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Thanks to ARO, NSF, UFII, and the Simons Institute



E
[
‖θn − θ∗‖2

]
≤ 1

(1− γ)p
· B
n

Spoiler alert: The factor 1/(1− γ)p is
due to estimating a constant

Motivation



E
[
‖θn − θ∗‖2

]
≤ 1

(1− γ)p
· B
n

Spoiler alert: The factor 1/(1− γ)p is
due to estimating a constant

Motivation



E
[
‖θn − θ∗‖2

]
≤ 1

(1− γ)p
· B
n

Spoiler alert: The factor 1/(1− γ)p is
due to estimating a constant

Motivation



Q-learning with Uniformly Bounded Variance
Outline

1 Q-learning & Relative Q-learning

2 Stochastic Approximation: Convergence & Convergence Rates

3 Convergence Rates of Q-learning & Relative Q-learning

4 Conclusions & Future Work



Q-learning & Relative Q-learning MDP Setting

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain on X, with input U on U

|X| and |U| are finite

For all states x and x′ in X,

P{Xn+1 = x′ | Xn = x, Un = u, and prior history} = Pu(x, x′)

c : X×U→ R denotes the cost function, and γ < 1 the discount factor

1 / 14



Q-learning & Relative Q-learning MDP Setting

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain on X, with input U on U

|X| and |U| are finite

For all states x and x′ in X,

P{Xn+1 = x′ | Xn = x, Un = u, and prior history} = Pu(x, x′)

c : X×U→ R denotes the cost function, and γ < 1 the discount factor

Q-function:
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For all states x and x′ in X,

P{Xn+1 = x′ | Xn = x, Un = u, and prior history} = Pu(x, x′)

c : X×U→ R denotes the cost function, and γ < 1 the discount factor

Bellman equation: Q∗ = TQ∗

(TQ∗)(x, u) := c(x, u) + γE
[
Q∗(Xn+1) | Xn = x, Un = u

]
= c(x, u) + γ

∑
x′
Pu(x, x′)Q∗(x′)

Q∗(x) := min
u
Q∗(x, u)
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Q-learning & Relative Q-learning Q-learning and Galerkin Relaxation

Q-learning and Galerkin Relaxation

Dynamic programming goal: Find Q∗ that satisfies Q∗ = TQ∗

E
[
c(Xn, Un) + γQ∗(Xn+1)−Q∗(Xn, Un) | Fn

]
= 0
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Q-learning goal:

Given {Qθ : θ ∈ Rd}, find θ∗ that solves the Projected Bellman equation:
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]
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The family {Qθ} and “eligibility vectors” {ζn}, ζn ∈ Rd are part of
algorithm design.
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Given {Qθ : θ ∈ Rd}, find θ∗ that solves the Projected Bellman equation:

f̄(θ∗) = E
[[
c(Xn, Un) + γQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

]
ζn

]
= 0

The family {Qθ} and “eligibility vectors” {ζn}, ζn ∈ Rd are part of
algorithm design. Example: ζn = ∇θQθ(Xn, Un)

∣∣
θ=θ∗
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E
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c(Xn, Un) + γQ∗(Xn+1)−Q∗(Xn, Un) | Fn

]
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f̄(θ∗) = E
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(Xn+1)−Qθ∗(Xn, Un)
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Linear parameterization: Qθ(x, u) = θTψ(x, u)

ζn = ψ(Xn, Un)

d = |X|×|U|, ψi(x, u) = I{x = xi, u = ui} (complete basis)

f̄(θ∗) = Π
(
TQθ∗ −Qθ∗

)
Π(i , i) = π(xi , ui), π is the stationary distribution of (X ,U)
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Q-learning & Relative Q-learning Relative Q-learning Goal

Relative Q-learning

Relative Q-learning Goal: Estimate H∗ that solves H∗ = T̃H∗

(T̃H∗)(x, u):=c(x, u)+γ
∑

x′ Pu(x, x
′)H∗(x′)−δ · 〈µ,H∗〉

δ > 0 is a scalar, µ : X× U→ [0, 1] is a pmf, and

〈µ ,H∗〉 :=
∑
(x ,u)

µ(x , u)H∗(x , u)

Q∗ from H∗: Q∗(x, u) = H∗(x, u) + δ · (1− γ)−1 · 〈µ,H∗〉
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δ > 0 is a scalar, µ : X× U→ [0, 1] is a pmf, and

〈µ ,H∗〉 :=
∑
(x ,u)

µ(x , u)H∗(x , u)

Q∗ from H∗: Q∗(x, u) = H∗(x, u) + δ · (1− γ)−1 · 〈µ,H∗〉

But... do we need Q∗?

Advantages of estimating H∗ instead of Q∗?
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E[f(θ,W)]
θ=θ∗

= 0

Stochastic Approximation



SA: Convergence & Convergence Rates Basic Algorithm

Stochastic Approximation

Goal: Find the solution θ∗ to f̄(θ∗) = 0, where

f̄(θ) := E[f(θ,Wn+1)] , θ ∈ Rd , f̄ : Rd → Rd

Algorithm: θn+1 = θn + αn+1f(θn,Wn+1) [Robbins & Monro 1951]

We assume αn = g/(n+ 1) with g > 0

Analysis: θ∗ is the stationary point of the ODE

d

dt
x(t) = f̄(x(t))

SA is a noisy Euler discretization:

θn+1 = θn + αn+1[f̄(θn) + ∆n+1] , ∆n+1 ≡ f(θn,Wn+1)− f̄(θn)

MDS for Tabular Q-learning
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SA: Convergence & Convergence Rates Performance Criteria

Convergence Rates of SA
Goal: Find θ∗ such that f̄(θ∗) = 0 Algorithm: θn+1 = θn + αn+1[f̄(θn) + ∆n+1]

Error sequence: θ̃n := θn − θ∗
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Error sequence: θ̃n := θn − θ∗
Asymptotic covariance: Σθ

∞ = limn→∞ nE
[
θ̃nθ̃

T
n

]
Asymptotic Variance Theory for SA

Denote Σ∆ = E[∆n+1∆T
n+1] and A = ∂θf̄(θ)

∣∣
θ=θ∗

If all Re
(
λ(gA)

)
< −1

2 , Σθ
∞ solves the Lyapunov equation:

0 = (gA+ 1
2I)Σθ

∞ + Σθ
∞(gA+ 1

2I)T + g2Σ∆

If Re
(
λ(gA)

)
≥ −1

2 for some eigenvalue, then Σθ
∞ is (typically) infinite
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2 , Σθ
∞ solves the Lyapunov equation:

0 = (gA+ 1
2I)Σθ

∞ + Σθ
∞(gA+ 1

2I)T + g2Σ∆

If Re
(
λ(gA)

)
≥ −1

2 for some eigenvalue, then Σθ
∞ is (typically) infinite

Asymptotically Optimal SA Algorithms: A−1Σ∆(A−1)T

Examples: LSTD(λ), Ruppert’s Stochastic Newton Raphson,
Polyak-Ruppert Averaging Technique, Zap Q-learning
[D. & Meyn, 2017], [D., 2019]
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E[f(θ,W)]
θ=θ∗

= 0

f̄ (θ∗) = Π
(
TQθ∗ −Qθ∗)

Stochastic Approximation → Q-learning



Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-independent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
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Convergence Rates of Q-learning & Relative Q-learning Q-learning with state-dependent step-size

Watkins’ Q-learning

Q-learning is SA:

Qn+1(Xn, Un)=Qn(Xn, Un) + αn+1

(
c(Xn, Un) + γQ

n
(Xn+1)−Qn(Xn, Un)

)
Case 2: αn(x, u) =

[
n(x, u)

]−1

Linearization Matrix: A = −[I − γPφ∗ ]

λmax(A) = −(1− γ) , with right eigenvector 1

“Asymptotic” MSE convergence rate is 1/n2(1−γ) if γ > 1
2

Convergence rate is 1/n, if αn(x, u) = (1− γ)−1
[
n(x, u)

]−1

But... ‖Σθ
∞‖ ∝ (1− γ)−2
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Convergence Rates of Q-learning & Relative Q-learning Convergence and Convergence Rate of Relative Q-learning

Relative Q-learning

Relative Q-learning Algorithm

Hn+1(Xn, Un)=Hn(Xn, Un)+αn+1

(
c(Xn, Un)+γHn(Xn+1)−Hn(Xn, Un)−δ〈µ,Hn〉

)
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c(Xn, Un)+γHn(Xn+1)−Hn(Xn, Un)−δ〈µ,Hn〉
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A = −[I − γPφ∗ + δ · 1⊗ µ]

λ1 for eigenvector 1 is −(1− γ + δ)
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Finite asymptotic variance with

αn(x, u) =
[
n(x, u)

]−1 · (1− ρ∗γ)−1

‖Σθ
∞‖ is proportional to (1− ρ∗γ)−2 !!
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)
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Relative Q-learning Eigenvalue Analysis

λ(Pφ∗) λ(Aq) λ(Ah)

− (1− γ)
−(1 + δ − γ)

λ1 = 1

ρ∗

λmax
h
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Application to Stochastic Shortest Path
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Convergence Rates of Q-learning & Relative Q-learning Stochastic Shortest Path

A Twist in the Tail Q-learning vs. Relative Q-learning

More Eigenvalue analysis [D., & Meyn, 2020]

Ah = −[I − γPφ∗ + δ · 1⊗ µ] λ1 = −(1− γ + δ)

Aq = −[I − γPφ∗] λ1 = −(1− γ)

All other eigenvalues coincide: (λ(Ah)) = (λ(Aq)), λ 6= λ1

For all ν, w ∈ {v : v†1 = 0}, ν†Σθ
∞w is the same for both algorithms,

provided, same g is used!

Convergence rate of the two algorithms is same, except in the
subspace corresponding to the constant basis function
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Conclusions & Future Work

We used asymptotic theory of SA to design & analyze relative Q-learning

Most “complexity” in classical Q-learning seems to be spent on estimating
the “constant” Policy is all that we care about..

Keeping everything relative doesn’t hurt

The relative Q-learning algorithm results in asymptotic variance that is
uniformly bounded for all γ < 1

It also directly gives us the Q-function.. but do we need it?
Same for TD-learning algorithms when used as a part of actor-critic or LSPI

The algorithm can be Zapped: A−1
h Σ∆A

−1
h � A−1

q Σ∆A
−1
q

Globally stable even with non-linear function approximation

Can apply averaging, acceleration, variance reduction, etc.

Open problem: Finite-n analysis, and extension of theory to episodic RL

E‖θn − θ∗‖2 ≤ (1− ρ∗γ)−p ·B/n ?
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