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Many Thanks to the Simons Institute for support and inspiration

And thanks to NSF and ARO for supporting this and prior research



Zap Stochastic Approximation
Outline

1 Stochastic Approximation Crash Course

2 Return to Zap

3 Zap Q-Learning with Neural Networks

4 Conclusions & Future Work

5 References



-100 0 100 -100 0 100 -100 0 100
Zap 2 Zap 5 Zap 10

θn+1 = θn + an+1f(θn,ξn+1)

θn

Excitation

Estimates

Stochastic Approximation



Stochastic Approximation Crash Course ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W )]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Under very general conditions:
the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [5]
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1 / 15



Stochastic Approximation Crash Course ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W )]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}
Under very general conditions:

the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [5]

1 / 15



Stochastic Approximation Crash Course ODEs for Root Finding

Algorithm Design f̄(θ) = E[f(θ,W )]

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}
Step 1: Design d

dtϑt = f̄(ϑt) so that ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

:

0 = [1
2I + gA∗]Σθ + Σθ[

1
2I + gA∗]T + g2Σ“NOISE”

=⇒ CLT, etc
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Stochastic Approximation Crash Course Two sources of estimation error

SA Error θn+1 = θn + αn+1

{
f̄(θn) + “NOISE”

}
d
dtϑt = f̄(ϑt)

1 θn − ϑτn ≈ N(0,Σ) where

τn =
n∑
k=1

αk

2 ϑt → θ∗ exponentially fast, but τn is increasing slowly,
and nonlinear dynamics complicates gain selection

What can happen in RL, using αn+1 = g/(n+ 1)ρ:

θn far from θ∗, the dynamics are slow, need large g!

θn ≈ θ∗, best gain is far smaller
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Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: SGD

Stochastic Gradient Descent:

L̄(θ) = E[L(θ,Φn)]

ODE bound using ρ = 1

|ϑτn − θ∗| ≤ |θn − θ∗|e0.34gn−0.34g

Ruppert-Polyak to the rescue
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Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: Tabular Q-Learning

g ≥ 1/(1− β) required
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αn =
g

n

Q-learning g = 1/(1− β)

Q-learning g = gAD

Generic tabular Q-learning example. Discount factor β
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Stochastic Approximation Crash Course Two sources of estimation error

Two Sources of Error. Example: Tabular Q-Learning

Ruppert-Polyak to the rescue? Culprit is Condition Number
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Stay tuned!

Q-learning g = 1/(1− β)

Q-learning g = gAD
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= gAD

Generic tabular Q-learning example. Discount factor β
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Return to Zap

Motivation

ODE Design begins with design of the ODE: d
dtϑ = f̄(ϑ)

Challenges we have faced with Q-learning:

How can we design dynamics for
1 Stability
2 f̄(θ∗) = 0 solves a relevant problem

How can we better manage problems introduced by 1/(1− β)?

Assuming we have solved 2, maybe we can create linear
dynamics (Newton-Raphson flow):

d

dt
f̄(ϑt) = −f̄(ϑt) giving f̄(ϑt) = f̄(ϑ0)e−t

The SA translation is Zap Stochastic Approximation
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dynamics (Newton-Raphson flow):

d
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f̄(ϑt) = −f̄(ϑt) giving f̄(ϑt) = f̄(ϑ0)e−t

Smale 1976

The SA translation is Zap Stochastic Approximation
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Return to Zap

Zap Algorithm
Newton-Raphson flow: d

dt
ϑt = −A(ϑt)

−1f̄(ϑt), A(θ) = ∂
∂θ
f̄(θ)

Zap-SA (designed to emulate deterministic Newton-Raphson)

θn+1 = θn + αn+1(−Ân+1)−1f(θn,Φn+1)

Ân+1 = Ân + γn+1(An+1 − Ân), An+1 = ∂θf(θn,Φn+1)

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

Stability? Virtually universal

Optimal variance, too!
Based on ancient theory from Ruppert & Polyak [10, 11, 9]
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Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

Requires Ân+1 ≈ A(θn)
def

= ∂θf̄ (θn)

Stability? Virtually universal

Optimal variance, too!
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Ân+1 = Ân + γn+1(An+1 − Ân), An+1 = ∂θf(θn,Φn+1)
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Return to Zap

Zap Q-Learning

Q-learning: {Qθ(x, u) : θ ∈ Rd , u ∈ U , x ∈ X}
Find θ∗ such that f̄(θ∗) = 0, with

f̄(θ) = E
[{
c(Xn, Un) + βQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

Example: ζn = ∇θQθ(Xn, Un)
This is the hidden goal of DQN

What makes theory difficult:

1 Does f̄ have a root?

2 Does the inverse of A exist?

3 SA theory is weak for a discontinuous ODE

See NeurIPS video for 2 and 3 (and [1])
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Zap Q-Learning with Neural Networks

Zap Examples

0 = f̄(θ∗) = E
[{
c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

}
ζn
]

ζn = ∇θQθ(Xn, Un)
∣∣
θ=θ∗

VI. Stunning reliability with  parameterized by various neural networksQθ
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Conclusions & Future Work

Conclusions:

Reinforcement Learning is cursed by dimension, variance, and
nonlinear (algorithm) dynamics

Second order methods can ensure stability—use them when you can

Future work:

Beyond the projected Bellman error for Q-learning

Applications in Stochastic Optimization

Acceleration techniques (momentum and matrix momentum)

Further variance reduction using control variates
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