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Value-function approximation

* Use a restricted class of functions to approximate the optimal
value function Q*

* Batch mode: passively given data & no access to environment

* Important for real-life RL: medical, customer relationship
management, experience personalization, etc.

* When can we guarantee sample-efficient learning?



A “Batch RL 101" Result?

* Supervised learning
* Data: (x, y) ~ Pxy
* A class of predictors F (assume finite), one of which is good
* Can find a good predictor w/ O(loglFl) samples (info-theoretic)

* Reinforcement learning (batch-mode, VFA)
 Data: (s,a,r,s’) from MDP (to be defined)

 Needs to be exploratory (to be formalized)

seems too weak
* [ (assume finite) s.t. Q*€F (realizability)/

* Can we find a near-optimal policy using O(loglFl) samples?

» Long-standing open problem
- Believed to be info-theoretically hara
- This talk: Break the barrier!




Markov Decision Process (MDP)

Fort=0,1,2, ..., the agent

* observes states;e S (very large) transition dynamics
P: SxA — A(S)

* chooses actionare A (finite & small) |
reward function

e receives reward r:= R(ss, a;) R: SxA —[0,1]

Policy m: S — A

Expected return J(w) = E[D .2y re|so ~ do; 7]
Key solution concepts

* Bellman eq: @* = TQ*, where for any f,

(TF)(s,a) = R(s,a) + YEg ~ p(s,0) [maxa f(s',a')]
* Optimal policy 7* is greedy w.r.t. Q*
» Occupancy: d(s,a)= (1 -y Y~ y'Pls,=s,a,= a| x]




Batch learning in large MDPs

standard-ish def:
e DatasetD ={(s, a,r,s")} C = max, Hdw/,uHoo

* (s,a) ~u (“data distribution”), r = R(s, a), s" ~ P(- | s, a)

* Measure exploratoriness: concentrability coefficient C [Munos’03°07]
* Function class F (finite) s.t. Q* € F (realizability)

* see approximate ver. in paper (not considered Iin talk)
* Goal: find f= Q* s.t. its greedy policy is g-optimal

Back to the earlier question:

Can we achieve sample complexity
poly(loglFl, 1/(1-y), 1/¢, 1/6, C)?

Prior work—no, unless w/ stronger func-approx assumptions
 e.9.,.Vf e F,Tf e F,no “inherent Bellman error” [Antos 08]



Why realizability seems insufficient?

Intuition 1: Fitted Q-lteration (FQI)
* Initialize fo&€ F arbitrarily
* |niteration k, convert D to least-square regression dataset
{((s,a),r + ymaxa fr—1(s',a"))}
and let fx be the ERM bootstrapped target
 Can diverge even w/ realizable linear class & infinite data
* Problem: the regression may NOT be realizable for fr1 = Q*

e Resolved by VfeF,TfeF (Tfr_1is Bayes optimal)
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Why realizability seems insufficient?

Intuition 2: minimize |lf — 7T f1l (BRM)
« Nalve: % Z(s,a,r,s’)ED (f(87 a’) - (T + 7Y MaXg: f(8,7 CL/)))2

. Issue: expected = [If = T fI12,. +7"E(s,a)~p Varsn p(s,a) [max f(s',a')]

* Sol 1, “double sampling” [Baird’95]: produce 2 iid s’ from each (s, a)
e Sol 2, modified BRM [Antos et al’08]

2 2
arg min max (f(s,a) — (r + ymax f(s’, a’))) — (g(s,a) — <7“ + Y max f(s, a')))

feF geg a’eA

(s,a,r,s")
« requires: T f € G Vf € F (|F| realizability assumptions)

* gpecial case of G = F => no inherent Bellman error



Why realizability seems insufficient?

* All known algorithms tail under realizability, e.g.,
 ADP diverges
e BRM over-estimates

* "ALP-style” methods need to model d™/u, V7t [Xie & Jiang’20a]
* Importance sampling has exponential variance
* etc, etc

* Algorithmic ideas seems exhausted
e ... really?



int from State Abstractions

Learning w/ “O*irrelevant abstraction” is consistent [Gordon’95, Li
et al’06]

Essentially: piecewise constant function class + realizability
* aggregate (s, a) pairs if Q* values are the same

* Solve the problem as if it were tabular (or FQI)
e Sample complexity (vaguely) depends on #blocks

More formal: If i is supported on SxA (can relax), Q*is the
unique fixed point of 7;'  Bellman op + projection

« T4 is always y-contraction

. Empirical ver ﬁ“: let G be the piecewise-constant class

@Mf -= arg min9€g¢ |_11)| Z(s,a,r,s’) [(9(87 CL) — ' — 7y aXg/ f(Slv a’/))Q]



int from State Abstractions

* Does a low-complexity ¢ always exist?
* YES! Just partition SxA according to O*
* Size of ¢: O(1/¢) (¢ is discretization error)

alue.
v A

same block

* Chicken-and-egg: only if | knew Q...
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Pairwise Comparison

Ultimately want to handle exponentially large F

But problem is still nontrivial even when |F|=2!

* One fi, > of is Q™ how to find out from data”?

Partition SxA according to both functions in F simultaneously!
* size of ¢: O(1/¢2) — affordable!!!

Fixed point of 7/ will be ~ Valke-

close to Q* => choose |
the one w/ lower [If — 7' f| TL_ N fr

Extend to large F? T}N fi
* Nalve: generate partition jj“ TL~ e
of size O(1/e") X

same block &S)”’A |
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. Algorithm: arg min max || f — 75, “ f

Batch Value-Function Tournament [xie & Jiang’20b]

----------
-
L d

partition created
2,D out of fand f

feF frerF

* Inspired by Scheffé tournament & tournament algorithms for
model selection in RL [Hallak et al’13, Jiang et al’15]

* Concern: not every o is "good” (i.e., Q*irrelevant)

* For f=Q%: always tested on good ¢ => small error for all f’

* For bad f: tested on a good ¢ when "= Q* => large max error



Finite-sample analysis

* Previous reasoning builds on consistency of Q*-irrelevant
abstractions

* Finite-sample guarantee additionally requires:
1. Concentration bounds: | f — 7' fllz.p =~ [If — T fll..

. Partofitistoshow 7§ f =~ T4 f, i.e., ERM close to
population minimizer tor non-realizable least-square!

* Proof idea: all regression problems are effectively
realizable in the eyes of histogram regressor

e The other part: || - ||2,p0 = || - ||2,, with 1/Vn rate
2. Error-propagation: how |lf — 74 fll2.u controls || f — Q*||2..

. nBRM: f — Q" =|(f =Tf)F|(Tf—-TQ")

o« NBVFT: f— Q" =\(f =T f)+H (TS f—T§Q")

controlled by alg  determines error prop
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Error propagation

How |1 = T2 f

* Standard assumption: u puts enough prob in each “block™ of ¢

2, controls || f — Q*||2..

* Corresponds to well-conditioned design matrix for linear class
* Problem: our ¢ Is quite arbitrary

* Any assumption that is independent of ¢7

Assumption 1. We assume that u(s,a) > 0 Vs,a. We further assume that

(1) There exists constant 1 < C4 < oo such that for any s € S,a € A, u(als) > 1/C 4.

(2) There exists constant 1 < Cs < oo such that forany s € S,a € A,s' € S, P(s'|s,a)/u(s") <
Cs. Also dy(s)/u(s) < Cs.

It will be convenient to define C' = CsC 4. sample complexity'

. Key part: P(S/|S, CL)/,LL(S/) < Cs [Munos’03] O( c* lnj% )
e*(1—9)°

e Satisfiable in MDPs whose transition matrix
admits low-rank stochastic factorization
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Limitations & Possiblilities

Computationally intractable for training

Tractable for validation / model selection ¢/

(choose among Q-functions produced by ditterent training algs)
* Stronger than existing results (e.g., [Jiang et al’15])

* Potentially practical—ongoing empirical evaluation

Data assumption is very strong
* Open: standard concentrability (more next slide)?
* More challenging: data w/ insufficient coverage”?



Finite-sample analyses of batch VFA

low-rank linear F &
Example: stoch. fac. low-rank MDP E.lpp'] =0
max P(s'|s, a s") max||d™/ulle max If = fllar
SR o I i 2 A e P
VfeF,TfeF v v v
_________________________________________ s
0" F X2 X? (conj. X7
[Chen&Jiang’ 19])

speculation prior to 2020
* Variations in data assumptions are minor

* Linear F may be easy”
Both Wrong!
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Finite-sample analyses of batch VFA

low-rank linear F &
Example: stoch. fac. low-rank MDP E.[pp'] > 0
max P(s'|s, a s’ d™ /1] If = Fllar
e f:%fi___(__'_____)_/ “( )mﬁxu/uu _____ mnd 1= Pl
Vfe F, TfeF v v v
0" ¢ F v (BVFT, ? (con;. X (even w/
general F) [Chen&Jiang’19]) linear F)

T

p(s )=y  o(s,)=1

speculation prior to 2020 @ +0 @
* Variations in data assumptions are minor @

* Linear F may be easy” Amortila et al’20, inspired
by Wang et al’20
Both Wrong!
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Thank you!
Questions?



