Confident Off-policy Evaluation and Selection through Self-Normalized Importance Weighting

Ilja Kuzborskij

DeepMind Simons Institute, November 30, 2020

Joint work with

- Claire Vernade
- András György
- Csaba Szepesvári

Contents

[Off-Policy Contextual Bandit Model](#page-2-0)

[Bits of concentration](#page-11-0)

[Concentration revisited: general functions](#page-19-0)

[Value bound for Self-normalized Estimator](#page-33-0)

[Proof sketches](#page-43-0)

Off-Policy Contextual Bandit Model

Model: $(P_X, P_{R|X,A}, \pi_b)$

- $P_X \rightarrow$ prob. measure over context space X
- $P_{R|X,A}$ prob. kernel producing reward dist. given context $X \in \mathcal{X}$ and action $A \in [K]$
- π_b behaviour policy, e.g. $\pi_b(\cdot|X)$

Off-Policy Contextual Bandit Model

Model: $(P_X, P_{R|X,A}, \pi_b)$

- $P_X \longrightarrow$ prob. measure over context space X
- $P_{R|X,A}$ prob. kernel producing reward dist. given context $X \in \mathcal{X}$ and action $A \in [K]$
- π_b behaviour policy, e.g. $\pi_b(\cdot|X)$

Contextual off-policy evaluation problem

- An agent observes $S = ((X_1, A_1, R_1), \ldots, (X_n, A_n, R_n))$ $A_i \stackrel{\mathsf{ind.}}{\sim} \pi_b(\cdot | X_i), \ X_i \stackrel{\mathsf{ind.}}{\sim} P_X, \ R_i \stackrel{\mathsf{ind.}}{\sim} P_{R|X,A}$
- An agent follows a randomized target policy π

Off-Policy Contextual Bandit Model

Model: $(P_X, P_{R|X.A}, \pi_b)$

- $P_X \rightarrow$ prob. measure over context space X
- $P_{R|X,A}$ prob. kernel producing reward dist. given context $X \in \mathcal{X}$ and action $A \in [K]$
- π_b behaviour policy, e.g. $\pi_b(\cdot|X)$

Contextual off-policy evaluation problem

- An agent observes $S = ((X_1, A_1, R_1), \ldots, (X_n, A_n, R_n))$ $A_i \stackrel{\mathsf{ind.}}{\sim} \pi_b(\cdot | X_i), \ X_i \stackrel{\mathsf{ind.}}{\sim} P_X, \ R_i \stackrel{\mathsf{ind.}}{\sim} P_{R|X,A}$
- An agent follows a randomized target policy π

Goal: estimate the value $v(\pi)$ of that policy:

$$
v(\pi) = \int_{\mathcal{X}} \sum_{a \in [K]} \pi(a|x) r(x, a) dP_X(x)
$$

where $r(x, a) = \int u dP_{R|X, A}(u|x, a).$

Value estimation through Importance Weighting

Many ways to do that...

At the core of many is to use *importance weights*

$$
W_i = \frac{\pi(A_i|X_i)}{\pi_b(A_i|X_i)} \qquad i \in [n] .
$$

For example, (unbiased) importance weighting estimator

$$
\hat{v}^{\text{IW}}(\pi) = \frac{1}{n} \sum_{i=1}^{n} W_i R_i.
$$

Indeed,

$$
\mathbb{E}[\hat{v}^{\mathrm{IW}}(\pi)]=v(\pi)
$$

Value estimation through Importance Weighting

Many ways to do that...

At the core of many is to use importance weights

$$
W_i = \frac{\pi(A_i|X_i)}{\pi_b(A_i|X_i)} \qquad i \in [n] .
$$

For example, (unbiased) importance weighting estimator

$$
\hat{v}^{\text{IW}}(\pi) = \frac{1}{n} \sum_{i=1}^{n} W_i R_i.
$$

Indeed,

$$
\mathbb{E}[\hat{v}^{\mathrm{IW}}(\pi)]=v(\pi)
$$

High variance!

For example, $W_i \sim p$, where p is heavy-tailed (disagreeing policies)

Value estimation through Doubly-robust Estimator

Another popular estimator is Doubly-Robust estimator

$$
\hat{v}^{\text{DR}}(\pi) = \frac{1}{n} \sum_i \pi(A_i|X_i)\hat{\eta}(X_i, A_i) + \frac{1}{n} \sum_i W_i(R_i - \hat{\eta}(X_i, A_i)),
$$

for some fixed $\hat{\eta}$: $(x, a) \rightarrow [0, 1]$ (typically a reward estimator fitted on a held-out dataset).

- Unbiased
- Reduces variance, but we need a reward modeling (training, tuning, dataset splitting)...

Value estimation through Self-normalized Estimator

Something simpler, a self-normalized importance weighting:

$$
\hat{v}^{\rm SN}(\pi) = \frac{\sum_{i=1}^{n} W_i R_i}{\sum_{i=1}^{n} W_i}
$$

.

- Biased (asymptotically unbiased (IID))
- In practice, low variance (self-normalization)
	- \bullet Some intuition: $\text{Var}(\hat{\mathbf{v}}^{\text{\tiny{SN}}}(\pi)) \leq \mathbb{E}\left[\sum_{k=1}^{N} \mathbf{v}_{k}\right]$ $\frac{W_k^2}{\left(\sum_i W_i\right)^2}$

•
$$
\frac{W_k}{\sum_i W_i} \sim \frac{1}{n^{\alpha}}
$$
 for $\alpha \in [0, 1]$

 $\sum_i W_i$ \cdots $\alpha \in [0, 1]$
• (depending on "niceness" of the weight distribution)

What about $v(\pi)$?

Estimator alone is not enough. We want confidence intervals.

$$
1 - e^{-x} \leq \mathbb{P}\Big(\hat{\nu}(\pi) + \varepsilon(x, S, \pi, \pi_b) \leq \nu(\pi)\Big) \qquad x > 0 \; .
$$

How to do that? General decomposition:

$$
\underbrace{\nu(\pi) - \mathbb{E}\left[\nu(\pi) \,|\, X_1''\right]}_{\text{Concentration of contexts}} + \underbrace{\mathbb{E}\left[\nu(\pi) \,|\, X_1''\right] - \mathbb{E}\left[\hat{\nu}(\pi) \,|\, X_1''\right]}_{\text{Bias of estimator}} + \underbrace{\mathbb{E}\left[\hat{\nu}(\pi) \,|\, X_1''\right] - \hat{\nu}(\pi)}_{\text{Concentration of estimator}}
$$

- Concentration of texts: standard concentration $(X_1^n$ are IID)
- Bias: sometimes estimator is unbiased, we'll skip this for now..
- Concentration of estimator ...

Contents

[Off-Policy Contextual Bandit Model](#page-2-0)

[Bits of concentration](#page-11-0)

[Concentration revisited: general functions](#page-19-0)

[Value bound for Self-normalized Estimator](#page-33-0)

[Proof sketches](#page-43-0)

What is concentration?

- We have $S = (Z_1, Z_2, \ldots, Z_n) \sim \mathcal{D} \in \mathcal{M}_1(\mathcal{Z})$ independent r.v. taking values in some $\mathcal{Z} = \mathcal{Z}_1 \times \cdots \times \mathcal{Z}_n$.
- We have $f : \mathcal{Z} \to \mathbb{R}$ a fixed measurable function.

How large are typical deviations $\Delta = f(S) - \mathbb{E}[f(S)]$?

We care about bounds on the tail probability

 $\mathbb{P}(\Delta < t)$ and $\mathbb{P}(\Delta > t)$ $t > 0$.

What is concentration?

Some classical examples:

$$
\mathbb{P}(|\Delta| \leq \mathbb{E}[|\Delta|]/x) \geq 1 - x, \quad x \in (0,1).
$$
 (Markov)

Typically we are after bounds which decay "quickly" in $x > 0$.

What is concentration?

Some classical examples:

$$
\mathbb{P}(|\Delta| \leq \mathbb{E}[|\Delta|]/x) \geq 1 - x, \quad x \in (0,1) . \qquad \text{(Markov)}
$$

Typically we are after bounds which decay "quickly" in $x > 0$.

Assume that indep.
$$
Z_1, ..., Z_n \in [0, 1]
$$
 and $f(S) = \frac{1}{n} \sum_k Z_k$,
\n
$$
\mathbb{P}\left(\Delta \le \sqrt{\frac{x}{2n}}\right) \ge 1 - e^{-x} \qquad \text{(Hoeffding)}
$$
\n
$$
\mathbb{P}\left(\Delta \le \frac{1}{n}\left(\sqrt{2x \sum_k \mathbb{E}[Z_k^2]} + \frac{2}{3}x\right)\right) \ge 1 - e^{-x} \qquad \text{(Bernstein)}
$$

Estimator alone is not enough. We want confidence intervals.

$$
1-e^{-x}\leq \mathbb{P}\Big(\hat{v}(\pi)+\varepsilon(x,S,\pi,\pi_b)\leq v(\pi)\Big)\qquad x>0\;.
$$

How to do that? General structure:

$$
\underbrace{v(\pi) - \mathbb{E}\left[v(\pi) \,|\, X_1''\right]}_{\text{Concentration of contexts}} + \underbrace{\mathbb{E}\left[v(\pi) \,|\, X_1''\right] - \mathbb{E}\left[\hat{v}(\pi) \,|\, X_1''\right]}_{\text{Bias of estimator}} + \underbrace{\mathbb{E}\left[\hat{v}(\pi) \,|\, X_1''\right] - \hat{v}(\pi)}_{\text{Concentration of estimator}}
$$

Some challenges for concentration of \hat{v} :

- Even for basic importance weighting \hat{v}^{IW} it's non-trivial: $W_i = \frac{\pi(A_i \,|\, X_i)}{\pi_b(A_i \,|\, X_i)}$ $\frac{\pi(A_i \mid A_i)}{\pi_b(A_i \mid X_i)}$ are **unbounded**
	- Excludes standard concentration inequalities (moments of $\hat{v}(\pi)$ can't be easily controlled)

Estimator alone is not enough. We want confidence intervals.

$$
1-e^{-x}\leq \mathbb{P}\Big(\hat{v}(\pi)+\varepsilon(x,\mathcal{S},\pi,\pi_b)\leq v(\pi)\Big)\qquad x>0\;.
$$

How to do that? General structure:

$$
\underbrace{v(\pi) - \mathbb{E}\left[v(\pi) \,|\, X_1''\right]}_{\text{Concentration of contexts}} + \underbrace{\mathbb{E}\left[v(\pi) \,|\, X_1''\right] - \mathbb{E}\left[\hat{v}(\pi) \,|\, X_1''\right]}_{\text{Bias of estimator}} + \underbrace{\mathbb{E}\left[\hat{v}(\pi) \,|\, X_1''\right] - \hat{v}(\pi)}_{\text{Concentration of estimator}}
$$

Some challenges for concentration of \hat{v} :

- Even for basic importance weighting \hat{v}^{IW} it's non-trivial: $W_i = \frac{\pi(A_i \,|\, X_i)}{\pi_b(A_i \,|\, X_i)}$ $\frac{\pi(A_i \mid A_i)}{\pi_b(A_i \mid X_i)}$ are **unbounded**
	- Excludes standard concentration inequalities (moments of $\hat{v}(\pi)$ can't be easily controlled)
	- We can "truncate", e.g. $W_i^{\lambda} = \frac{\pi(A_i|X_i)}{\pi_b(A_i|X_i)}$ $\frac{\pi(A_i|X_i)}{\pi_b(A_i|X_i)+\lambda}$ for some $\lambda > 0$.
	- Ugly! In practice needs tuning of λ , doesn't always work...

Estimator alone is not enough. We want confidence intervals.

$$
1-e^{-x}\leq \mathbb{P}\Big(\hat{v}(\pi)+\varepsilon(x,\mathcal{S},\pi,\pi_b)\leq v(\pi)\Big)\qquad x>0\;.
$$

How to do that? General structure:

$$
\underbrace{v(\pi) - \mathbb{E}\left[v(\pi) \,|\, X_1''\right]}_{\text{Concentration of contexts}} + \underbrace{\mathbb{E}\left[v(\pi) \,|\, X_1''\right] - \mathbb{E}\left[\hat{v}(\pi) \,|\, X_1''\right]}_{\text{Bias of estimator}} + \underbrace{\mathbb{E}\left[\hat{v}(\pi) \,|\, X_1''\right] - \hat{v}(\pi)}_{\text{Concentration of estimator}}
$$

Some challenges for concentration of \hat{v} :

- Even for basic importance weighting \hat{v}^{IW} it's non-trivial: $W_i = \frac{\pi(A_i \,|\, X_i)}{\pi_b(A_i \,|\, X_i)}$ $\frac{\pi(A_i \mid A_i)}{\pi_b(A_i \mid X_i)}$ are **unbounded**
	- Excludes standard concentration inequalities (moments of $\hat{v}(\pi)$ can't be easily controlled)
	- We can "truncate", e.g. $W_i^{\lambda} = \frac{\pi(A_i|X_i)}{\pi_b(A_i|X_i)}$ $\frac{\pi(A_i|X_i)}{\pi_b(A_i|X_i)+\lambda}$ for some $\lambda > 0$.
	- Ugly! In practice needs tuning of λ , doesn't always work...
- Variance is important: need bounds with empirical variance.
- Sometimes estimator is not a sum IID elements.

Estimator alone is not enough. We want confidence intervals.

$$
1 - e^{-x} \leq \mathbb{P}\Big(\hat{\nu}(\pi) + \varepsilon(x,S,\pi,\pi_b) \leq \nu(\pi) \Big) \qquad x > 0 \,\, .
$$

Let's go back and pick Self-normalized Estimator (SN):

$$
\hat{v}^{\rm SN}(\pi) = \frac{1}{Z} \sum_{i=1}^{n} W_i R_i
$$
, $Z = \sum_{i=1}^{n} W_i$.

- \bullet $(W_i)_i$ are unbounded
- \bullet \hat{v}^{SN} is not a sum of IID elements (self-normalization)
- We really want CI to be controlled by the variance of \hat{v}^{SN} .

Contents

[Off-Policy Contextual Bandit Model](#page-2-0)

[Bits of concentration](#page-11-0)

[Concentration revisited: general functions](#page-19-0)

[Value bound for Self-normalized Estimator](#page-33-0)

[Proof sketches](#page-43-0)

Concentration of general functions

- Going beyond "simple" functions: f is not necessarily a sum, possibly non-linear.
- One possible way: sensitivity of f to "small perturbations" controls concentration.

Concentration of general functions

- Going beyond "simple" functions: f is not necessarily a sum, possibly non-linear.
- One possible way: sensitivity of f to "small perturbations" controls concentration.

Let:

- $S' = (Z'_1, Z'_2, \ldots, Z'_n)$ be an independent copy of S $-S^{(k)} = (Z_1, \ldots, Z_{k-1}, Z'_k, Z_{k+1}, \ldots, Z_n)$

Concentration of general functions

- Going beyond "simple" functions: f is not necessarily a sum, possibly non-linear.
- One possible way: sensitivity of f to "small perturbations" controls concentration.

Let:

-
$$
S' = (Z'_1, Z'_2, ..., Z'_n)
$$
 be an independent copy of S
- $S^{(k)} = (Z_1, ..., Z_{k-1}, Z'_k, Z_{k+1}, ..., Z_n)$

Classical Efron-Stein (ES) inequality:

$$
\text{Var}(f) \leq \frac{1}{2} \sum_{k=1}^{n} \mathbb{E}\left[\left(f(S) - f(S^{(k)})\right)^2\right]
$$

.

Tail Bounds through Bounded differences

The same idea extended to tail bounds.

Introduce Efron-Stein variance proxy

$$
V^{\text{ES}}(S, S') = \sum_{k=1}^{n} (f(S) - f(S^{(k)}))_{+}^{2},
$$

Bounded Differences

Assume:
$$
\sup_{s,s' \in \mathcal{Z}} V^{\text{ES}}(s,s') \leq c
$$
 a.s. for some $c > 0$.
Then:

$$
\mathbb{P}\left(|\Delta| \leq \sqrt{2cx}\right) \geq 1 - e^{-x}, \qquad x \geq 0.
$$

For averages, $V^{\text{ES}}(S, S') \lesssim 1/n$ recovers Hoeffding's inequality.

Bounded Differences

Assume: $\mathsf{sup}_{s,s' \in \mathcal{Z}}V^\mathrm{ES}(s,s') \leq c$ a.s. for some $c > 0$. Then:

$$
\mathbb{P}\left(|\Delta| \leq \sqrt{2cx}\right) \geq 1 - e^{-x}, \qquad x \geq 0.
$$

- Powerful, but pessimistic...
- ...neglects information about moments of ∆.

Bounded Differences

Assume: $\mathsf{sup}_{s,s' \in \mathcal{Z}}V^\mathrm{ES}(s,s') \leq c$ a.s. for some $c > 0$. Then:

$$
\mathbb{P}\left(|\Delta| \leq \sqrt{2cx}\right) \geq 1 - e^{-x}, \qquad x \geq 0.
$$

- Powerful, but pessimistic...
- ...neglects information about moments of Δ .

Exponential Efron-Stein Inequality [\[BLM03\]](#page-52-0) Let $\lambda \in (0,1)$. Then: In $\mathbb{E}[e^{\lambda \Delta}] \leq \frac{\lambda}{1-\lambda}$ $\frac{\lambda}{1-\lambda}\ln\mathbb{E}\left[e^{\mathbb{E}[V^{\mathrm{ES}}(S,S')\,|\,S]}\right]$

Bounded Differences

Assume: $\mathsf{sup}_{s,s' \in \mathcal{Z}}V^\mathrm{ES}(s,s') \leq c$ a.s. for some $c > 0$. Then:

$$
\mathbb{P}\left(|\Delta| \leq \sqrt{2cx}\right) \geq 1 - e^{-x}, \qquad x \geq 0.
$$

- Powerful, but pessimistic...
- ...neglects information about moments of ∆.

Exponential Efron-Stein Inequality [\[BLM03\]](#page-52-0) Let $\lambda \in (0,1)$. Then:

$$
\ln \mathbb{E}[e^{\lambda \Delta}] \leq \frac{\lambda}{1-\lambda} \ln \mathbb{E}\left[e^{\mathbb{E}[V^{\text{ES}}(S,S') \mid S]}\right]
$$

Chernoff bound gives us a tail bound: $\mathbb{P}(\Delta \geq x) \leq \inf_{\lambda \in (0,1)} \mathbb{E}[\exp(\lambda \Delta - \lambda x)]$

Exponential ES

$$
\ln \mathbb{E}[e^{\lambda \Delta}] \leq \frac{\lambda}{1-\lambda} \ln \mathbb{E}\left[e^{\lambda \mathbb{E}[V^{\text{ES}}(S,S') \mid S]}\right] \qquad \lambda \in (0,1)
$$

- Control of exponential moment of $V^{\text{ES}}\Rightarrow$ concentration of Δ .
- Can we get something more user-friendly?

Exponential ES

$$
\ln \mathbb{E}[e^{\lambda \Delta}] \leq \frac{\lambda}{1-\lambda} \ln \mathbb{E}\left[e^{\lambda \mathbb{E}[V^{\text{ES}}(S,S') \mid S]}\right] \qquad \lambda \in (0,1)
$$

- Control of exponential moment of $V^{\text{ES}}\Rightarrow$ concentration of Δ .
- Can we get something more user-friendly?

Assume that f satisfies second-order bounded differences [\[Mau19,](#page-52-1) [MP18\]](#page-52-2): for any D, some $a, b > 0$, sup
s,s'∈Z \sum k,j : $k\neq j$ $\left((f(s) - f(s^{(k)})) - (f(s^{(j)}) - f(s^{(k,j)})) \right)^2 \leq a^2/2$ $\max_{k \in [n]} f(S) - \mathbb{E}[f(S) | Z_1, \ldots, Z_{k-1}, Z_k, \ldots, Z_n] \leq b$. Then, for any $x > 0$, $\mathbb{P}\left(\Delta \leq \sqrt{2 \mathbb{E}[V^{\text{ES}}(S,S')]}\times + (a + 2/3b) \times \right) \geq 1 - e^{-\varkappa} \,\, .$

Limitations

- All of these inequalities implicitly control moments of $V^{\text{ES}}(S, S')$
- Constants a, b are data-independent
- ... typically we need boundedness of f or its domain to easily get a finite pair a, b.

Semi-Empirical Inequalities

Introduce Semi-Empirical ES variance proxy

$$
V=\sum_{k=1}^n\mathbb{E}\left[(f(S)-f(S^{(k)}))^2\,\Big|\,Z_1,\ldots,Z_k\right]\,.
$$

Semi-Empirical Inequalities

Introduce Semi-Empirical ES variance proxy

$$
V=\sum_{k=1}^n\mathbb{E}\left[(f(S)-f(S^{(k)}))^2\,\Big|\,Z_1,\ldots,Z_k\right].
$$

Semi-Empirical Inequalities

Introduce Semi-Empirical ES variance proxy

$$
V=\sum_{k=1}^n\mathbb{E}\left[(f(S)-f(S^{(k)}))^2\,\Big|\,Z_1,\ldots,Z_k\right].
$$

Semi-empirical Efron-Stein (ES) [KS19]
For any
$$
x \ge 2
$$
, $y > 0$,

$$
\mathbb{P}(|\Delta| \le \sqrt{(V+y)(2+\ln(1+V/y))x}) \ge 1-e^{-x}.
$$

- Does not require boundedness of RVs, nor of co-domain of f.
- Essentially depends on V and a free parameter $y > 0$ (selected by the user). E.g. $y = 1/n^2$ w.h.p. gives

$$
|\Delta| \lessapprox \sqrt{V} + \frac{1}{n}.
$$
 (Bernstein-type behavior)

Contents

[Off-Policy Contextual Bandit Model](#page-2-0)

[Bits of concentration](#page-11-0)

[Concentration revisited: general functions](#page-19-0)

[Value bound for Self-normalized Estimator](#page-33-0)

[Proof sketches](#page-43-0)

Estimator alone is not enough. We want confidence intervals.

$$
1 - e^{-x} \leq \mathbb{P}\Big(\hat{\nu}(\pi) + \varepsilon(x, S, \pi, \pi_b) \leq \nu(\pi)\Big) \qquad x > 0 \; .
$$

Let's go back and pick SN:

$$
\hat{v}^{\rm SN}(\pi) = \frac{1}{Z} \sum_{i=1}^{n} W_i R_i
$$
, $Z = \sum_{i=1}^{n} W_i$.

- \bullet $(W_i)_i$ are unbounded
- \bullet \hat{v}^{SN} is not a sum of IID elements (self-normalization)
- We really want CI to be controlled by the variance of \hat{v}^{SN} .

Semi-empirical Efron-Stein Bound for SN

Theorem. [KVGS20] W.h.p.,
\n
$$
v(\pi) \geq B \cdot \left(\hat{v}^{SN}(\pi) - \sqrt{c \cdot \left(V^{SN} + \frac{1}{n} \right)} \right) - \frac{c'}{\sqrt{n}},
$$
\n
$$
V^{SN} = \sum_{k=1}^{n} \mathbb{E} \left[\left(\frac{W_k}{Z} + \frac{W'_k}{Z^{(k)}} \right)^2 \middle| W_1^k, X_1^n \right] \quad \text{("variance")}
$$
\n
$$
B = \min \left(\mathbb{E} \left[\frac{n}{Z} \middle| X_1^n \right]^{-1}, 1 \right), \quad \text{(bias)}
$$
\nwhere $Z^{(k)} = Z + (W'_k - W_k)$, and W'_k indep. dist. as W_k .

- No truncation! No hyperparameters.
- Contexts are fixed.

Recall some intuition: $\text{Var}(\hat{v}^{\text{\tiny{SN}}}(\pi)) \leq \mathbb{E} \left[\sum_k \left(\frac{W_k^2}{Z}\right)^2\right] \approx \frac{\bm{V}^{\text{\tiny{SN}}}}{2}$ Bias **B** is multiplicative, \approx 1 for "easy" distributions of W_i

Semi-empirical Efron-Stein Bound for SN

Theorem. [KVGS20] W.h.p.,
\n
$$
v(\pi) \geq B \cdot \left(\hat{v}^{SN}(\pi) - \sqrt{c \cdot \left(V^{SN} + \frac{1}{n} \right)} \right) - \frac{c'}{\sqrt{n}},
$$
\n
$$
V^{SN} = \sum_{k=1}^{n} \mathbb{E} \left[\left(\frac{W_k}{Z} + \frac{W'_k}{Z^{(k)}} \right)^2 \middle| W_1^k, X_1^n \right] \quad (\text{"variance")}
$$
\n
$$
B = \min \left(\mathbb{E} \left[\frac{n}{Z} \middle| X_1^n \right]^{-1}, 1 \right), \qquad \text{(bias)}
$$
\nwhere $Z^{(k)} = Z + (W'_k - W_k)$, and W'_k indep. dist. as W_k .

- No truncation! No hyperparameters.
- Contexts are fixed.
- Needs knowledge of π_b only partly empirical: V^{SN} and B can be computed exactly. Cost: n^{K} :- (Can approximate using Monte-Carlo simulation! :-)

Is it any good? Synthetic Experiments

- Fix $K > 0$, $\tau > 0$
- $\pi_b(a) \propto e^{\frac{1}{\tau} \mathbb{I}\{a=1\}}$
- $\pi(a) \propto e^{\frac{1}{\tau} \mathbb{I}\{a=2\}}$

•
$$
R_i = \mathbb{I}\{A_i = k\}, A_i \sim \pi_b(\cdot)
$$

• As $\tau \to 0$, π_b and π become increasingly misaligned

Numerical tightness in sample size

E-S — Our bound B-M — Empirical Bernstein's bound with ε -truncated weights

Numerical tightness in error probability

Similar setup as before, sample size $=10^4$, left to right:

- \bullet F-S our bound.
- Chebyshev's ineq.-based CI for SN.
- Empirical Bernstein's ineq.-based CI for Doubly-robust Estimator (DR) with $W_i^{\lambda} = \frac{\pi(A_i|X_i)}{\pi_b(A_i|X_i)+\alpha_b}$ $\frac{\pi(A_i|X_i)}{\pi_b(A_i|X_i)+\lambda}$ for some $\lambda = 1/\sqrt{n}$.
- Empirical Bernstein's ineq.-based CI for Importance Weighting (IW) with W_i^{λ} .

Is it any good? Nonsynthetic Experiments The Best Policy Selection problem

- We have a finite set of target policies Π.
- We do $\hat{\pi} \in \arg \max_{\pi \in \Pi} \hat{v}^{\text{est}}(\pi)$.
- We want to maximize $v(\hat{\pi})$ — we'll use confidence bounds as $\hat{\mathsf{\nu}}^{\text{est}}.$

Nonsynthetic Experiments – Setup

Target policies are
$$
\left\{\pi^{\text{ideal}}, \pi^{\hat{\Theta}_{\text{IW}}}, \pi^{\hat{\Theta}_{\text{SN}}}\right\}
$$
 where

$$
\pi^{\Theta}(y = k \mid \mathbf{x}) \propto e^{\frac{1}{\tau} \mathbf{x}^{\top} \theta_k}
$$

with two choices of parameters given by the optimization problems:

$$
\hat{\Theta}_{\mathsf{IW}} \in \argmax_{\Theta \in \mathbb{R}^{d \times K}} \hat{v}^{\mathsf{IW}}(\pi^{\Theta}) \;,\qquad \hat{\Theta}_{\mathsf{SN}} \in \argmax_{\Theta \in \mathbb{R}^{d \times K}} \hat{v}^{\mathsf{SN}}(\pi^{\Theta}) \;.
$$

- Trained by GD with $\eta = 0.01$, $T = 10^5$.
- $\tau = 0.1$ cold! Almost deterministic.

Table: Average test rewards of the target policy when chosen by each method of the benchmark.

Contents

[Off-Policy Contextual Bandit Model](#page-2-0)

[Bits of concentration](#page-11-0)

[Concentration revisited: general functions](#page-19-0)

[Value bound for Self-normalized Estimator](#page-33-0)

[Proof sketches](#page-43-0)

Proof sketch

$$
\underbrace{v(\pi) - \mathbb{E}\left[v(\pi) \,|\, X_1^n\right]}_{\text{Concentration of contexts}} + \underbrace{\mathbb{E}\left[v(\pi) \,|\, X_1^n\right] - \mathbb{E}\left[\hat{v}(\pi) \,|\, X_1^n\right]}_{\text{Bias of estimator}} + \underbrace{\mathbb{E}\left[\hat{v}(\pi) \,|\, X_1^n\right] - \hat{v}(\pi)}_{\text{Concentration of estimator}}
$$

- 1. Concentration of contexts Hoeffding since X_1^n are IID. $\mathbb{E}\left[\left| \nu(\pi)\right|X_{1}^{n}\right]=\frac{1}{n}\sum_{i}\mathbb{E}\left[W_{i}R_{i}\right|X_{i}\right].$
- 2. Bias IW is unbiased: "split" SN into IW and denominator.

Proof sketch

$$
\underbrace{v(\pi) - \mathbb{E}\left[v(\pi) \mid X_1^n\right]}_{\text{Concentration of contexts}} + \underbrace{\mathbb{E}\left[v(\pi) \mid X_1^n\right] - \mathbb{E}\left[\hat{v}(\pi) \mid X_1^n\right]}_{\text{Bias of estimator}} + \underbrace{\mathbb{E}\left[\hat{v}(\pi) \mid X_1^n\right] - \hat{v}(\pi)}_{\text{Concentration of estimator}}
$$

- 1. Concentration of contexts Hoeffding since X_1^n are IID. $\mathbb{E}\left[\left| \nu(\pi)\right|X_{1}^{n}\right]=\frac{1}{n}\sum_{i}\mathbb{E}\left[W_{i}R_{i}\right|X_{i}\right].$
- 2. Bias IW is unbiased: "split" SN into IW and denominator.

Harris' inequality. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a non-increasing and $g: \mathbb{R}^n \to \mathbb{R}$ be a non-decreasing function. Then for real-valued random variables (Z_1, \ldots, Z_n) independent from each other, we have

$$
\mathbb{E}[f(Z_1,\ldots,Z_n)g(Z_1,\ldots,Z_n)] \leq \mathbb{E}[f(Z_1,\ldots,Z_n)] \mathbb{E}[g(Z_1,\ldots,Z_n)] .
$$

This gives us:

$$
\mathbb{E}\left[\frac{\sum_{k=1}^{n}W_{k}R_{k}}{\sum_{k=1}^{n}W_{k}}\middle|X_{1}^{n}\right]\leq\mathbb{E}\left[\frac{1}{\sum_{k=1}^{n}W_{k}}\middle|X_{1}^{n}\right]\mathbb{E}\left[\sum_{k=1}^{n}W_{k}R_{k}\middle|X_{1}^{n}\right]
$$

Goal: lower bound on $\mathbb{E}\left[\hat{v}^{\text{sn}}(\pi) \mid X_1^n\right]$ $\binom{n}{1} - \hat{V}^{\text{sn}}(\pi)$

$$
\Delta = f(S) - \mathbb{E}[f(S)], \quad V = \sum_{k=1}^n \mathbb{E}\left[(f(S) - f(S^{(k)}))^2 \middle| X_1, \ldots, X_k\right].
$$

Semi-empirical Efron-Stein (ES) [KS19]
For any
$$
x \ge 2
$$
, $y > 0$,

$$
\mathbb{P}(|\Delta| \le \sqrt{(V+y)(2 + \ln(1 + V/y))x}) \ge 1 - e^{-x}.
$$

Take $f = \hat{v}^{\text{\tiny{SN}}}$, condition on X_1^n , and choose $y = 1/n$. Algebra gives

$$
V \leq \sum_{k=1}^n \mathbb{E}\left[\left(\frac{W_k}{Z} + \frac{W'_k}{Z^{(k)}}\right)^2 \middle| W_1^k, X_1^n\right]
$$

where $Z^{(k)}=Z+(W'_k-W_k)$, and W'_k indep. dist. as W_k .

Canonical Pairs – [\[dlPLS08\]](#page-52-5)

We call (A, B) a canonical pair if $B \geq 0$ and

$$
\sup_{\lambda \in \mathbb{R}} \mathbb{E}\left[\exp\left(\lambda A - \frac{\lambda^2}{2}B^2\right)\right] \le 1.
$$

Theorem 12.4 of [\[dlPLS08\]](#page-52-5)

Theorem

Let (A, B) be a canonical pair. Then, for any $t > 0$,

$$
\mathbb{P}\left(\frac{|A|}{\sqrt{B^2 + (\mathbb{E}[B])^2}} \geq t\right) \leq \sqrt{2}e^{-\frac{t^2}{4}}.
$$

In addition, for all t \geq √ 2 and $y > 0$,

$$
\mathbb{P}\left(\frac{|A|}{\left(B^2+y\right)\left(1+\frac{1}{2}\ln\left(1+\frac{B^2}{y}\right)\right)}\geq t\right)\leq e^{-\frac{t^2}{2}}\;.
$$

Recall

$$
\Delta = f(S) - \mathbb{E}[f(S)], \quad V = \sum_{k=1}^n \mathbb{E}\left[(f(S) - f(S^{(k)}))^2 \middle| X_1, \ldots, X_k\right].
$$

Lemma (∆, √ V) is a canonical pair.

Proof.

Let $\mathbb{E}_k[\cdot]$ stand for $\mathbb{E}[\cdot \mid X_1, \ldots, X_k]$. The Doob martingale decomposition of $f(S) - \mathbb{E}[f(S)]$ gives

$$
f(S)-\mathbb{E}[f(S)]=\sum_{k=1}^n D_k,
$$

where $D_k = \mathbb{E}_k[f(S)] - \mathbb{E}_{k-1}[f(S)] = \mathbb{E}_k[f(S) - f(S^{(k)})]$ and the last equality follows from the elementary identity $\mathbb{E}_{k-1}[f(\mathcal{S})] = \mathbb{E}_{k}[f(\mathcal{S}^{(k)})].$ Ш

Take-home message

- Tighter off-policy evaluation bounds for contextual bandits
- Tighter CIs for Self-normalized Estimator
- New high-probability user-friendly variance-dependent concentration inequalities for general functions

Some limitations / future challenges:

- Requires knowledge of π_b
- Requires π_b to be static, observations are IID — in many practical cases this is not a problem!
- Policy optimization (learning)
	- Extension of the about to the PAC-Bayes setting [\[KS19\]](#page-52-3)

<https://arxiv.org/abs/2006.10460> <https://arxiv.org/abs/1909.01931> [BLM03] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities using the entropy method. The Annals of Probability, 31(3):1583–1614, 2003.

- [dlPLS08] V. H. de la Peña, T. L. Lai, and Q.-M. Shao. Self-normalized processes: Limit theory and Statistical Applications. Springer Science & Business Media, 2008.
	- [KS19] I. Kuzborskij and Cs. Szepesvári. Efron-Stein PAC-Bayesian Inequalities. arXiv:1909.01931, 2019.
- [KVGS20] I. Kuzborskij, C. Vernade, A. György, and Cs. Szepesvári. Confident off-policy evaluation and selection through self-normalized importance weighting. arXiv:2006.10460, 2020.
	- [Mau19] A. Maurer. A bernstein-type inequality for functions of bounded interaction. Bernoulli, 25(2):1451–1471, 2019.
	- [MP18] A. Maurer and M. Pontil. Empirical bounds for functions with weak interactions. In Conference on Computational Learning Theory (COLT), pages 987–1010, 2018.