2.07 (0.04)
1500 3.41 (0.04) 1.82 (0.02) 3.30 (0.008) 3.40 (0.05) 1.69 (0.03)



Intro Setup Efficiency DRL OPE DRL OPG Experiments

Simulation: Infinite Horizon OPE

I N = 1, T varies

q-model wrong w-model wrong
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Simulation: Infinite Horizon OPG (MSE)
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Simulation: Infinite Horizon Learning (Regret)
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Statistically Efficient Offline Reinforcement Learning

I Aim: Overcome fundamental limits in offline RL by leveraging
Markovian, time-invariant, and ergodic structure
I Theme: What’s efficient depends on structure

I Contributions
I Study efficiency limits of OPE/OPG in MDPs for first time

I Insight into when the curse of horizon bites
I Problem-dependent phenomenon; not estimator-dependent

I Provide the first efficient OPE/OPG estimator in MDPs
I Remains efficient even when nuisances estimated at slow

rates by blackbox ML
I Enjoys double robustness guarantees
I Efficient OPG + gradient ascent leads to learning guarantees



Thank you! 🙏
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