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Off-Policy Contextual Bandit Model

Model: (Px, PR\X,A: 7Tb)

o Py — prob. measure over context space X’

° PR\X,A — prob. kernel producing reward dist. given
context X € X and action A € [K]

® T — behaviour policy, e.g. mp(+|X)

Contextual off-policy evaluation problem

® An agent observes S = ((X1, A1, R1),...,(Xn, An, Rn))
ind. ind. ind.

A~ mp(+[Xi), Xi ~ Px, Ri ~ Prix.a
® An agent follows a randomized target policy
Goal: estimate the value v(7) of that policy:

v(r) = /X S w(alx)r(x, a) dPx(x)

ac[K]

where r(x,a):/udPR|X7A(u]X, a).



Value estimation through Importance Weighting

Many ways to do that...

At the core of many is to use importance weights

(Al Xi) .
wW; = o (ATX) i€ln].

For example, (unbiased) importance weighting estimator
1 n
PW(r) == W;R; .
(m) == Z_;

Indeed,
E[™(r)] = v(r)



Value estimation through Importance Weighting

Many ways to do that...

At the core of many is to use importance weights

(Al Xi) .
wW; = o (ATX) i€ln].

For example, (unbiased) importance weighting estimator
o Ly W;R,
oM (r) =~ z_; iR .

Indeed,

E[7™ ()] = v(7)

High variance!

For example, W; ~ p, where p is heavy-tailed (disagreeing policies)



Value estimation through Doubly-robust Estimator

Another popular estimator is Doubly-Robust estimator

0P (1) = %ZW(A,"X (Xi, Aj) ZW (X, A)),

i
for some fixed 7 : (x,a) — [0, 1] (typically a reward estimator fitted
on a held-out dataset).
® Unbiased

® Reduces variance, but we need a reward modeling (training,
tuning, dataset splitting)...



Value estimation through Self-normalized Estimator

Something simpler, a self-normalized importance weighting:

W;R;
A‘SN(ﬂ_) Z/ 1 .
Z/:l VV’

® Biased (asymptotically unbiased (1ID))
® In practice, low variance (self-normalization)

® Some intuition: Var(9°(7)) <E [Zk

o ZWWNHTfOFQG[O71]

® (depending on “niceness’ of the weight distribution)

(z;/)]




What about v(7)?
Estimator alone is not enough. We want confidence intervals.
1 e < P(0(r) +2(x, 5,7, mp) < v(7r)> x>0.

How to do that? General decomposition:

v(m) — E[v(m) | X1+ E[v(m) | X{] — E[0(x) | X{]+E[0(x) | X7] - 0(r)

Concentration of contexts Bias of estimator Concentration of estimator

® Concentration of texts: standard concentration (X{" are IID)
® Bias: sometimes estimator is unbiased, we'll skip this for now..

e (Concentration of estimator ...
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What is concentration?

® We have §$ = (21, 2»,...,2Z,) ~ D € M1(Z) independent
r.v. taking values in some Z = Zy X --- X Z,.

® We have f : Z — R — a fixed measurable function.

How large are typical deviations A = f(S) — E[f(S)]?

We care about bounds on the tail probability

P(A<t) and P(A>1t) t>0.




What is concentration?

Some classical examples:

[ P(A| <E[A[]/x)>1-x, xe(0,1). (Markov) ]

Typically we are after bounds which decay “quickly” in x > 0.



What is concentration?

Some classical examples:

|

P(A| <E[A[]/x)>1-x, xe(0,1). (Markov) ]

Typically we are after bounds which decay “quickly” in x > 0.

Assume that indep. Z1,...,Z, € [0,1] and f(S) = %Zk Zy,

P <A < 2Xn> >1— e (Hoeffding)

1 2
< = 2 — >1— e X
P A_n [2x Ek E[Zk]—|—3x >1—e

(Bernstein)




What about v(7) again?
Estimator alone is not enough. We want confidence intervals.
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What about v(7) again?
Estimator alone is not enough. We want confidence intervals.
1—e™ gIP’(\A/(W)+€(X,S,7T,7rb) < v(7r)> x>0.

How to do that? General structure:

v(r) — Ev(m)| X7+ E[v(r) | X{] - E[0(x) | X{] + E[0(x) | X{] - 0()

Concentration of contexts Bias of estimator Concentration of estimator

Some challenges for concentration of ¥:
e Even for basic importance weighting ¥™ it's non-trivial:
W; = % are unbounded
® Excludes standard concentration inequalities
(moments of ¥(7) can't be easily controlled)
® We can “truncate’, e.g. W = % for some A > 0.

® Ugly! In practice needs tuning of A\, doesn't always work...
® Variance is important: need bounds with empirical variance.

® Sometimes estimator is not a sum |ID elements.



What about v(7) again?

Estimator alone is not enough. We want confidence intervals.
1—e* §IP’(\“/(7T)+6(X,S,7T,7rb) < v(7r)> x>0.

Let's go back and pick Self-normalized Estimator (SN):

OSN(w):;ZH:W;R;, zzzn:vv,-.
i=1 i=1

® (W;); are unbounded
e "N is not a sum of IID elements (self-normalization)

e We really want Cl to be controlled by the variance of ¥5~.
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Concentration of general functions

- Going beyond “simple” functions: f is not necessarily a sum,
possibly non-linear.

- One possible way: sensitivity of f to “small perturbations”
controls concentration.
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Concentration of general functions

- Going beyond “simple” functions: f is not necessarily a sum,
possibly non-linear.

- One possible way: sensitivity of f to “small perturbations”
controls concentration.

Let:
- S'=(2{,Z},...,Z)) be an independent copy of S
- S(k) = (Z]_7 .. 7Zk717Z[/(7Zk+17 .. .7Zn)

Classical Efron-Stein (ES) inequality:

Var(f) < ;ZH:E [(f(S) — f(s(k))>2] .
k=1




Tail Bounds through Bounded differences

The same idea extended to tail bounds.

Introduce Efron-Stein variance proxy

n

VES(S,8") =Y (F(S) - F(sM))3,

k=1

.

Bounded Differences

Assume: sup, gz VF(s,s') < ¢ as. for some ¢ > 0.
Then:

P(|A]§\/ﬂ)21—e’x, x>0.

For averages, VF5(S,S") < 1/n recovers Hoeffding's inequality.




Beyond Bounded Differences

Bounded Differences
Assume: sup scz VES(s,s') < c a.s. for some ¢ > 0. Then:

]P’<|A]§\/2cx) >1-e, x>0.

- Powerful, but pessimistic...

- ...neglects information about moments of A.
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Beyond Bounded Differences

Bounded Differences
Assume: sups gcz VES(s,s') < c a.s. for some ¢ > 0. Then:

]P’<|A]§\/2cx) >1-e, x>0.

- Powerful, but pessimistic...
- ...neglects information about moments of A.

Exponential Efron-Stein Inequality [BLMO3]
Let A € (0,1). Then:

InE[e*] < % InE [ EIVES(S.5)15]

Chernoff bound gives us a tail bound:
P(A > x) < infyg,1) E[exp (AA — Ax)]




Beyond Bounded Differences
Exponential ES

InE[e*?] < % InE e)‘]E[VES(SvS’HS]} A€ (0,1)
- Control of exponential moment of VFS = concentration of A.

- Can we get something more user-friendly?



Beyond Bounded Differences
Exponential ES

InE[e*?] < % InE e)‘E[VES(SvS’HS]} A€ (0,1)

- Control of exponential moment of VFS = concentration of A.

- Can we get something more user-friendly?

Assume that f satisfies second-order bounded differences
[Maul9, MP18]: for any D, some a, b > 0,

sup 3 ((F(s) — F(s®)) — (F(s) — F(s)))" < /2,

ssEZka#J

manE[n] f(S) 7]E[f(5) | Zl,, o .Zk_l,Zk, 00 .Zn] S b .
Then, for any x > 0,

P (A < \J2E[VES(S, )] x + (a + 2/3b)x> >1-eX.




Limitations

- All of these inequalities implicitly control moments of
VES(S, 5/)
- Constants a, b are data-independent

- ... typically we need boundedness of f or its domain to easily
get a finite pair a, b.



Semi-Empirical Inequalities
Introduce Semi-Empirical ES variance proxy

V= ZE[ £(sk)) ‘zl,...



Semi-Empirical Inequalities
Introduce Semi-Empirical ES variance proxy

V= ZE[ £(sk)) ‘zl,...,zk}.

Semi-empirical Efron-Stein (ES) [KS19]
For any x > 2, y >0,

P <\A| <V(V+y)2+In(l+ V/y))x> >1—e%.




Semi-Empirical Inequalities
Introduce Semi-Empirical ES variance proxy

V= ZE[ £(sk)) ‘zl,...,zk}.

Semi-empirical Efron-Stein (ES) [KS19]
For any x > 2, y >0,

P <\A| <V(V+y)2+In(l+ V/y))x> >1—e%.

. J

- Does not require boundedness of RVs, nor of co-domain of f.

- Essentially depends on V and a free parameter y > 0
(selected by the user). E.g. y = 1/n? w.h.p. gives

1
Al S VV+-. (Bernstein-type behavior)
n
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Value bound for Self-normalized Estimator



What about v(7) again?

Estimator alone is not enough. We want confidence intervals.
1—e* gIP’(\“/(W)—i—E(X, S,m,mp) < v(7r)> x>0.

Let's go back and pick SN:

‘ 1o
ASN(\ .
VN () = > E_l WiR; , V4

I
]
§

® (W;); are unbounded
e 7%V is not a sum of IID elements (self-normalization)

e We really want Cl to be controlled by the variance of ¥5~.



Semi-empirical Efron-Stein Bound for SN

Theorem. [KVGS20] W.h.p.,
v(m) > B-(“SN(W \/c <-+ )) \%
-S| (%)
Bl = min (]E [ﬂxln] 1,1) , (bias)

where Z(K) = Z + (W] — W), and W] indep. dist. as W.

WY, XJ|  ("variance”)

® No truncation! No hyperparameters.
® Contexts are fixed.

2N 2
Recall some intuition: Var(9%(7)) <E [Zk (%) } ~ |l

Bias | B is multiplicative, ~ 1 for “easy” distributions of W;




Semi-empirical Efron-Stein Bound for SN

Theorem. [KVGS20] W.h.p.,

Wlka Xf

- ZE (Wk V(ka)>
Bzmin(]E[Z‘Xl”] 1,1),

v(r) > B-(ASN(W \/c (-+ >> \//E

("variance”)

(bias)

where Z(K) = Z + (W] — W), and W] indep. dist. as Wi.

® No truncation! No hyperparameters.

® Contexts are fixed.

® Needs knowledge of 7, — only partly empirical:
VN and B can be computed exactly. Cost: n :~(
Can approximate using Monte-Carlo simulation! :-)




Is it any good? Synthetic Experiments

Fix K>0,7>0

® mp(a) x er{a=1}

7(a) x erHa=2}

R =T1{A; = k}, Ai ~ (")

® As 7 — 0, mp and ™ become increasingly misaligned



=04

Numerical tightness in sample size

=03

T=02

0.51 = = Value of the target policy

= = Value of the target policy

6| == Velue of the target policy

—— E:5 bound — S bound — £ bound
$0.4{ —e— B-Mbound (£=0.1) El —e— B-M bound (¢ =0.1) 3 —e— B-M bound (¢ =0.1)
S |~ BMbound(e=1.0) S 0.4 —+— BMbound (£=1.0) S |~ BMbound (e=1.0)
0.3} —— B-M bound (¢ =10.0) —e— 8:M bound (¢ = 10.0) 0.4{ =—e= B-M bound (£ =10.0)
—e— B-M bound (e = 100.0) —e— B-M bound (¢ = 100.0) —e— B-M bound (€ = 100.0)
02
02 02
01
0.0 0.0 0.0
10 107 107 10° 10 107 10 oF 10° 10 107 107 oF 10°
sample size Sample size

107
Sample size

E-S — Our bound

B-M — Empirical Bernstein's bound with e-truncated weights




Numerical tightness in error probability

0 ”Z'L v — mean = ADR | VA foogeoennenenenees —— mean - A-W |
306 gos
6=0.05, width = 0.30 o4 Fos
® 02{ [6=005, width =045 Boa 6=0.05, width=0.48
— mean - ESLB o1 — mean - Cheb 011 f5=0.05, width = 0.60
05 01 oz T o9 0o o1 @7 s 09 %o o1 02 T 09 05 o1 T o3

T3 0i o5 36 a7 3 03 04 05 05 T3 04 05 o6 07 35 53 o4 05 g6 o7
error probability 5 error probability & error probability error probability &

Similar setup as before, sample size = 104, left to right:
® E-S — our bound.
® Chebyshev's ineq.-based CI for SN.
® Empirical Bernstein's ineq.-based Cl for Doubly-robust
Estimator (DR) with W = _FAP9+ for some A = 1/y/n.

® Empirical Bernstein's ineq.-based Cl for Importance Weighting (IW)
with VV,-A.



Is it any good? Nonsynthetic Experiments

The Best Policy Selection problem

® We have a finite set of target policies 1.

® We do # € arg max,. . V(7).

® We want to maximize v(7)
— we'll use confidence bounds as 7°t.

Best policy

(Xis Ai, Ri)im1m

selection
#t € arg maxyen 0°(m)
(scoring

behavior policy: m,

function)

27

Logged dataset Candidate target policies
(contexts, actions chosen, (possibly trained on logged
rewards) data)



Nonsynthetic Experiments — Setup

Target policies are {wideal,we'w, TI'GSN} where

Oy = k| x) erx O

with two choices of parameters given by the optimization problems:

Bw € arg max \A/IW(WG) , Bgn € arg max \A/SN(WG) .

O€cRIXK O€eRIXK

® Trained by GD with = 0.01, T = 10°.

e 7 = (0.1 — cold! Almost deterministic.



Table: Average test rewards of the target policy when chosen by each
method of the benchmark.

Name Yeast PageBlok OptDigits
Size 1484 5473 5620
Efron-Stein LB 0.90 & 0.27 | 0.90 &+ 0.27 | 0.90 £+ 0.27
Trunc-IW + Bern. | 0.91 + 0.26 | 0.91 4+ 0.27 | 0.74 4 0.40
Trunc-DR + Bern. —00 0.91 £ 0.27 | 0.77 £ 0.37
SN + Cheb. —00 —00 —00
DR 0.52 + 0.31 0.77 £0.35 | 0.51 £0.33
Satlmage isolet PenDigits Letter kropt
6435 7797 10992 20000 28056
0.91 + 0.26 | 0.90 + 0.27 | 0.91 + 0.27 | 0.91 + 0.27 | 0.91 + 0.27
0.79 £033 | 0.74 +£0.40 | 0.81 +£0.34 | 0.90 + 0.27 | 0.90 £+ 0.27
—00 0.74 +0.40 | 0.91 + 0.26 | 0.91 + 0.27 | 0.91 + 0.27
—00 —00 —00 0.90 + 0.27 —00
0.75+ 035 | 0.21 £0.29 | 0.79 +£0.31 | 0.77 £ 0.28 | 0.91 + 0.27
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Proof sketch

v(m) — E[v(m) | X+ E[v(x) | X7] — E[0(x) | X]+E[o(x) | X{] - 0(x)

Concentration of contexts Bias of estimator Concentration of estimator

1. Concentration of contexts — Hoeffding since X{" are IID.
E[v(m) | X{] = § 3, E[WiR; | Xi].
2. Bias — IW is unbiased: “split” SN into IW and denominator.



Proof sketch

v(m) — E[v(m) | X+ E[v(x) | X7] — E[0(x) | X]+E[o(x) | X{] - 0(x)

Concentration of contexts Bias of estimator Concentration of estimator

1.

2.

Concentration of contexts — Hoeffding since X{" are IID.
E[v(m) | X{] = § 3, E[WiR; | Xi].

Bias — IW is unbiased: “split” SN into IW and denominator.
Harris’ inequality. Let f : R” — R be a non-increasing and
g : R" — R be a non-decreasing function. Then for

real-valued random variables (Zi, ..., Z,) independent from
each other, we have

E[f(Z1,...,Z))&(Z1, ..., Z)] < E[f(Z,...,Z)]Elg(Z,...,Z,)] -
This gives us:

E [22—1 Wi Rk

Xn
ZZ:1 Wi '

1
1} N [Zk_l Wi

xi|e

Z W, Ry
k=1




Goal: lower bound on E [V*"(7) | X'] — V*"(n)

A = f(S) — E[f(S)], V= ZE[ ff(5<k)))2‘x1,...,xk]

Semi-empirical Efron-Stein (ES) [KS19]
For any x > 2, y >0,

P (1Al < VIV +y) @+ I+ V/y)x) 21— e .

Take f = ¥°Y, condition on X]', and choose y = 1/n. Algebra gives

Wk A
V<ZIE ( )>

where Z(H) = Z + (W] — W), and W] indep. dist. as W,.

Wlka Xln




Canonical Pairs — [dIPLS08]

We call (A, B) a canonical pair if B > 0 and

)\2
sup E [exp <)\A— 82>] <1.
AER 2



Theorem 12.4 of [dIPLS08]

Theorem
Let (A, B) be a canonical pair. Then, for any t > 0,

A 2
IP’( 7+ (E[B]) Zt)gﬁe .

In addition, for all t > /2 and y > 0,

Al

P((Bz+y)(1+;|n(1+3;)) >t)

IA
('D‘
N



Recall

= £(S) —E[f(S)], V= ZE[(f £(s)) ‘xl,...
Lemma
(A,V/V) is a canonical pair.
Proof.

Let E4[-] stand for E[- | X1, ..., Xk]. The Doob martingale
decomposition of 7(S) — E[f(S)] gives

F(S) — EIf(S ]—Zok,

where Dy = E[f(S)] — Ex_1[f(S)] = Ex[f(S) — F(S¥))] and the

last equality follows from the elementary identity
Er—1[f(S)] = Ex[F(SM)].



Take-home message

® Tighter off-policy evaluation bounds for contextual bandits
e Tighter Cls for Self-normalized Estimator

® New high-probability user-friendly variance-dependent
concentration inequalities for general functions

Some limitations / future challenges:
® Requires knowledge of mp,

® Requires 7p, to be static, observations are 11D
— in many practical cases this is not a problem!
® Policy optimization (learning)
® Extension of the about to the PAC-Bayes setting [KS19]
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