
Theory of Reinforcement Learning
Aug. 19 – Dec. 18, 2020

Zap Stochastic Approximation
and implications to Q-learning

Sean Meyn

Department of Electrical and Computer Engineering University of Florida

Inria International Chair Inria, Paris

Thanks to to our sponsors: NSF and ARO

https://simons.berkeley.edu/programs/rl20/
http://ccc.centers.ufl.edu/

Partners in Crime

Today’s Lecture:

Zap Q Learning with nonlinear function approximation.
S. Chen, A. M. Devraj, A. Bušić, and S. Meyn
NeurIPS, 2020 and arXiv

Shuhang Chen Adithya Devraj Fan Lu Ana Bušić Crime

Many Thanks to the Simons Institute for support and inspiration

And thanks to NSF and ARO for supporting this and prior research

Partners in Crime

Today’s Lecture:

Zap Q Learning with nonlinear function approximation.
S. Chen, A. M. Devraj, A. Bušić, and S. Meyn
NeurIPS, 2020 and arXiv

Shuhang Chen Adithya Devraj Fan Lu Ana Bušić Crime

Many Thanks to the Simons Institute for support and inspiration

And thanks to NSF and ARO for supporting this and prior research

Zap Stochastic Approximation
Outline

1 Stochastic Approximation Crash Course

2 Return to Zap

3 Zap Q-Learning with Neural Networks

4 Conclusions & Future Work

5 References

-100 0 100 -100 0 100 -100 0 100
Zap 2 Zap 5 Zap 10

θn+1 = θn + an+1f(θn,ξn+1)

θn

Excitation

Estimates

Stochastic Approximation

Stochastic Approximation Crash Course ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W)]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Under very general conditions:
the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [5]

1 / 15

Stochastic Approximation Crash Course ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W)]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Under very general conditions:
the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [5]

1 / 15

Stochastic Approximation Crash Course ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W)]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Under very general conditions:
the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [5]

1 / 15

Stochastic Approximation Crash Course ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W)]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}
Under very general conditions:

the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [5]

1 / 15

Stochastic Approximation Crash Course ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W)]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}
Under very general conditions:

the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [5]

1 / 15

Stochastic Approximation Crash Course ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W)]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}
Under very general conditions:

the ODE, the Euler approximation, and SA are all convergent to θ∗

Euler approximation is robust to measurement error

[Robbins and Monro, 1951] see Borkar’s monograph [5]

1 / 15

Stochastic Approximation Crash Course ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W)]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}
Under very general conditions:

the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [5]

1 / 15

Stochastic Approximation Crash Course ODEs for Root Finding

Algorithm Design f̄(θ) = E[f(θ,W)]

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}
Step 1: Design d

dtϑt = f̄(ϑt) so that ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

:

0 = [1
2I + gA∗]Σθ + Σθ[

1
2I + gA∗]T + g2Σ“NOISE”

=⇒ CLT, etc

2 / 15

Stochastic Approximation Crash Course ODEs for Root Finding

Algorithm Design f̄(θ) = E[f(θ,W)]

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}
Step 1: Design d

dtϑt = f̄(ϑt) so that ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

You may have to modify the dynamics (spoiler alert!)

:

0 = [1
2I + gA∗]Σθ + Σθ[

1
2I + gA∗]T + g2Σ“NOISE”

=⇒ CLT, etc

2 / 15

Stochastic Approximation Crash Course ODEs for Root Finding

Algorithm Design f̄(θ) = E[f(θ,W)]

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}
Step 1: Design d

dtϑt = f̄(ϑt) so that ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.
Step 2: Gain selection:
αn+1 = g/(n+ 1) gives optimal convergence rate

E[‖θn − θ∗‖2] ≈ 1

n
trace (Σθ)

Only if 1
2I + gA∗ is Hurwitz, with A∗ = ∂f̄ (θ∗)

:

0 = [1
2I + gA∗]Σθ + Σθ[

1
2I + gA∗]T + g2Σ“NOISE”

=⇒ CLT, etc

2 / 15

Stochastic Approximation Crash Course ODEs for Root Finding

Algorithm Design f̄(θ) = E[f(θ,W)]

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}
Step 1: Design d

dtϑt = f̄(ϑt) so that ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.
Step 2: Gain selection:
αn+1 = g/(n+ 1) gives optimal convergence rate

E[‖θn − θ∗‖2] ≈ 1

n
trace (Σθ)

Only if 1
2I + gA∗ is Hurwitz, with A∗ = ∂f̄ (θ∗):

0 = [1
2I + gA∗]Σθ + Σθ[

1
2I + gA∗]T + g2Σ“NOISE”

=⇒ CLT, etc
2 / 15

Stochastic Approximation Crash Course Two sources of estimation error

SA Error θn+1 = θn + αn+1

{
f̄(θn) + “NOISE”

}
d
dtϑt = f̄(ϑt)

1 θn − ϑτn ≈ N(0,Σ) where

τn =
n∑
k=1

αk

2 ϑt → θ∗ exponentially fast, but τn is increasing slowly,
and nonlinear dynamics complicates gain selection

What can happen in RL, using αn+1 = g/(n+ 1)ρ:

θn far from θ∗, the dynamics are slow, need large g!

θn ≈ θ∗, best gain is far smaller

3 / 15

Stochastic Approximation Crash Course Two sources of estimation error

SA Error θn+1 = θn + αn+1

{
f̄(θn) + “NOISE”

}
d
dtϑt = f̄(ϑt)

1 θn − ϑτn ≈ N(0,Σ) where τn =

n∑
k=1

αk

2 ϑt → θ∗ exponentially fast, but τn is increasing slowly,
and nonlinear dynamics complicates gain selection

What can happen in RL, using αn+1 = g/(n+ 1)ρ:

θn far from θ∗, the dynamics are slow, need large g!

θn ≈ θ∗, best gain is far smaller

3 / 15

Stochastic Approximation Crash Course Two sources of estimation error

SA Error θn+1 = θn + αn+1

{
f̄(θn) + “NOISE”

}
d
dtϑt = f̄(ϑt)

1 θn − ϑτn ≈ N(0,Σ) where τn =

n∑
k=1

αk

2 ϑt → θ∗ exponentially fast, but

τn is increasing slowly,
and nonlinear dynamics complicates gain selection

What can happen in RL, using αn+1 = g/(n+ 1)ρ:

θn far from θ∗, the dynamics are slow, need large g!

θn ≈ θ∗, best gain is far smaller

3 / 15

Stochastic Approximation Crash Course Two sources of estimation error

SA Error θn+1 = θn + αn+1

{
f̄(θn) + “NOISE”

}
d
dtϑt = f̄(ϑt)

1 θn − ϑτn ≈ N(0,Σ) where τn =

n∑
k=1

αk

2 ϑt → θ∗ exponentially fast, but τn is increasing slowly,
and

nonlinear dynamics complicates gain selection

What can happen in RL, using αn+1 = g/(n+ 1)ρ:

θn far from θ∗, the dynamics are slow, need large g!

θn ≈ θ∗, best gain is far smaller

3 / 15

Stochastic Approximation Crash Course Two sources of estimation error

SA Error θn+1 = θn + αn+1

{
f̄(θn) + “NOISE”

}
d
dtϑt = f̄(ϑt)

1 θn − ϑτn ≈ N(0,Σ) where τn =

n∑
k=1

αk

2 ϑt → θ∗ exponentially fast, but τn is increasing slowly,
and nonlinear dynamics complicates gain selection

What can happen in RL, using αn+1 = g/(n+ 1)ρ:

θn far from θ∗, the dynamics are slow, need large g!

θn ≈ θ∗, best gain is far smaller

3 / 15

Stochastic Approximation Crash Course Two sources of estimation error

SA Error θn+1 = θn + αn+1

{
f̄(θn) + “NOISE”

}
d
dtϑt = f̄(ϑt)

1 θn − ϑτn ≈ N(0,Σ) where τn =

n∑
k=1

αk

2 ϑt → θ∗ exponentially fast, but τn is increasing slowly,
and nonlinear dynamics complicates gain selection

What can happen in RL, using αn+1 = g/(n+ 1)ρ:

θn far from θ∗, the dynamics are slow, need large g!

θn ≈ θ∗, best gain is far smaller

3 / 15

Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: SGD

Stochastic Gradient Descent:

L̄(θ) = E[L(θ,Φn)]

ODE bound using ρ = 1

|ϑτn − θ∗| ≤ |θn − θ∗|e0.34gn−0.34g

Ruppert-Polyak to the rescue

0

20

40

60√
Nθ̃N σθ =

5

2

ρ = 1.0 ρ = 0.9 ρ = 0.8

-20 0 20 -20 0 20 -20 0 20
0

20

40

60√
Nθ̃N

g =
1

4

g =
1

0.34

Histograms from Ruppert-Polyak averaging: big
and small g

f̄(θ) = −∇L̄(θ)

θ-20 -15 -10 -5 0 5 10 15 20
-25

-20

-15

-10

-5

0

5

10

15

20

25

Slope -4
f(θ)

Slope -1

L̄(θ)

θn+1 = θn −
g

nρ
∇L(θn,Φn+1)

d
dtϑt = f̄(ϑt)

|ϑt − θ∗| ≤ |ϑ0 − θ∗|e−0.34t

4 / 15

Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: SGD

ODE bound using ρ = 1

|ϑτn − θ∗| ≤ |θn − θ∗|e0.34gn−0.34g

Ruppert-Polyak to the rescue

0

20

40

60√
Nθ̃N σθ =

5

2

ρ = 1.0 ρ = 0.9 ρ = 0.8

-20 0 20 -20 0 20 -20 0 20
0

20

40

60√
Nθ̃N

g =
1

4

g =
1

0.34

Histograms from Ruppert-Polyak averaging: big and small g

f̄(θ) = −∇L̄(θ)

θ-20 -15 -10 -5 0 5 10 15 20
-25

-20

-15

-10

-5

0

5

10

15

20

25

Slope -4

f(θ) L̄(θ)

Slope -1

Slope -0.34

θn+1 = θn −
g

nρ
∇L(θn,Φn+1)

d
dtϑt = f̄(ϑt)

|ϑt − θ∗| ≤ |ϑ0 − θ∗|e−0.34t

4 / 15

Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: SGD

ODE bound using ρ = 1

|ϑτn − θ∗| ≤ |θn − θ∗|e0.34gn−0.34g

g > 2 to kill deterministic behavior,
but g∗ = 1/4 is best locally

Ruppert-Polyak to the rescue

0

20

40

60√
Nθ̃N σθ =

5

2

ρ = 1.0 ρ = 0.9 ρ = 0.8

-20 0 20 -20 0 20 -20 0 20
0

20

40

60√
Nθ̃N

g =
1

4

g =
1

0.34

Histograms from Ruppert-Polyak averaging: big and small g

f̄(θ) = −∇L̄(θ)

θ-20 -15 -10 -5 0 5 10 15 20
-25

-20

-15

-10

-5

0

5

10

15

20

25

Slope -4

f(θ) L̄(θ)

Slope -1

Slope -0.34

θn+1 = θn −
g

nρ
∇L(θn,Φn+1)

d
dtϑt = f̄(ϑt)

|ϑt − θ∗| ≤ |ϑ0 − θ∗|e−0.34t

4 / 15

Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: SGD

ODE bound using ρ = 1

|ϑτn − θ∗| ≤ |θn − θ∗|e0.34gn−0.34g

g > 2 to kill deterministic behavior,
but g∗ = 1/4 is best locally

Dynamics for g∗ = 1/4

0 5 10 5 10 5 10

0

20

40

60

80

100

0

0

20

40

60

80

100

0

0

20

40

60

80

100
ρ = 1.0 ρ = 0.9 ρ = 0.8

= 2.8 = 5.3 = 11

θk

ϑτk

τk τk τk

τN τN τN

τN < 3 for N = one million

Ruppert-Polyak to the rescue

0

20

40

60√
Nθ̃N σθ =

5

2

ρ = 1.0 ρ = 0.9 ρ = 0.8

-20 0 20 -20 0 20 -20 0 20
0

20

40

60√
Nθ̃N

g =
1

4

g =
1

0.34

Histograms from Ruppert-Polyak averaging: big and small g

f̄(θ) = −∇L̄(θ)

θ-20 -15 -10 -5 0 5 10 15 20
-25

-20

-15

-10

-5

0

5

10

15

20

25

Slope -4

f(θ) L̄(θ)

Slope -1

Slope -0.34

θn+1 = θn −
g

nρ
∇L(θn,Φn+1)

d
dtϑt = f̄(ϑt)

|ϑt − θ∗| ≤ |ϑ0 − θ∗|e−0.34t

4 / 15

Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: SGD

ODE bound using ρ = 1

|ϑτn − θ∗| ≤ |θn − θ∗|e0.34gn−0.34g

g > 2 to kill deterministic behavior,
but g∗ = 1/4 is best locally

Dynamics for g∗ = 1/4

0 5 10 5 10 5 10

0

20

40

60

80

100

0

0

20

40

60

80

100

0

0

20

40

60

80

100
ρ = 1.0 ρ = 0.9 ρ = 0.8

= 2.8 = 5.3 = 11

θk

ϑτk

τk τk τk

τN τN τN

τN < 3 for N = one million

Ruppert-Polyak to the rescue

0

20

40

60√
Nθ̃N σθ =

5

2

ρ = 1.0 ρ = 0.9 ρ = 0.8

-20 0 20 -20 0 20 -20 0 20
0

20

40

60√
Nθ̃N

g =
1

4

g =
1

0.34

Histograms from Ruppert-Polyak averaging: big and small g

f̄(θ) = −∇L̄(θ)

θ-20 -15 -10 -5 0 5 10 15 20
-25

-20

-15

-10

-5

0

5

10

15

20

25

Slope -4

f(θ) L̄(θ)

Slope -1

Slope -0.34

θn+1 = θn −
g

nρ
∇L(θn,Φn+1)

d
dtϑt = f̄(ϑt)

|ϑt − θ∗| ≤ |ϑ0 − θ∗|e−0.34t

CLT approximation: rapid for θ0 = 0
4 / 15

Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: SGD

ODE bound using ρ = 1

|ϑτn − θ∗| ≤ |θn − θ∗|e0.34gn−0.34g

g > 2 to kill deterministic behavior,
but g∗ = 1/4 is best locally

Dynamics for g∗ = 1/4

0 5 10 5 10 5 10

0

20

40

60

80

100

0

0

20

40

60

80

100

0

0

20

40

60

80

100
ρ = 1.0 ρ = 0.9 ρ = 0.8

= 2.8 = 5.3 = 11

θk

ϑτk

τk τk τk

τN τN τN

τN < 3 for N = one million

Ruppert-Polyak to the rescue

0

20

40

60√
Nθ̃N σθ =

5

2

ρ = 1.0 ρ = 0.9 ρ = 0.8

-20 0 20 -20 0 20 -20 0 20
0

20

40

60√
Nθ̃N

g =
1

4

g =
1

0.34

Histograms from Ruppert-Polyak averaging: big and small g

f̄(θ) = −∇L̄(θ)

θ-20 -15 -10 -5 0 5 10 15 20
-25

-20

-15

-10

-5

0

5

10

15

20

25

Slope -4

f(θ) L̄(θ)

Slope -1

Slope -0.34

θn+1 = θn −
g

nρ
∇L(θn,Φn+1)

d
dtϑt = f̄(ϑt)

|ϑt − θ∗| ≤ |ϑ0 − θ∗|e−0.34t

CLT approximation: rapid for θ0 = 0 slow for θ0 = 100
4 / 15

Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: SGD

ODE bound using ρ = 1

|ϑτn − θ∗| ≤ |θn − θ∗|e0.34gn−0.34g

Ruppert-Polyak to the rescue

0

20

40

60√
Nθ̃N σθ =

5

2

ρ = 1.0 ρ = 0.9 ρ = 0.8

-20 0 20 -20 0 20 -20 0 20
0

20

40

60√
Nθ̃N

g =
1

4

g =
1

0.34

Histograms from Ruppert-Polyak averaging: big and small g

f̄(θ) = −∇L̄(θ)

θ-20 -15 -10 -5 0 5 10 15 20
-25

-20

-15

-10

-5

0

5

10

15

20

25

Slope -4

f(θ) L̄(θ)

Slope -1

Slope -0.34

θn+1 = θn −
g

nρ
∇L(θn,Φn+1)

d
dtϑt = f̄(ϑt)

|ϑt − θ∗| ≤ |ϑ0 − θ∗|e−0.34t

4 / 15

Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: Tabular Q-Learning

g ≥ 1/(1− β) required

1 2 3 4 5 6 7 8 9 10
One million samples

1050

20

40

60

80

100

120

M
ax

BE
Q

(t)

αn =
g

n

Q-learning g = 1/(1− β)

Q-learning g = gAD

Generic tabular Q-learning example. Discount factor β

5 / 15

Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: Tabular Q-Learning

g ≥ 1/(1− β) required Ruppert-Polyak to the rescue?

1 2 3 4 5 6 7 8 9 10
One million samples

1050

20

40

60

80

100

120

M
ax

BE
Q

(t)

Q-learning RP
ρ = 0.85

Q-learning g = 1/(1− β)

Q-learning g = gAD

Generic tabular Q-learning example. Discount factor β

5 / 15

Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: Tabular Q-Learning

Ruppert-Polyak to the rescue? Culprit is Condition Number

1 2 3 4 5 6 7 8 9 10
One million samples

1050

20

40

60

80

100

120

M
ax

BE
Q

(t)

Q-learning RP
ρ = 0.85

Stay tuned!

Q-learning g = 1/(1− β)

Q-learning g = gAD

Q-learning g

Q-learning RP
Relative

Relative

= gAD

Generic tabular Q-learning example. Discount factor β

5 / 15

Zap

Momentum

Return to Zap

Return to Zap

Motivation

ODE Design begins with design of the ODE: d
dtϑ = f̄(ϑ)

Challenges we have faced with Q-learning:

How can we design dynamics for
1 Stability
2 f̄(θ∗) = 0 solves a relevant problem

How can we better manage problems introduced by 1/(1− β)?

Assuming we have solved 2, maybe we can create linear
dynamics (Newton-Raphson flow):

d

dt
f̄(ϑt) = −f̄(ϑt) giving f̄(ϑt) = f̄(ϑ0)e−t

The SA translation is Zap Stochastic Approximation

6 / 15

Return to Zap

Motivation

ODE Design begins with design of the ODE: d
dtϑ = f̄(ϑ)

Challenges we have faced with Q-learning:

How can we design dynamics for
1 Stability
2 f̄(θ∗) = 0 solves a relevant problem

How can we better manage problems introduced by 1/(1− β)?

Assuming we have solved 2, maybe we can create linear
dynamics (Newton-Raphson flow):

d

dt
f̄(ϑt) = −f̄(ϑt) giving f̄(ϑt) = f̄(ϑ0)e−t

The SA translation is Zap Stochastic Approximation

6 / 15

Return to Zap

Motivation

ODE Design begins with design of the ODE: d
dtϑ = f̄(ϑ)

Challenges we have faced with Q-learning:

How can we design dynamics for
1 Stability
2 f̄(θ∗) = 0 solves a relevant problem

How can we better manage problems introduced by 1/(1− β)?

Assuming we have solved 2, maybe we can create linear
dynamics (Newton-Raphson flow):

d

dt
f̄(ϑt) = −f̄(ϑt) giving f̄(ϑt) = f̄(ϑ0)e−t

The SA translation is Zap Stochastic Approximation

6 / 15

Return to Zap

Motivation

ODE Design begins with design of the ODE: d
dtϑ = f̄(ϑ)

Challenges we have faced with Q-learning:

How can we design dynamics for
1 Stability
2 f̄(θ∗) = 0 solves a relevant problem

How can we better manage problems introduced by 1/(1− β)?

Assuming we have solved 2, maybe we can create linear
dynamics (Newton-Raphson flow):

d

dt
f̄(ϑt) = −f̄(ϑt) giving f̄(ϑt) = f̄(ϑ0)e−t

Smale 1976

The SA translation is Zap Stochastic Approximation

6 / 15

Return to Zap

Motivation

ODE Design begins with design of the ODE: d
dtϑ = f̄(ϑ)

Challenges we have faced with Q-learning:

How can we design dynamics for
1 Stability
2 f̄(θ∗) = 0 solves a relevant problem

How can we better manage problems introduced by 1/(1− β)?

Assuming we have solved 2, maybe we can create linear
dynamics (Newton-Raphson flow):

d

dt
f̄(ϑt) = −f̄(ϑt) giving f̄(ϑt) = f̄(ϑ0)e−t

The SA translation is Zap Stochastic Approximation

6 / 15

Return to Zap

Zap Algorithm
Newton-Raphson flow: d

dt
ϑt = −A(ϑt)

−1f̄(ϑt), A(θ) = ∂
∂θ
f̄(θ)

Zap-SA (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Φn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 = ∂θf(θn,Φn+1)

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

Stability? Virtually universal

Optimal variance, too!
Based on ancient theory from Ruppert & Polyak [10, 11, 9]

7 / 15

Return to Zap

Zap Algorithm
Newton-Raphson flow: d

dt
ϑt = −A(ϑt)

−1f̄(ϑt), A(θ) = ∂
∂θ
f̄(θ)

Zap-SA (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Φn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 = ∂θf(θn,Φn+1)

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

Requires Ân+1 ≈ A(θn)
def

= ∂θf̄ (θn)

Stability? Virtually universal

Optimal variance, too!
Based on ancient theory from Ruppert & Polyak [10, 11, 9]

7 / 15

Return to Zap

Zap Algorithm
Newton-Raphson flow: d

dt
ϑt = −A(ϑt)

−1f̄(ϑt), A(θ) = ∂
∂θ
f̄(θ)

Zap-SA (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Φn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 = ∂θf(θn,Φn+1)

Ân+1 ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

Stability? Virtually universal

Optimal variance, too!
Based on ancient theory from Ruppert & Polyak [10, 11, 9]

7 / 15

Return to Zap

Zap Algorithm
Newton-Raphson flow: d

dt
ϑt = −A(ϑt)

−1f̄(ϑt), A(θ) = ∂
∂θ
f̄(θ)

Zap-SA (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Φn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 = ∂θf(θn,Φn+1)

Ân+1 ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

Stability? Virtually universal

Optimal variance, too!
Based on ancient theory from Ruppert & Polyak [10, 11, 9]

7 / 15

Return to Zap

Zap Algorithm
Newton-Raphson flow: d

dt
ϑt = −A(ϑt)

−1f̄(ϑt), A(θ) = ∂
∂θ
f̄(θ)

Zap-SA (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Φn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 = ∂θf(θn,Φn+1)

Ân+1 ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

Stability? Virtually universal

Optimal variance, too!
Based on ancient theory from Ruppert & Polyak [10, 11, 9]

7 / 15

Return to Zap

Zap Q-Learning

Q-learning: {Qθ(x, u) : θ ∈ Rd , u ∈ U , x ∈ X}
Find θ∗ such that f̄(θ∗) = 0, with

f̄(θ) = E
[{
c(Xn, Un) + βQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

Example: ζn = ∇θQθ(Xn, Un)
This is the hidden goal of DQN

What makes theory difficult:

1 Does f̄ have a root?

2 Does the inverse of A exist?

3 SA theory is weak for a discontinuous ODE

See NeurIPS video for 2 and 3 (and [1])

8 / 15

Return to Zap

Zap Q-Learning

Q-learning: {Qθ(x, u) : θ ∈ Rd , u ∈ U , x ∈ X}
Find θ∗ such that f̄(θ∗) = 0, with

f̄(θ) = E
[{
c(Xn, Un) + βQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

Example: ζn = ∇θQθ(Xn, Un)

This is the hidden goal of DQN

What makes theory difficult:

1 Does f̄ have a root?

2 Does the inverse of A exist?

3 SA theory is weak for a discontinuous ODE

See NeurIPS video for 2 and 3 (and [1])

8 / 15

Return to Zap

Zap Q-Learning

Q-learning: {Qθ(x, u) : θ ∈ Rd , u ∈ U , x ∈ X}
Find θ∗ such that f̄(θ∗) = 0, with

f̄(θ) = E
[{
c(Xn, Un) + βQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

Example: ζn = ∇θQθ(Xn, Un)
This is the hidden goal of DQN

What makes theory difficult:

1 Does f̄ have a root?

2 Does the inverse of A exist?

3 SA theory is weak for a discontinuous ODE

See NeurIPS video for 2 and 3 (and [1])

8 / 15

Return to Zap

Zap Q-Learning

Q-learning: {Qθ(x, u) : θ ∈ Rd , u ∈ U , x ∈ X}
Find θ∗ such that f̄(θ∗) = 0, with

f̄(θ) = E
[{
c(Xn, Un) + βQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

Example: ζn = ∇θQθ(Xn, Un)
This is the hidden goal of DQN

What makes theory difficult:

1 Does f̄ have a root?

2 Does the inverse of A exist?

3 SA theory is weak for a discontinuous ODE

See NeurIPS video for 2 and 3 (and [1])

8 / 15

Return to Zap

Zap Q-Learning

Q-learning: {Qθ(x, u) : θ ∈ Rd , u ∈ U , x ∈ X}
Find θ∗ such that f̄(θ∗) = 0, with

f̄(θ) = E
[{
c(Xn, Un) + βQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

Example: ζn = ∇θQθ(Xn, Un)
This is the hidden goal of DQN

What makes theory difficult:

1 Does f̄ have a root?

2 Does the inverse of A exist?

3 SA theory is weak for a discontinuous ODE

See NeurIPS video for 2 and 3 (and [1])

8 / 15

Zap Q-Learning with Neural Networks

Zap Examples

0 = f̄(θ∗) = E
[{
c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

}
ζn
]

ζn = ∇θQθ(Xn, Un)
∣∣
θ=θ∗

VI. Stunning reliability with parameterized by various neural networksQθ

9 / 15

Zap Q-Learning with Neural Networks

Zap Examples

0 = f̄(θ∗) = E
[{
c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

}
ζn
]

ζn = ∇θQθ(Xn, Un)
∣∣
θ=θ∗

VI. Stunning reliability with parameterized by various neural networksQθ

9 / 15

Conclusions & Future Work

Conclusions:

Reinforcement Learning is cursed by dimension, variance, and
nonlinear (algorithm) dynamics

Second order methods can ensure stability—use them when you can

Future work:

Beyond the projected Bellman error for Q-learning

Applications in Stochastic Optimization

Acceleration techniques (momentum and matrix momentum)

Further variance reduction using control variates

10 / 15

Conclusions & Future Work

Conclusions:

Reinforcement Learning is cursed by dimension, variance, and
nonlinear (algorithm) dynamics

Second order methods can ensure stability—use them when you can

Future work:

Beyond the projected Bellman error for Q-learning

Applications in Stochastic Optimization

Acceleration techniques (momentum and matrix momentum)

Further variance reduction using control variates

10 / 15

Conclusions & Future Work

Conclusions:

Reinforcement Learning is cursed by dimension, variance, and
nonlinear (algorithm) dynamics

Second order methods can ensure stability—use them when you can

Future work:

Beyond the projected Bellman error for Q-learning

Applications in Stochastic Optimization

Acceleration techniques (momentum and matrix momentum)

Further variance reduction using control variates

10 / 15

Conclusions & Future Work

Conclusions:

Reinforcement Learning is cursed by dimension, variance, and
nonlinear (algorithm) dynamics

Second order methods can ensure stability—use them when you can

Future work:

Beyond the projected Bellman error for Q-learning

Applications in Stochastic Optimization

Acceleration techniques (momentum and matrix momentum)

Further variance reduction using control variates

10 / 15

Conclusions & Future Work

Conclusions:

Reinforcement Learning is cursed by dimension, variance, and
nonlinear (algorithm) dynamics

Second order methods can ensure stability—use them when you can

Future work:

Beyond the projected Bellman error for Q-learning

Applications in Stochastic Optimization

Acceleration techniques (momentum and matrix momentum)

Further variance reduction using control variates

10 / 15

thankful

References

Markov Chains
and

Stochastic Stability

S. P. Meyn and R. L. Tweedie

August 2008 Pre-publication version for on-line viewing. Monograph to appear Februrary 2009

π
(f
)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, ·)− π‖f → 0

su
p

C
E
x [S

τ
C
(f
)]
<

∞

References

12 / 15

References

Selected References I

[1] S. Chen, A. M. Devraj, A. Bušić, and S. Meyn. Zap Q Learning with nonlinear function
approximation. To appear NeurIPS and arXiv e-prints 1910.05405, 2020.

[2] A. M. Devraj, A. Bušić, and S. Meyn. Fundamental design principles for reinforcement
learning algorithms. In Handbook on Reinforcement Learning and Control. Springer, 2020.

[3] A. M. Devraj. Reinforcement Learning Design with Optimal Learning Rate. PhD thesis,
University of Florida, 2019.

[4] S. Smale. A convergent process of price adjustment and global Newton methods. Journal
of Mathematical Economics, 3(2):107–120, July 1976.

Stochastic Approximation

[5] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan
Book Agency and Cambridge University Press, Delhi, India & Cambridge, UK, 2008.

[6] M. Benäım. Dynamics of stochastic approximation algorithms. In Séminaire de
Probabilités, XXXIII, pages 1–68. Springer, Berlin, 1999.

[7] A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic
approximations. Springer, 2012.

13 / 15

References

Selected References II

[8] D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure.
The Annals of Statistics, 13(1):236–245, 1985.

[9] D. Ruppert. Efficient estimators from a slowly convergent Robbins-Monro processes.
Technical Report Tech. Rept. No. 781, Cornell University, School of Operations Research
and Industrial Engineering, Ithaca, NY, 1988.

[10] B. T. Polyak. A new method of stochastic approximation type. Avtomatika i
telemekhanika, 98–107, 1990 (in Russian). Translated in Automat. Remote Control, 51
1991.

[11] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim., 30(4):838–855, 1992.

[12] V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic
approximation. Ann. Appl. Probab., 14(2):796–819, 2004.

[13] F. R. Bach and E. Moulines Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems
24, 451–459. Curran Associates, Inc., 2011.

14 / 15

References

Selected References III

[14] F. R. Bach and E. Moulines Non-strongly-convex smooth stochastic approximation with
convergence rate O(1/n). In Advances in Neural Information Processing Systems 24,
773–781. Curran Associates, Inc., 2013.

[15] S. Chen, A. M. Devraj, A. Bušić, and S. Meyn. Explicit mean-square error bounds for
Monte-Carlo and linear stochastic approximation. AISTATS, page arXiv:2002.02584, Feb.
2020.

[16] A. M. Devraj, A. Bušić, and S. Meyn. On matrix momentum stochastic approximation
and applications to Q-learning. In Allerton Conference on Communication, Control, and
Computing, pages 749–756, Sep 2019.

15 / 15

	Stochastic Approximation Crash Course
	ODEs for Root Finding
	Two sources of estimation error

	Return to Zap
	Zap Q-Learning with Neural Networks
	Conclusions & Future Work
	References

