Batch Value-Function Approximation with Only Realizability

Nan Jiang University of Illinois at Urbana-Champaign

Value-function approximation

- Use a restricted class of functions to approximate the optimal value function Q*
- Batch mode: passively given data & no access to environment
 - Important for real-life RL: medical, customer relationship management, experience personalization, etc.
- When can we guarantee sample-efficient learning?

A "Batch RL 101" Result?

- Supervised learning
 - Data: $(x, y) \sim P_{X,Y}$
 - A class of predictors F (assume finite), one of which is good
 - Can find a good predictor w/ $O(\log |F|)$ samples (info-theoretic)
- Reinforcement learning (batch-mode, VFA)
 - Data: (s, a, r, s') from MDP (to be defined)
 - Needs to be exploratory (to be formalized)
 - F (assume finite) s.t. $Q^* \in F$ (realizability) seems too weak
 - Can we find a near-optimal policy using $O(\log |F|)$ samples?
 - Long-standing open problem
 - Believed to be info-theoretically hard
 - This talk: Break the barrier!

Markov Decision Process (MDP)

- For t = 0, 1, 2, ..., the agent
 - observes state $s_t \in S$ (very large)
 - chooses action $a_t \in A$ (finite & small)
 - receives reward $r_t = R(s_t, a_t)$
- Policy $\pi: S \to A$
- Expected return $J(\pi) := \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t | s_0 \sim d_0; \pi]$
- Key solution concepts
 - Bellman eq: $Q^* = \mathcal{T}Q^*$, where for any f, $(\mathcal{T}f)(s,a) = R(s,a) + \gamma \mathbb{E}_{s'\sim P(s,a)}[\max_{a'} f(s',a')]$
 - Optimal policy π^* is greedy w.r.t. Q^*
 - Occupancy: $d^{\pi}(s, a) = (1 \gamma) \sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}[s_{t} = s, a_{t} = a \mid \pi]$

transition dynamics

 $P: S \times A \rightarrow \Delta(S)$

reward function

 $R: S \times A \rightarrow [0,1]$

Batch learning in large MDPs

• Dataset $D = \{(s, a, r, s')\}$

- standard-ish def: $C = \max_{\pi} \|d^{\pi}/\mu\|_{\infty}$
- $(s, a) \sim \mu$ ("data distribution"), r = R(s, a), $s' \sim P(\cdot \mid s, a)$
- Measure exploratoriness: concentrability coefficient C [Munos'03'07]
- Function class F (finite) s.t. $Q^* \in F$ (realizability)
 - see approximate ver. in paper (not considered in talk)
- Goal: find $f \approx Q^*$ s.t. its greedy policy is ε -optimal

Back to the earlier question:

Can we achieve sample complexity poly(loglFl, $1/(1-\gamma)$, $1/\varepsilon$, $1/\delta$, C)?

Prior work—no, unless w/ stronger func-approx assumptions

• e.g., $\forall f \in \mathcal{F}, \mathcal{T}f \in \mathcal{F}$, no "inherent Bellman error" [Antos'08]

Why realizability seems insufficient?

Intuition 1: Fitted Q-Iteration (FQI)

- Initialize $f_0 \in F$ arbitrarily
- In iteration k, convert D to least-square regression dataset $\{((s,a),r+\gamma\max_{a'}f_{k-1}(s',a'))\}$ and let f_k be the ERM bootstrapped target
- Can diverge even w/ realizable linear class & infinite data
 - Problem: the regression may NOT be realizable for $f_{k-1} \neq Q^*$
 - Resolved by $\forall f \in \mathcal{F}, \mathcal{T}f \in \mathcal{F} \ (\mathcal{T}f_{k-1} \text{ is Bayes optimal})$

Why realizability seems insufficient?

Intuition 2: minimize $||f - \mathcal{T}f||$ (BRM)

- Naive: $\frac{1}{|D|} \sum_{(s,a,r,s') \in D} \left(f(s,a) (r + \gamma \max_{a'} f(s',a')) \right)^2$
- Issue: expected = $\|f \mathcal{T}f\|_{2,\mu}^2 + \gamma^2 \mathbb{E}_{(s,a)\sim\mu} \mathrm{Var}_{s'\sim P(s,a)} [\max_{a'} f(s',a')]$
- Sol 1, "double sampling" [Baird'95]: produce 2 iid s' from each (s, a)
- Sol 2, modified BRM [Antos et al'08]

$$\arg\min_{f \in \mathcal{F}} \max_{g \in \mathcal{G}} \sum_{(s, a, r, s')} \left(f(s, a) - \left(r + \gamma \max_{a' \in \mathcal{A}} f(s', a') \right) \right)^2 - \left(g(s, a) - \left(r + \gamma \max_{a' \in \mathcal{A}} f(s', a') \right) \right)^2$$

- requires: $\mathcal{T}f \in \mathcal{G} \ \forall f \in \mathcal{F} \ (|F| \text{ realizability assumptions})$
- special case of G = F => no inherent Bellman error

Why realizability seems insufficient?

- All known algorithms fail under realizability, e.g.,
 - ADP diverges
 - BRM over-estimates
 - "ALP-style" methods need to model d^{π}/μ , $\forall \pi$ [Xie & Jiang'20a]
 - Importance sampling has exponential variance
 - etc, etc
- Algorithmic ideas seems exhausted
 - ... really?

Hint from State Abstractions

- Learning w/ "Q*-irrelevant abstraction" is consistent [Gordon'95, Li et al'06]
- Essentially: piecewise constant function class + realizability
 - aggregate (s, a) pairs if Q^* values are the same
 - Solve the problem as if it were tabular (or FQI)
 - Sample complexity (vaguely) depends on #blocks
- More formal: If μ is supported on SxA (can relax), Q^* is the unique fixed point of \mathcal{T}^{μ}_{ϕ} Bellman op + projection
 - \mathcal{T}^{μ}_{ϕ} is always γ -contraction
 - Empirical ver $\widehat{\mathcal{T}}_{\phi}^{\mu}$: let \mathcal{G}_{ϕ} be the piecewise-constant class $\widehat{\mathcal{T}}_{\phi}^{\mu}f := \arg\min_{g \in \mathcal{G}_{\phi}} \frac{1}{|D|} \sum_{(s,a,r,s')} [(g(s,a) r \gamma \max_{a'} f(s',a'))^2]$

Hint from State Abstractions

- Does a low-complexity ϕ always exist?
- YES! Just partition SxA according to Q*
 - Size of ϕ : $O(1/\varepsilon)$ (ε is discretization error)

Chicken-and-egg: only if I knew Q*...

Pairwise Comparison

- Ultimately want to handle exponentially large F
- But problem is still nontrivial even when |F|=2!
 - One f_1 , f_2 of is Q^* : how to find out from data?
- Partition SxA according to both functions in F simultaneously!
 - size of ϕ : $O(1/\varepsilon^2)$ affordable!!!
- Fixed point of $\widehat{\mathcal{T}}_\phi^\mu$ will be close to $Q^*=>$ choose the one w/ lower $\|f-\widehat{\mathcal{T}}_\phi^\mu f\|$
- Extend to large F?
 - Naive: generate partition of size $O(1/\varepsilon^{|F|})$

Batch Value-Function Tournament [Xie & Jiang'20b]

- $\text{Algorithm: } \arg\min_{f \in \mathcal{F}} \max_{f' \in \mathcal{F}} \|f \widehat{\mathcal{T}}_{\phi_{f,f'}} f\|_{2,D} \qquad \text{partition created out of } f \text{ and } f'$
 - Inspired by Scheffé tournament & tournament algorithms for model selection in RL [Hallak et al'13, Jiang et al'15]
- Concern: not every ϕ is "good" (i.e., Q^* -irrelevant)
 - For $f = Q^*$: always tested on good $\phi =>$ small error for all f'
 - For bad f: tested on a good ϕ when $f' = Q^* = >$ large max error

Finite-sample analysis

- Previous reasoning builds on consistency of Q*-irrelevant abstractions
- Finite-sample guarantee additionally requires:
- 1. Concentration bounds: $||f \widehat{\mathcal{T}}_{\phi}^{\mu} f||_{2,D} \approx ||f \mathcal{T}_{\phi}^{\mu} f||_{2,\mu}$
 - Part of it is to show $\widehat{\mathcal{T}}^{\mu}_{\phi}f \approx \mathcal{T}^{\mu}_{\phi}f$, i.e., ERM close to population minimizer for non-realizable least-square!
 - Proof idea: all regression problems are effectively realizable in the eyes of histogram regressor
 - The other part: $\|\cdot\|_{2,D} \approx \|\cdot\|_{2,\mu}$ with $1/\sqrt{n}$ rate
- 2. Error-propagation: how $||f \mathcal{T}^{\mu}_{\phi} f||_{2,\mu}$ controls $||f Q^{\star}||_{2,\mu}$

• In BRM:
$$f-Q^\star=|(f-\mathcal{T}f)|+|(\mathcal{T}f-\mathcal{T}Q^\star)$$

• In BVFT: $f-Q^\star=|(f-\mathcal{T}_\phi^\mu f)|+|(\mathcal{T}_\phi^\mu f-\mathcal{T}_\phi^\mu Q^\star)$

controlled by alg determines error prop

Error propagation

How $||f - \mathcal{T}^{\mu}_{\phi} f||_{2,\mu}$ controls $||f - Q^{\star}||_{2,\mu}$

- Standard assumption: μ puts enough prob in each "block" of ϕ
- Corresponds to well-conditioned design matrix for linear class
- Problem: our ϕ is quite arbitrary
- Any assumption that is independent of ϕ ?

Assumption 1. We assume that $\mu(s,a) > 0 \ \forall s,a$. We further assume that

- (1) There exists constant $1 \leq C_{\mathcal{A}} < \infty$ such that for any $s \in \mathcal{S}, a \in \mathcal{A}, \mu(a|s) \geq 1/C_{\mathcal{A}}$.
- (2) There exists constant $1 \leq C_{\mathcal{S}} < \infty$ such that for any $s \in \mathcal{S}, a \in \mathcal{A}, s' \in \mathcal{S}, P(s'|s,a)/\mu(s') \leq C_{\mathcal{S}}$. Also $d_0(s)/\mu(s) \leq C_{\mathcal{S}}$.

It will be convenient to define $C = C_{\mathcal{S}}C_{\mathcal{A}}$.

- Key part: $P(s'|s,a)/\mu(s') \leq C_{\mathcal{S}}$ [Munos'03]
- Satisfiable in MDPs whose transition matrix admits low-rank stochastic factorization

sample complexity:

$$\tilde{O}\left(\frac{C^2 \ln \frac{|\mathcal{F}|}{\delta}}{\epsilon^4 (1-\gamma)^8}\right)$$

Limitations & Possibilities

Computationally intractable for training

Tractable for validation / model selection 🗸

(choose among Q-functions produced by different training algs)

- Stronger than existing results (e.g., [Jiang et al'15])
- Potentially practical—ongoing empirical evaluation

Data assumption is very strong

- Open: standard concentrability (more next slide)?
- More challenging: data w/ insufficient coverage?

Finite-sample analyses of batch VFA

speculation prior to 2020

- Variations in data assumptions are minor
- Linear F may be easy?

Both Wrong!

Finite-sample analyses of batch VFA

Example:

low-rank stoch. fac.

low-rank MDP

linear F & $\mathbb{E}_{\mu}[\varphi\varphi^{\top}] \succ 0$

$$\max_{s,a,s'} P(s'|s,a)/\mu(s')$$

$$\max_{\pi} \|d^{\pi}/\mu\|_{\infty}$$

$$\max_{\pi, f, f'} \frac{\|f - f'\|_{d^{\pi}}}{\|f - f'\|_{\mu}}$$

$$\forall f \in \mathcal{F}, \mathcal{T}f \in \mathcal{F}$$

$$Q^{\star} \in \mathcal{F}$$

$$✓$$
 (BVFT, general F)

speculation prior to 2020

- Variations in data assumptions are minor
- Linear F may be easy?

Both Wrong!

Amortila et al'20, inspired by Wang et al'20

Batch Value-function Approximation with Only Realizability. Tengyang Xie, Nan Jiang. arXiv-20.

Additional References

- A Variant of the Wang-Foster-Kakade Lower Bound for the Discounted Setting. Philip Amortila, Nan Jiang, Tengyang Xie. arXiv-20.
- Q* Approximation Schemes for Batch Reinforcement Learning: A Theoretical Comparison. Tengyang Xie, Nan Jiang. UAI-20.
- Information-Theoretic Considerations in Batch Reinforcement Learning. Jinglin Chen, Nan Jiang. ICML-19.
- Nan Jiang, Alex Kulesza, Satinder Singh. Abstraction Selection in Model-based Reinforcement Learning. ICML-15.

Thank you! Questions?