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Off-Policy Contextual Bandit Model

Model: (PX ,PR|X ,A, πb)
• PX — prob. measure over context space X
• PR|X ,A — prob. kernel producing reward dist. given

context X ∈ X and action A ∈ [K ]
• πb — behaviour policy, e.g. πb(·|X )

Contextual off-policy evaluation problem

• An agent observes S = ((X1,A1,R1), . . . , (Xn,An,Rn))

Ai
ind.∼ πb(·|Xi ), Xi

ind.∼ PX , Ri
ind.∼ PR|X ,A

• An agent follows a randomized target policy π

Goal: estimate the value v(π) of that policy:

v(π) =

∫
X

∑
a∈[K ]

π(a|x)r(x , a) dPX (x)

where r(x , a) =

∫
u dPR|X ,A(u|x , a).
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Value estimation through Importance Weighting

Many ways to do that...

At the core of many is to use importance weights

Wi =
π(Ai |Xi )

πb(Ai |Xi )
i ∈ [n] .

For example, (unbiased) importance weighting estimator

v̂ iw(π) =
1

n

n∑
i=1

WiRi .

Indeed,
E[v̂ iw(π)] = v(π)

High variance!

For example, Wi ∼ p, where p is heavy-tailed (disagreeing policies)
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Value estimation through Doubly-robust Estimator

Another popular estimator is Doubly-Robust estimator

v̂dr(π) =
1

n

∑
i

π(Ai |Xi )η̂(Xi ,Ai ) +
1

n

∑
i

Wi (Ri − η̂(Xi ,Ai )),

for some fixed η̂ : (x , a)→ [0, 1] (typically a reward estimator fitted
on a held-out dataset).

• Unbiased

• Reduces variance, but we need a reward modeling (training,
tuning, dataset splitting)...



Value estimation through Self-normalized Estimator

Something simpler, a self-normalized importance weighting:

v̂ sn(π) =

∑n
i=1 WiRi∑n
i=1 Wi

.

• Biased (asymptotically unbiased (IID))
• In practice, low variance (self-normalization)

• Some intuition: Var(v̂ sn(π)) ≤ E
[∑

k
W 2

k

(
∑

i Wi)
2

]
• Wk∑

i Wi
∼ 1

nα for α ∈ [0, 1]

• (depending on “niceness” of the weight distribution)



What about v(π)?

Estimator alone is not enough. We want confidence intervals.

1− e−x ≤ P
(
v̂(π) + ε(x ,S , π, πb) ≤ v(π)

)
x > 0 .

How to do that? General decomposition:

v(π)− E [v(π) |X n
1 ]︸ ︷︷ ︸

Concentration of contexts

+E [v(π) |X n
1 ]− E [v̂(π) | X n

1 ]︸ ︷︷ ︸
Bias of estimator

+E [v̂(π) | X n
1 ]− v̂(π)︸ ︷︷ ︸

Concentration of estimator

• Concentration of texts: standard concentration (X n
1 are IID)

• Bias: sometimes estimator is unbiased, we’ll skip this for now..

• Concentration of estimator ...
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What is concentration?

• We have S = (Z1,Z2, . . . ,Zn) ∼ D ∈M1(Z) independent
r.v. taking values in some Z = Z1 × · · · × Zn.

• We have f : Z → R – a fixed measurable function.

How large are typical deviations ∆ = f (S)− E[f (S)]?

We care about bounds on the tail probability

P (∆ < t) and P (∆ > t) t > 0 .



What is concentration?

Some classical examples:

P (|∆| ≤ E[|∆|]/x) ≥ 1− x , x ∈ (0, 1) . (Markov)

Typically we are after bounds which decay “quickly” in x > 0.

Assume that indep. Z1, . . . ,Zn ∈ [0, 1] and f (S) = 1
n

∑
k Zk ,

P
(

∆ ≤
√

x

2n

)
≥ 1− e−x (Hoeffding)

P

∆ ≤ 1

n

√2x
∑
k

E[Z 2
k ] +

2

3
x

 ≥ 1− e−x

(Bernstein)
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Concentration of estimator

Some challenges for concentration of v̂ :
• Even for basic importance weighting v̂ iw it’s non-trivial:

Wi = π(Ai |Xi )
πb(Ai |Xi )

are unbounded
• Excludes standard concentration inequalities

(moments of v̂(π) can’t be easily controlled)

• We can “truncate”, e.g. W λ
i = π(Ai |Xi )

πb(Ai |Xi )+λ for some λ > 0.
• Ugly! In practice needs tuning of λ, doesn’t always work...

• Variance is important: need bounds with empirical variance.

• Sometimes estimator is not a sum IID elements.
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Estimator alone is not enough. We want confidence intervals.
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Let’s go back and pick Self-normalized Estimator (SN):
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1

Z

n∑
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• (Wi )i are unbounded

• v̂ sn is not a sum of IID elements (self-normalization)
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Concentration of general functions

- Going beyond “simple” functions: f is not necessarily a sum,
possibly non-linear.

- One possible way: sensitivity of f to “small perturbations”
controls concentration.

Let:

- S ′ = (Z ′1,Z
′
2, . . . ,Z

′
n) be an independent copy of S

- S (k) = (Z1, . . . ,Zk−1,Z
′
k ,Zk+1, . . . ,Zn)

Classical Efron-Stein (ES) inequality:

Var(f ) ≤ 1

2

n∑
k=1

E
[(

f (S)− f (S (k))
)2
]
.
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Tail Bounds through Bounded differences

The same idea extended to tail bounds.

Introduce Efron-Stein variance proxy

V ES(S , S ′) =
n∑

k=1

(f (S)− f (S (k)))2
+ ,

Bounded Differences

Assume: sups,s′∈Z V ES(s, s ′) ≤ c a.s. for some c > 0.
Then:

P
(
|∆| ≤

√
2cx
)
≥ 1− e−x , x ≥ 0 .

For averages, V ES(S ,S ′) . 1/n recovers Hoeffding’s inequality.



Beyond Bounded Differences

Bounded Differences
Assume: sups,s′∈ZV

ES(s, s ′) ≤ c a.s. for some c > 0. Then:

P
(
|∆| ≤

√
2cx
)
≥ 1− e−x , x ≥ 0 .

- Powerful, but pessimistic...

- ...neglects information about moments of ∆.

Exponential Efron-Stein Inequality [BLM03]
Let λ ∈ (0, 1). Then:

lnE[eλ∆] ≤ λ

1− λ
lnE

[
eE[VES(S,S ′) | S]

]
Chernoff bound gives us a tail bound:

P(∆ ≥ x) ≤ infλ∈(0,1) E[exp (λ∆− λx)]
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Beyond Bounded Differences
Exponential ES

lnE[eλ∆] ≤ λ

1− λ
lnE

[
eλE[VES(S,S ′) | S]

]
λ ∈ (0, 1)

- Control of exponential moment of V ES ⇒ concentration of ∆.

- Can we get something more user-friendly?

Assume that f satisfies second-order bounded differences
[Mau19, MP18]: for any D, some a, b > 0,

sup
s,s′∈Z

∑
k,j :k 6=j

(
(f (s)− f (s(k)))− (f (s(j))− f (s(k,j)))

)2

≤ a2/2 ,

maxk∈[n] f (S)− E[f (S) | Z1, . . .Zk−1,Zk , . . .Zn] ≤ b .

Then, for any x ≥ 0,

P
(

∆ ≤
√

2E[V ES(S ,S ′)] x + (a + 2/3b)x

)
≥ 1− e−x .



Beyond Bounded Differences
Exponential ES

lnE[eλ∆] ≤ λ

1− λ
lnE

[
eλE[VES(S,S ′) | S]

]
λ ∈ (0, 1)

- Control of exponential moment of V ES ⇒ concentration of ∆.

- Can we get something more user-friendly?

Assume that f satisfies second-order bounded differences
[Mau19, MP18]: for any D, some a, b > 0,

sup
s,s′∈Z

∑
k,j :k 6=j

(
(f (s)− f (s(k)))− (f (s(j))− f (s(k,j)))

)2

≤ a2/2 ,

maxk∈[n] f (S)− E[f (S) | Z1, . . .Zk−1,Zk , . . .Zn] ≤ b .

Then, for any x ≥ 0,

P
(

∆ ≤
√

2E[V ES(S ,S ′)] x + (a + 2/3b)x

)
≥ 1− e−x .



Limitations

- All of these inequalities implicitly control moments of
V ES(S , S ′)

- Constants a, b are data-independent

- ... typically we need boundedness of f or its domain to easily
get a finite pair a, b.



Semi-Empirical Inequalities
Introduce Semi-Empirical ES variance proxy

V =
n∑

k=1

E
[
(f (S)− f (S (k)))2

∣∣∣Z1, . . . ,Zk

]
.

Semi-empirical Efron-Stein (ES) [KS19]

For any x ≥ 2, y > 0,

P
(
|∆| ≤

√
(V + y) (2 + ln(1 + V /y)) x

)
≥ 1− e−x .

- Does not require boundedness of RVs, nor of co-domain of f .

- Essentially depends on V and a free parameter y > 0
(selected by the user). E.g. y = 1/n2 w.h.p. gives

|∆| /
√
V +

1

n
. (Bernstein-type behavior)
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What about v(π) again?

Estimator alone is not enough. We want confidence intervals.

1− e−x ≤ P
(
v̂(π) + ε(x ,S , π, πb) ≤ v(π)

)
x > 0 .

Let’s go back and pick SN:

v̂ sn(π) =
1

Z

n∑
i=1

WiRi , Z =
n∑

i=1

Wi .

• (Wi )i are unbounded

• v̂ sn is not a sum of IID elements (self-normalization)

• We really want CI to be controlled by the variance of v̂ sn.



Semi-empirical Efron-Stein Bound for SN

Theorem. [KVGS20] W.h.p.,

v(π) ≥ B ·

(
v̂ sn(π)−

√
c ·
(

V sn +
1

n

))
− c ′√

n
,

V sn =
n∑

k=1

E

[(
Wk

Z
+

W ′
k

Z (k)

)2
∣∣∣∣∣W k

1 ,X
n
1

]
(”variance”)

B = min

(
E
[ n
Z

∣∣∣ X n
1

]−1
, 1

)
, (bias)

where Z (k) = Z + (W ′
k −Wk), and W ′

k indep. dist. as Wk .

• No truncation! No hyperparameters.
• Contexts are fixed.

Recall some intuition: Var(v̂ sn(π)) ≤ E
[∑

k

(
W 2

k

Z

)2
]
≈ V sn

Bias B is multiplicative, ≈ 1 for “easy” distributions of Wi



Semi-empirical Efron-Stein Bound for SN

Theorem. [KVGS20] W.h.p.,

v(π) ≥ B ·

(
v̂ sn(π)−

√
c ·
(

V sn +
1

n

))
− c ′√

n
,

V sn =
n∑

k=1

E

[(
Wk

Z
+

W ′
k

Z (k)

)2
∣∣∣∣∣W k

1 ,X
n
1

]
(”variance”)

B = min

(
E
[ n
Z

∣∣∣ X n
1

]−1
, 1

)
, (bias)

where Z (k) = Z + (W ′
k −Wk), and W ′

k indep. dist. as Wk .

• No truncation! No hyperparameters.
• Contexts are fixed.
• Needs knowledge of πb — only partly empirical:

V sn and B can be computed exactly. Cost: nK :-(
Can approximate using Monte-Carlo simulation! :-)



Is it any good? Synthetic Experiments

• Fix K > 0, τ > 0

• πb(a) ∝ e
1
τ
I{a=1}

• π(a) ∝ e
1
τ
I{a=2}

• Ri = I{Ai = k}, Ai ∼ πb(·)

• As τ → 0, πb and π become increasingly misaligned



Numerical tightness in sample size
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E-S — Our bound

B-M — Empirical Bernstein’s bound with ε-truncated weights



Numerical tightness in error probability

error probability error probability error probability error probability

Similar setup as before, sample size = 104, left to right:

• E-S — our bound.

• Chebyshev’s ineq.-based CI for SN.

• Empirical Bernstein’s ineq.-based CI for Doubly-robust

Estimator (DR) with W λ
i = π(Ai |Xi )

πb(Ai |Xi )+λ for some λ = 1/
√
n.

• Empirical Bernstein’s ineq.-based CI for Importance Weighting (IW)
with W λ

i .



Is it any good? Nonsynthetic Experiments

The Best Policy Selection problem

• We have a finite set of target policies Π.

• We do π̂ ∈ arg maxπ∈Π v̂ est(π).

• We want to maximize v(π̂)
— we’ll use confidence bounds as v̂ est.

(Xi, Ai, Ri)i=1...n

behavior policy: πb

Best policy
selection

(scoring
function)

π1

π2

πm

π̂ ∈ argmaxπ∈Π v̂
est(π)

Logged dataset
(contexts, actions chosen,

rewards)

Candidate target policies
(possibly trained on logged

data)



Nonsynthetic Experiments – Setup

Target policies are
{
πideal, πΘ̂IW , πΘ̂SN

}
where

πΘ(y = k | x) ∝ e
1
τ
x
>θk

with two choices of parameters given by the optimization problems:

Θ̂IW ∈ arg max
Θ∈Rd×K

v̂ iw(πΘ) , Θ̂SN ∈ arg max
Θ∈Rd×K

v̂ sn(πΘ) .

• Trained by GD with η = 0.01, T = 105.

• τ = 0.1 — cold! Almost deterministic.



Table: Average test rewards of the target policy when chosen by each
method of the benchmark.

Name Yeast PageBlok OptDigits
Size 1484 5473 5620

Efron-Stein LB 0.90 ± 0.27 0.90 ± 0.27 0.90 ± 0.27
Trunc-IW + Bern. 0.91 ± 0.26 0.91 ± 0.27 0.74 ± 0.40
Trunc-DR + Bern. −∞ 0.91 ± 0.27 0.77 ± 0.37
SN + Cheb. −∞ −∞ −∞
DR 0.52 ± 0.31 0.77 ± 0.35 0.51 ± 0.33

SatImage isolet PenDigits Letter kropt
6435 7797 10992 20000 28056

0.91 ± 0.26 0.90 ± 0.27 0.91 ± 0.27 0.91 ± 0.27 0.91 ± 0.27
0.79 ± 0.33 0.74 ± 0.40 0.81 ± 0.34 0.90 ± 0.27 0.90 ± 0.27
−∞ 0.74 ± 0.40 0.91 ± 0.26 0.91 ± 0.27 0.91 ± 0.27
−∞ −∞ −∞ 0.90 ± 0.27 −∞

0.75 ± 0.35 0.21 ± 0.29 0.79 ± 0.31 0.77 ± 0.28 0.91 ± 0.27
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Proof sketch

v(π)− E [v(π) |X n
1 ]︸ ︷︷ ︸

Concentration of contexts

+E [v(π) |X n
1 ]− E [v̂(π) | X n

1 ]︸ ︷︷ ︸
Bias of estimator

+E [v̂(π) | X n
1 ]− v̂(π)︸ ︷︷ ︸

Concentration of estimator

1. Concentration of contexts – Hoeffding since X n
1 are IID.

E [v(π) |X n
1 ] = 1

n

∑
i E [WiRi |Xi ].

2. Bias – IW is unbiased: “split” SN into IW and denominator.

Harris’ inequality. Let f : Rn → R be a non-increasing and
g : Rn → R be a non-decreasing function. Then for
real-valued random variables (Z1, . . . ,Zn) independent from
each other, we have

E[f (Z1, . . . ,Zn)g(Z1, . . . ,Zn)] ≤ E[f (Z1, . . . ,Zn)]E[g(Z1, . . . ,Zn)] .

This gives us:

E
[∑n

k=1 WkRk∑n
k=1 Wk

∣∣∣∣ X n
1

]
≤ E

[
1∑n

k=1 Wk

∣∣∣∣ X n
1

]
E

[
n∑

k=1

WkRk

∣∣∣∣∣ X n
1

]
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Goal: lower bound on E [v̂ sn(π) | X n
1 ]− v̂ sn(π)

∆ = f (S)− E[f (S)], V =
n∑

k=1

E
[
(f (S)− f (S (k)))2

∣∣∣X1, . . . ,Xk

]
.

Semi-empirical Efron-Stein (ES) [KS19]

For any x ≥ 2, y > 0,

P
(
|∆| ≤

√
(V + y) (2 + ln(1 + V /y)) x

)
≥ 1− e−x .

Take f = v̂ sn, condition on X n
1 , and choose y = 1/n. Algebra gives

V ≤
n∑

k=1

E

[(
Wk

Z
+

W ′
k

Z (k)

)2
∣∣∣∣∣W k

1 ,X
n
1

]

where Z (k) = Z + (W ′
k −Wk), and W ′

k indep. dist. as Wk .



Canonical Pairs – [dlPLS08]

We call (A,B) a canonical pair if B ≥ 0 and

sup
λ∈R

E
[

exp

(
λA− λ2

2
B2

)]
≤ 1 .



Theorem 12.4 of [dlPLS08]

Theorem
Let (A,B) be a canonical pair. Then, for any t > 0,

P

(
|A|√

B2 + (E[B])2
≥ t

)
≤
√

2e−
t2

4 .

In addition, for all t ≥
√

2 and y > 0,

P

 |A|

(B2 + y)
(

1 + 1
2 ln

(
1 + B2

y

)) ≥ t

 ≤ e−
t2

2 .



Recall

∆ = f (S)− E[f (S)] , V =
n∑

k=1

E
[
(f (S)− f (S (k)))2

∣∣∣X1, . . . ,Xk

]
.

Lemma
(∆,
√
V ) is a canonical pair.

Proof.
Let Ek [·] stand for E[· | X1, . . . ,Xk ]. The Doob martingale
decomposition of f (S)− E[f (S)] gives

f (S)− E[f (S)] =
n∑

k=1

Dk ,

where Dk = Ek [f (S)]− Ek−1[f (S)] = Ek [f (S)− f (S (k))] and the
last equality follows from the elementary identity
Ek−1[f (S)] = Ek [f (S (k))].



Take-home message

• Tighter off-policy evaluation bounds for contextual bandits

• Tighter CIs for Self-normalized Estimator

• New high-probability user-friendly variance-dependent
concentration inequalities for general functions

Some limitations / future challenges:

• Requires knowledge of πb
• Requires πb to be static, observations are IID

— in many practical cases this is not a problem!
• Policy optimization (learning)

• Extension of the about to the PAC-Bayes setting [KS19]
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