
Q-learning with Uniformly Bounded Variance
Simons Institute Theory of Reinforcement Learning Workshop

Dec 2, 2020

Adithya M. Devraj

Stanford University University of Florida

Based on joint work with S. Chen and S. Meyn @ UF, and A. Bušić @ Inria

Thanks to ARO, NSF, UFII, and the Simons Institute



E
[
‖θn − θ∗‖2

]
≤ 1

(1− γ)p
· B
n

Spoiler alert: The factor 1/(1− γ)p is
due to estimating a constant

Motivation



E
[
‖θn − θ∗‖2

]
≤ 1

(1− γ)p
· B
n

Spoiler alert: The factor 1/(1− γ)p is
due to estimating a constant

Motivation



E
[
‖θn − θ∗‖2

]
≤ 1

(1− γ)p
· B
n

Spoiler alert: The factor 1/(1− γ)p is
due to estimating a constant

Motivation



Q-learning with Uniformly Bounded Variance
Outline

1 Q-learning & Relative Q-learning

2 Stochastic Approximation: Convergence & Convergence Rates

3 Convergence Rates of Q-learning & Relative Q-learning

4 Conclusions & Future Work



Q-learning & Relative Q-learning MDP Setting

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain on X, with input U on U

|X| and |U| are finite

For all states x and x′ in X,

P{Xn+1 = x′ | Xn = x, Un = u, and prior history} = Pu(x, x′)

c : X×U→ R denotes the cost function, and γ < 1 the discount factor

1 / 14



Q-learning & Relative Q-learning MDP Setting

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain on X, with input U on U

|X| and |U| are finite

For all states x and x′ in X,

P{Xn+1 = x′ | Xn = x, Un = u, and prior history} = Pu(x, x′)

c : X×U→ R denotes the cost function, and γ < 1 the discount factor

Q-function:

Qφ(x, u) :=

∞∑
n=0

γnE[c(Xn, Un) | X0 =x, U0 =u; Un = φ(Xn), n ≥ 1]

Q∗(x, u) := min
φ
Qφ(x, u)

1 / 14



Q-learning & Relative Q-learning MDP Setting

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain on X, with input U on U

|X| and |U| are finite

For all states x and x′ in X,

P{Xn+1 = x′ | Xn = x, Un = u, and prior history} = Pu(x, x′)

c : X×U→ R denotes the cost function, and γ < 1 the discount factor

Bellman equation: Q∗ = TQ∗

(TQ∗)(x, u) := c(x, u) + γE
[
Q∗(Xn+1) | Xn = x, Un = u

]
= c(x, u) + γ

∑
x′
Pu(x, x′)Q∗(x′)

Q∗(x) := min
u
Q∗(x, u)

1 / 14



Q-learning & Relative Q-learning Q-learning and Galerkin Relaxation

Q-learning and Galerkin Relaxation

Dynamic programming goal: Find Q∗ that satisfies Q∗ = TQ∗

E
[
c(Xn, Un) + γQ∗(Xn+1)−Q∗(Xn, Un) | Fn

]
= 0

2 / 14



Q-learning & Relative Q-learning Q-learning and Galerkin Relaxation

Q-learning and Galerkin Relaxation

Dynamic programming goal: Find Q∗ that satisfies Q∗ = TQ∗

E
[
c(Xn, Un) + γQ∗(Xn+1)−Q∗(Xn, Un) | Fn

]
= 0

2 / 14



Q-learning & Relative Q-learning Q-learning and Galerkin Relaxation

Q-learning and Galerkin Relaxation

Dynamic programming goal: Find Q∗ that satisfies Q∗ = TQ∗

E
[
c(Xn, Un) + γQ∗(Xn+1)−Q∗(Xn, Un) | Fn

]
= 0

Q-learning goal:

Given {Qθ : θ ∈ Rd}, find θ∗ that solves the Projected Bellman equation:

f̄(θ∗) = E
[[
c(Xn, Un) + γQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

]
ζn

]
= 0

The family {Qθ} and “eligibility vectors” {ζn}, ζn ∈ Rd are part of
algorithm design.

2 / 14



Q-learning & Relative Q-learning Q-learning and Galerkin Relaxation

Q-learning and Galerkin Relaxation

Dynamic programming goal: Find Q∗ that satisfies Q∗ = TQ∗

E
[
c(Xn, Un) + γQ∗(Xn+1)−Q∗(Xn, Un) | Fn

]
= 0

Q-learning goal:

Given {Qθ : θ ∈ Rd}, find θ∗ that solves the Projected Bellman equation:

f̄(θ∗) = E
[[
c(Xn, Un) + γQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

]
ζn

]
= 0

The family {Qθ} and “eligibility vectors” {ζn}, ζn ∈ Rd are part of
algorithm design. Example: ζn = ∇θQθ(Xn, Un)

∣∣
θ=θ∗

2 / 14



Q-learning & Relative Q-learning Q-learning and Galerkin Relaxation

Q-learning and Galerkin Relaxation

Dynamic programming goal: Find Q∗ that satisfies Q∗ = TQ∗

E
[
c(Xn, Un) + γQ∗(Xn+1)−Q∗(Xn, Un) | Fn

]
= 0

Watkins’ (tabular) Q-learning:

Given {Qθ : θ ∈ Rd}, find θ∗ that solves the Projected Bellman equation:

f̄(θ∗) = E
[[
c(Xn, Un) + γQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

]
ζn

]
= 0

Linear parameterization: Qθ(x, u) = θTψ(x, u)

ζn = ψ(Xn, Un)

d = |X|×|U|, ψi(x, u) = I{x = xi, u = ui} (complete basis)

2 / 14



Q-learning & Relative Q-learning Q-learning and Galerkin Relaxation

Q-learning and Galerkin Relaxation

Dynamic programming goal: Find Q∗ that satisfies Q∗ = TQ∗

E
[
c(Xn, Un) + γQ∗(Xn+1)−Q∗(Xn, Un) | Fn

]
= 0

Watkins’ (tabular) Q-learning:

Given {Qθ : θ ∈ Rd}, find θ∗ that solves the Projected Bellman equation:

f̄(θ∗) = E
[[
c(Xn, Un) + γQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

]
ζn

]
= 0

Linear parameterization: Qθ(x, u) = θTψ(x, u)

ζn = ψ(Xn, Un)

d = |X|×|U|, ψi(x, u) = I{x = xi, u = ui} (complete basis)

f̄(θ∗) = Π
(
TQθ∗ −Qθ∗

)
Π(i , i) = π(xi , ui), π is the stationary distribution of (X ,U)

2 / 14



Q-learning & Relative Q-learning Relative Q-learning Goal

Relative Q-learning

Relative Q-learning Goal: Estimate H∗ that solves H∗ = T̃H∗

(T̃H∗)(x, u):=c(x, u)+γ
∑

x′ Pu(x, x
′)H∗(x′)−δ · 〈µ,H∗〉

δ > 0 is a scalar, µ : X× U→ [0, 1] is a pmf, and

〈µ ,H∗〉 :=
∑
(x ,u)

µ(x , u)H∗(x , u)

Q∗ from H∗: Q∗(x, u) = H∗(x, u) + δ · (1− γ)−1 · 〈µ,H∗〉

3 / 14



Q-learning & Relative Q-learning Relative Q-learning Goal

Relative Q-learning

Relative Q-learning Goal: Estimate H∗ that solves H∗ = T̃H∗

(T̃H∗)(x, u):=c(x, u)+γ
∑

x′ Pu(x, x
′)H∗(x′)−δ · 〈µ,H∗〉

δ > 0 is a scalar, µ : X× U→ [0, 1] is a pmf, and

〈µ ,H∗〉 :=
∑
(x ,u)

µ(x , u)H∗(x , u)

Q∗ from H∗: Q∗(x, u) = H∗(x, u) + δ · (1− γ)−1 · 〈µ,H∗〉

3 / 14



Q-learning & Relative Q-learning Relative Q-learning Goal

Relative Q-learning

Relative Q-learning Goal: Estimate H∗ that solves H∗ = T̃H∗

(T̃H∗)(x, u):=c(x, u)+γ
∑

x′ Pu(x, x
′)H∗(x′)−δ · 〈µ,H∗〉

δ > 0 is a scalar, µ : X× U→ [0, 1] is a pmf, and

〈µ ,H∗〉 :=
∑
(x ,u)

µ(x , u)H∗(x , u)

Q∗ from H∗: Q∗(x, u) = H∗(x, u) + δ · (1− γ)−1 · 〈µ,H∗〉

But... do we need Q∗?

3 / 14



Q-learning & Relative Q-learning Relative Q-learning Goal

Relative Q-learning

Relative Q-learning Goal: Estimate H∗ that solves H∗ = T̃H∗

(T̃H∗)(x, u):=c(x, u)+γ
∑

x′ Pu(x, x
′)H∗(x′)−δ · 〈µ,H∗〉

δ > 0 is a scalar, µ : X× U→ [0, 1] is a pmf, and

〈µ ,H∗〉 :=
∑
(x ,u)

µ(x , u)H∗(x , u)

Q∗ from H∗: Q∗(x, u) = H∗(x, u) + δ · (1− γ)−1 · 〈µ,H∗〉

But... do we need Q∗?

Advantages of estimating H∗ instead of Q∗?

3 / 14



E[f(θ,W)]
θ=θ∗

= 0

Stochastic Approximation



SA: Convergence & Convergence Rates Basic Algorithm

Stochastic Approximation

Goal: Find the solution θ∗ to f̄(θ∗) = 0, where

f̄(θ) := E[f(θ,Wn+1)] , θ ∈ Rd , f̄ : Rd → Rd

Algorithm: θn+1 = θn + αn+1f(θn,Wn+1) [Robbins & Monro 1951]

We assume αn = g/(n+ 1) with g > 0

Analysis: θ∗ is the stationary point of the ODE

d

dt
x(t) = f̄(x(t))

SA is a noisy Euler discretization:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1] , ∆n+1 ≡ f(θn,Wn+1)− f̄(θn)

MDS for Tabular Q-learning

4 / 14



SA: Convergence & Convergence Rates Performance Criteria

Convergence Rates of SA
Goal: Find θ∗ such that f̄(θ∗) = 0 Algorithm: θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Error sequence: θ̃n := θn − θ∗

5 / 14



SA: Convergence & Convergence Rates Performance Criteria

Convergence Rates of SA
Goal: Find θ∗ such that f̄(θ∗) = 0 Algorithm: θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Error sequence: θ̃n := θn − θ∗
Asymptotic covariance: Σθ

∞ = limn→∞ nE
[
θ̃nθ̃

T
n

]

5 / 14



SA: Convergence & Convergence Rates Performance Criteria

Convergence Rates of SA
Goal: Find θ∗ such that f̄(θ∗) = 0 Algorithm: θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Error sequence: θ̃n := θn − θ∗
Asymptotic covariance: Σθ

∞ = limn→∞ nE
[
θ̃nθ̃

T
n

]
Asymptotic Variance Theory for SA

Denote Σ∆ = E[∆n+1∆T
n+1] and A = ∂θf̄(θ)

∣∣
θ=θ∗

If all Re
(
λ(gA)

)
< −1

2 , Σθ
∞ solves the Lyapunov equation:

0 = (gA+ 1
2I)Σθ

∞ + Σθ
∞(gA+ 1

2I)T + g2Σ∆

If Re
(
λ(gA)

)
≥ −1

2 for some eigenvalue, then Σθ
∞ is (typically) infinite

5 / 14



SA: Convergence & Convergence Rates Performance Criteria

Convergence Rates of SA
Goal: Find θ∗ such that f̄(θ∗) = 0 Algorithm: θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Error sequence: θ̃n := θn − θ∗
Asymptotic covariance: Σθ

∞ = limn→∞ nE
[
θ̃nθ̃

T
n

]
Asymptotic Variance Theory for SA

Denote Σ∆ = E[∆n+1∆T
n+1] and A = ∂θf̄(θ)

∣∣
θ=θ∗

If all Re
(
λ(gA)

)
< −1

2 , Σθ
∞ solves the Lyapunov equation:

0 = (gA+ 1
2I)Σθ

∞ + Σθ
∞(gA+ 1

2I)T + g2Σ∆

If Re
(
λ(gA)

)
≥ −1

2 for some eigenvalue, then Σθ
∞ is (typically) infinite

Asymptotically Optimal SA Algorithms: A−1Σ∆(A−1)T

5 / 14



SA: Convergence & Convergence Rates Performance Criteria

Convergence Rates of SA
Goal: Find θ∗ such that f̄(θ∗) = 0 Algorithm: θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Error sequence: θ̃n := θn − θ∗
Asymptotic covariance: Σθ

∞ = limn→∞ nE
[
θ̃nθ̃

T
n

]
Asymptotic Variance Theory for SA

Denote Σ∆ = E[∆n+1∆T
n+1] and A = ∂θf̄(θ)

∣∣
θ=θ∗

If all Re
(
λ(gA)

)
< −1

2 , Σθ
∞ solves the Lyapunov equation:

0 = (gA+ 1
2I)Σθ

∞ + Σθ
∞(gA+ 1

2I)T + g2Σ∆

If Re
(
λ(gA)

)
≥ −1

2 for some eigenvalue, then Σθ
∞ is (typically) infinite

Asymptotically Optimal SA Algorithms: A−1Σ∆(A−1)T

Examples: LSTD(λ), Ruppert’s Stochastic Newton Raphson,
Polyak-Ruppert Averaging Technique, Zap Q-learning
[D. & Meyn, 2017], [D., 2019]

5 / 14



E[f(θ,W)]
θ=θ∗

= 0

f̄ (θ∗) = Π
(
TQθ∗ −Qθ∗)

Stochastic Approximation → Q-learning



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-independent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)

6 / 14



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-independent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
Case 1: αn = 1/n

Linearization Matrix: A = −Π[I − γPφ∗ ]

“Asymptotic” MSE convergence rate is slower than 1/n2(1−γ) if γ > 1
2

6 / 14



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-independent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
Case 1: αn = 1/n

Linearization Matrix: A = −Π[I − γPφ∗ ]

max
{

Re
(
λ(A)

)}
≥ −(1− γ) max

x ,u
π(x, u)

‖Σθ
∞‖ =∞ if γ > 1

2 max
{

Re(λ
(
A
)
)
}
> −1

2

“Asymptotic” MSE convergence rate is slower than 1/n2(1−γ) if γ > 1
2

6 / 14



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-independent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
Case 1: αn = 1/n

Linearization Matrix: A = −Π[I − γPφ∗ ]

max
{

Re
(
λ(A)

)}
≥ −(1− γ) max

x ,u
π(x, u)

‖Σθ
∞‖ =∞ if γ > 1

2 max
{

Re(λ
(
A
)
)
}
> −1

2

“Asymptotic” MSE convergence rate is slower than 1/n2(1−γ) if γ > 1
2

6 / 14



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-independent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
Case 1: αn = 1/n

Linearization Matrix: A = −Π[I − γPφ∗ ]

max
{

Re
(
λ(A)

)}
≥ −(1− γ) max

x ,u
π(x, u)

‖Σθ
∞‖ =∞ if γ > 1

2 max
{

Re(λ
(
A
)
)
}
> −1

2

“Asymptotic” MSE convergence rate is slower than 1/n2(1−γ) if γ > 1
2

6 / 14



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-dependent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
Case 2: αn(x, u) =

[
n(x, u)

]−1

Linearization Matrix: A = −[I − γPφ∗ ]

λmax(A) = −(1− γ) , with right eigenvector 1

“Asymptotic” MSE convergence rate is 1/n2(1−γ) if γ > 1
2

Convergence rate is 1/n, if αn(x, u) = (1− γ)−1
[
n(x, u)

]−1

But... ‖Σθ
∞‖ ∝ (1− γ)−2

7 / 14



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-dependent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
Case 2: αn(x, u) =

[
n(x, u)

]−1

Linearization Matrix: A = −[I − γPφ∗ ]

λmax(A) = −(1− γ) , with right eigenvector 1

“Asymptotic” MSE convergence rate is 1/n2(1−γ) if γ > 1
2

Convergence rate is 1/n, if αn(x, u) = (1− γ)−1
[
n(x, u)

]−1

But... ‖Σθ
∞‖ ∝ (1− γ)−2

7 / 14



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-dependent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
Case 2: αn(x, u) =

[
n(x, u)

]−1

Linearization Matrix: A = −[I − γPφ∗ ]

λmax(A) = −(1− γ) , with right eigenvector 1

‖Σθ
∞‖ =∞ if γ > 1

2

“Asymptotic” MSE convergence rate is 1/n2(1−γ) if γ > 1
2

Convergence rate is 1/n, if αn(x, u) = (1− γ)−1
[
n(x, u)

]−1

But... ‖Σθ
∞‖ ∝ (1− γ)−2

7 / 14



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-dependent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
Case 2: αn(x, u) =

[
n(x, u)

]−1

Linearization Matrix: A = −[I − γPφ∗ ]

λmax(A) = −(1− γ) , with right eigenvector 1

“Asymptotic” MSE convergence rate is 1/n2(1−γ) if γ > 1
2

Convergence rate is 1/n, if αn(x, u) = (1− γ)−1
[
n(x, u)

]−1

But... ‖Σθ
∞‖ ∝ (1− γ)−2

7 / 14



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-dependent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
Case 2: αn(x, u) =

[
n(x, u)

]−1

Linearization Matrix: A = −[I − γPφ∗ ]

λmax(A) = −(1− γ) , with right eigenvector 1

“Asymptotic” MSE convergence rate is 1/n2(1−γ) if γ > 1
2

Convergence rate is 1/n, if αn(x, u) = (1− γ)−1
[
n(x, u)

]−1

But... ‖Σθ
∞‖ ∝ (1− γ)−2

7 / 14



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-dependent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
Case 2: αn(x, u) =

[
n(x, u)

]−1

Linearization Matrix: A = −[I − γPφ∗ ]

λmax(A) = −(1− γ) , with right eigenvector 1

“Asymptotic” MSE convergence rate is 1/n2(1−γ) if γ > 1
2

Convergence rate is 1/n, if αn(x, u) = (1− γ)−1
[
n(x, u)

]−1

But... ‖Σθ
∞‖ ∝ (1− γ)−2

7 / 14



Convergence Rates of Q-learning & Relative Q-learning Convergence and Convergence Rate of Relative Q-learning

Relative Q-learning

Relative Q-learning Algorithm

Hn+1(Xn, Un)=Hn(Xn, Un)+αn+1

(
c(Xn, Un)+γHn(Xn+1)−Hn(Xn, Un)−δ〈µ,Hn〉

)

8 / 14



Convergence Rates of Q-learning & Relative Q-learning Convergence and Convergence Rate of Relative Q-learning

Relative Q-learning

Relative Q-learning Algorithm

Hn+1(Xn, Un)=Hn(Xn, Un)+αn+1

(
c(Xn, Un)+γHn(Xn+1)−Hn(Xn, Un)−δ〈µ,Hn〉

)
Eigenvalue test [D., & Meyn, 2020]

A = −[I − γPφ∗ + δ · 1⊗ µ]

λ1 for eigenvector 1 is −(1− γ + δ)

All other eigenvalues satisfy Re(λ(A)) ≤ −(1− γρ∗),

ρ∗ = max{Re(λ(Pφ∗)) : λ 6= λ1},
Finite asymptotic variance with

αn(x, u) =
[
n(x, u)

]−1 · (1− ρ∗γ)−1

‖Σθ
∞‖ is proportional to (1− ρ∗γ)−2 !!

8 / 14



Convergence Rates of Q-learning & Relative Q-learning Convergence and Convergence Rate of Relative Q-learning

Relative Q-learning

Relative Q-learning Algorithm

Hn+1(Xn, Un)=Hn(Xn, Un)+αn+1

(
c(Xn, Un)+γHn(Xn+1)−Hn(Xn, Un)−δ〈µ,Hn〉

)
Eigenvalue test [D., & Meyn, 2020]

A = −[I − γPφ∗ + δ · 1⊗ µ]

λ1 for eigenvector 1 is −(1− γ + δ)

All other eigenvalues satisfy Re(λ(A)) ≤ −(1− γρ∗),

ρ∗ = max{Re(λ(Pφ∗)) : λ 6= λ1},

Finite asymptotic variance with

αn(x, u) =
[
n(x, u)

]−1 · (1− ρ∗γ)−1

‖Σθ
∞‖ is proportional to (1− ρ∗γ)−2 !!

8 / 14



Convergence Rates of Q-learning & Relative Q-learning Convergence and Convergence Rate of Relative Q-learning

Relative Q-learning

Relative Q-learning Algorithm

Hn+1(Xn, Un)=Hn(Xn, Un)+αn+1

(
c(Xn, Un)+γHn(Xn+1)−Hn(Xn, Un)−δ〈µ,Hn〉

)
Eigenvalue test [D., & Meyn, 2020]

A = −[I − γPφ∗ + δ · 1⊗ µ]

λ1 for eigenvector 1 is −(1− γ + δ)

All other eigenvalues satisfy Re(λ(A)) ≤ −(1− γρ∗),

ρ∗ = max{Re(λ(Pφ∗)) : λ 6= λ1},
Finite asymptotic variance with

αn(x, u) =
[
n(x, u)

]−1 · (1− ρ∗γ)−1

‖Σθ
∞‖ is proportional to (1− ρ∗γ)−2 !!

8 / 14



Convergence Rates of Q-learning & Relative Q-learning Convergence and Convergence Rate of Relative Q-learning

Relative Q-learning

Relative Q-learning Algorithm

Hn+1(Xn, Un)=Hn(Xn, Un)+αn+1

(
c(Xn, Un)+γHn(Xn+1)−Hn(Xn, Un)−δ〈µ,Hn〉

)
Eigenvalue test [D., & Meyn, 2020]

A = −[I − γPφ∗ + δ · 1⊗ µ]

λ1 for eigenvector 1 is −(1− γ + δ)

All other eigenvalues satisfy Re(λ(A)) ≤ −(1− γρ∗),

ρ∗ = max{Re(λ(Pφ∗)) : λ 6= λ1},
Finite asymptotic variance with

αn(x, u) =
[
n(x, u)

]−1 · (1− ρ∗γ)−1

‖Σθ
∞‖ is proportional to (1− ρ∗γ)−2 !!

8 / 14



Convergence Rates of Q-learning & Relative Q-learning Eigenvalues Analysis

Relative Q-learning Eigenvalue Analysis

λ(Pφ∗) λ(Aq) λ(Ah)

− (1− γ)
−(1 + δ − γ)

λ1 = 1

ρ∗

λmax
h

9 / 14



Convergence Rates of Q-learning & Relative Q-learning Stochastic Shortest Path

Application to Stochastic Shortest Path
1

4
65

3 2
Maximal Bellman error for γ = 0.999 and γ = 0.9999

0 1 2 3 4 5 6 7 8 9 10
n 105

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120 120

M
ax

im
al

 B
el

lm
an

 E
rro

r

1/(1− γ) = 103 1/(1− γ) = 104

Q-learning:  g = 1/(1− γ)

g = 1/(1− ρ∗γ)
g = 1/(1− ρ∗γ)Relative Q-learning:  {

10 / 14



A Twist in the Tail



Convergence Rates of Q-learning & Relative Q-learning Stochastic Shortest Path

A Twist in the Tail Q-learning vs. Relative Q-learning

More Eigenvalue analysis [D., & Meyn, 2020]

Ah = −[I − γPφ∗ + δ · 1⊗ µ] λ1 = −(1− γ + δ)

Aq = −[I − γPφ∗] λ1 = −(1− γ)

All other eigenvalues coincide: (λ(Ah)) = (λ(Aq)), λ 6= λ1

For all ν, w ∈ {v : v†1 = 0}, ν†Σθ
∞w is the same for both algorithms,

provided, same g is used!

Convergence rate of the two algorithms is same, except in the
subspace corresponding to the constant basis function

11 / 14



Convergence Rates of Q-learning & Relative Q-learning Stochastic Shortest Path

A Twist in the Tail Q-learning vs. Relative Q-learning

More Eigenvalue analysis [D., & Meyn, 2020]

Ah = −[I − γPφ∗ + δ · 1⊗ µ] λ1 = −(1− γ + δ)

Aq = −[I − γPφ∗] λ1 = −(1− γ)

All other eigenvalues coincide: (λ(Ah)) = (λ(Aq)), λ 6= λ1

For all ν, w ∈ {v : v†1 = 0}, ν†Σθ
∞w is the same for both algorithms,

provided, same g is used!

Convergence rate of the two algorithms is same, except in the
subspace corresponding to the constant basis function

11 / 14



Convergence Rates of Q-learning & Relative Q-learning Stochastic Shortest Path

A Twist in the Tail Q-learning vs. Relative Q-learning

More Eigenvalue analysis [D., & Meyn, 2020]

Ah = −[I − γPφ∗ + δ · 1⊗ µ] λ1 = −(1− γ + δ)

Aq = −[I − γPφ∗] λ1 = −(1− γ)

All other eigenvalues coincide: (λ(Ah)) = (λ(Aq)), λ 6= λ1

For all ν, w ∈ {v : v†1 = 0}, ν†Σθ
∞w is the same for both algorithms,

provided, same g is used!

Convergence rate of the two algorithms is same, except in the
subspace corresponding to the constant basis function

11 / 14



Convergence Rates of Q-learning & Relative Q-learning Stochastic Shortest Path

A Twist in the Tail Q-learning vs. Relative Q-learning

More Eigenvalue analysis [D., & Meyn, 2020]

Ah = −[I − γPφ∗ + δ · 1⊗ µ] λ1 = −(1− γ + δ)

Aq = −[I − γPφ∗] λ1 = −(1− γ)

All other eigenvalues coincide: (λ(Ah)) = (λ(Aq)), λ 6= λ1

For all ν, w ∈ {v : v†1 = 0}, ν†Σθ
∞w is the same for both algorithms,

provided, same g is used!

Convergence rate of the two algorithms is same, except in the
subspace corresponding to the constant basis function

11 / 14



Convergence Rates of Q-learning & Relative Q-learning Stochastic Shortest Path

Application to Stochastic Shortest Path 1
4

65
3 2Span semi-norm of error for γ = 0.999 and γ = 0.9999

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120
= 1

1/(1− γ) = 103 1/(1− γ) = 104

n 105

Sp
an

 n
or

m
:

Q
θ
−

Q
∗

Q-learning:  g = 1/(1− γ)

g /(1− ρ∗γ)
g = 1/(1− ρ∗γ)Relative Q-learning:  {

Does this property extend beyond tabular setting?

12 / 14



Convergence Rates of Q-learning & Relative Q-learning Stochastic Shortest Path

Application to Stochastic Shortest Path 1
4

65
3 2Span semi-norm of error for γ = 0.999 and γ = 0.9999

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120
= 1

1/(1− γ) = 103 1/(1− γ) = 104

n 105

Sp
an

 n
or

m
:

Q
θ
−

Q
∗

Q-learning:  g = 1/(1− γ)

g /(1− ρ∗γ)
g = 1/(1− ρ∗γ)Relative Q-learning:  {

Does this property extend beyond tabular setting?

12 / 14



Conclusions & Future Work

Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant” Policy is all that we care about..

Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function.. but do we need it?
Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?

13 / 14



Conclusions & Future Work

Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant”

Policy is all that we care about..
Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function.. but do we need it?
Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?

13 / 14



Conclusions & Future Work

Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant” Policy is all that we care about..

Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function.. but do we need it?
Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?

13 / 14



Conclusions & Future Work

Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant” Policy is all that we care about..

Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function.. but do we need it?
Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?

13 / 14



Conclusions & Future Work

Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant” Policy is all that we care about..

Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function.. but do we need it?
Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?

13 / 14



Conclusions & Future Work

Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant” Policy is all that we care about..

Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function..

but do we need it?
Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?

13 / 14



Conclusions & Future Work

Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant” Policy is all that we care about..

Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function.. but do we need it?

Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?

13 / 14



Conclusions & Future Work

Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant” Policy is all that we care about..

Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function.. but do we need it?
Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?

13 / 14



Conclusions & Future Work

Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant” Policy is all that we care about..

Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function.. but do we need it?
Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?

13 / 14



Conclusions & Future Work

Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant” Policy is all that we care about..

Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function.. but do we need it?
Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?

13 / 14



Conclusions & Future Work

Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant” Policy is all that we care about..

Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function.. but do we need it?
Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?

13 / 14



References

References

A. M. Devraj, and S. P. Meyn, Q-learning with Uniformly Bounded Variance:
Large Discounting is Not a Barrier to Fast Learning. Submitted to IEEE
Transactions on Automatic Control. Available on arXiv. 2020.

J. Abounadi, D. Bertsekas, and V. S. Borkar, Learning algorithms for
Markov decision processes with average cost. SIAM Journal on Control and
Optimization. 2001.

S. C. Chen, A. M. Devraj, A. Bušić, and S. P. Meyn, Explicit MSE Bounds
for Monte-Carlo and SA. AISTATS, 2020.

A. M. Devraj, A. Bušić, and S. P. Meyn, Fundamental design principles for
reinforcement learning algorithms. Handbook on Reinforcement Learning
and Control. Springer, 2020.

A. M. Devraj, Reinforcement Learning Design with Optimal Learning Rate.
PhD Thesis. Dec. 2019.

14 / 14



Thank you!


	Q-learning & Relative Q-learning
	RL & SA
	MDP Setting
	Q-learning and Galerkin Relaxation
	Relative Q-learning Goal

	Stochastic Approximation: Convergence & Convergence Rates
	Basic Algorithm
	Performance Criteria

	Convergence Rates of Q-learning & Relative Q-learning
	Q-learning with state-independent step-size
	Q-learning with state-dependent step-size
	Convergence and Convergence Rate of Relative Q-learning
	Eigenvalues Analysis
	Stochastic Shortest Path

	Conclusions & Future Work
	References

