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Motivation

• Large amounts of offline data are readily available
• Healthcare
• Autonomous Driving / Smart Cities
• Education
• Robotics

• The problem: offline data is often partially observable.

• May result in biased estimates that are confounded by
spurious correlation.
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Motivation

Use offline data for reinforcement
learning (RL)
• Off-policy evaluation.

• Batch-mode reinforcement
learning (offline RL).

• Let’s start with bandits
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Part I: Linear Bandits + Confouned Data

• Mixed setting: online + offline
• Linear contextual bandit (online)

• T trials, |A| discrete actions, xt ∈ X i.i.d. contexts
• Context dimension: d
• Reward given by rt =

〈
xt ,w

∗
at

〉
+ ηt

• {w∗a ∈ Rd
}
a∈A are unknown parameter vectors

• ηt is some conditionally σ-subgaussian random noise
• Minimize regret:

Regret (T ) =
T∑
t=1

〈
xt ,w

∗
π∗(xt)

〉
−

T∑
t=1

〈
xt ,w

∗
at

〉
.
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Setup: Linear Bandits + Confouned Data

Additional access to partially observable offline data

• Data was generated by an unknown, fixed behavior policy πb
• Only L features of the context are visible in the data

• Let xo, xh denote the observed and unobserved features of the
context x , respectively.
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Partially Observable Data = Linear Constraints

• Suppose we ignore that the data is partially observable.

• We find a least square solution to

min
b∈RL

Na∑
i=1

(〈xoi , b〉 − ri )
2 ∀a ∈ A.

• Denote by bLSa its solution.

• Can bLSa provide useful information for the bandit problem?
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Partially Observable Data = Linear Constraints

Proposition

Let R11(a) = Eπb
(
xo (xo)T |a

)
, R12(a) = Eπb

(
xo
(
xh
)T |a) . The

following holds almost surely for all a ∈ A.

lim
N→∞

bLSa =

(
IL×L, R−1

11 (a)R12(a)

)
w∗a ,

• bLSa provides us L independent linear relations.

• We only need to learn a lower dimensional subspace.

S. Mannor November 2020 OPE in POE 8 / 36



Bandits
Off-Policy Evaluation
Example: Probabilistic Maintenance
Off-Policy Evaluation In Partially Observable Environments
Relation to Causal Inference
OPE Results

(RL)2

Linear Bandits with Linear Constraints

• Given side information to the bandit problem

Maw
∗
a = ba , a ∈ A.

• Ma ∈ RL×d , ba ∈ RL are known.

• Let Pa denote the orthogonal projection onto the kernel of Ma

• Effectively dimension of problem: d − L

• We can thus achieve regret Õ
(

(d − L)
√
KT
)
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Linear Bandits with Linear Constraints

Algorithm 1 OFUL with Linear Side Information

1: input: α > 0,Ma ∈ RL×d , ba ∈ RL, δ > 0

2: init: Va = λId ,Ya = 0, ∀a ∈ A

3: for t = 1, . . . do

4: Receive context xt

5: ŵPa
t,a = (PaVaPa)†

(
Ya − (Va − λId)M†a ba

)
6: ŷt,a =

〈
xt ,M

†
a ba
〉

+
〈
xt , ŵ

Pa
t,a

〉
7: UCBt,a =

√
βt(δ)‖xt‖(PaVaPa)†

8: at ∈ arg maxa∈A{ŷt,a + αUCBt,a}

9: Play action at and receive reward rt

10: Vat = Vat + xtx
T
t ,Yat = Yat + xtrt

11: end for
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Deconfounding Partially Obserable Data

• In our case, for partially observable offline data, we get

Ma =

(
IL, R−1

11 (a)R12(a)

)
,

and ba is the solution to minb∈RL

∑Na
i=1(〈xoi , b〉 − ri )

2.

• Problem: R12(a) is unknown (not identifiable)
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Deconfounding Partially Obserable Data

• Solution: Assume that at each round t > 0, we can query πb.

• This lets us get an estimate for R12 as

R̂12(a, t) =
1

t

t∑
i=1

1ai=a

Pπb(a)
(xoi )(xhi )T

• Our final estimate for Ma is then

M̂t,a =

(
IL, R−1

11 (a)R̂12(a, t)

)
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Deconfounding Partially Obserable Data

Algorithm 2 OFUL with Partially Observable Offline Data

1: input: α>0, δ>0,T , ba∈RL (from dataset)

2: for n = 0, . . . , logT − 1 do

3: Use 2n previous samples from πb to update the estimate of M̂2n,a, ∀a ∈ A

4: Calculate M̂†2n,a, P̂2n,a, ∀a ∈ A

5: Run Algorithm 1 for 2n time steps with bonus
√
βn,t(δ) and M̂2n,a, ba

6: end for
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Deconfounding Partially Obserable Data

Theorem (Main Result)

For any T > 0, with probability at least 1− δ, the regret of
Algorithm 2 is bounded by

Regret (T ) ≤ Õ
(

(1 + fB1)(d − L)
√
KT
)
.

• fB1 is a factor indicating how hard it is to estimate the linear
constraints

• Worst case dependence: fB1 ≤ Õ
(

maxa
(L(d−L))1/4

Pπb (a)

)
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Part II: Off-Policy Evaluation in Reinforcement Learning

Given: data generated by a behavior policy πb
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Off-Policy Evaluation in Reinforcement Learning

Evaluate the value of a different policy πe
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Off-Policy Evaluation (OPE)

• Given: Data generated by a behavioral policy πb in a Markov
Decision Process (MDP)

• Objective: Evaluate the value of an evaluation policy πe .
• Methods:

• Direct methods (model based and model free)
• Inverse propensity scoring (e.g., importance sampling)
• Doubly robust methods

• How do we define OPE under partial observability?
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Example: Probabilistic Maintenance

• We have an expensive machine that needs monthly
maintenance.

• Every month an expert comes and checks the machine.

• The expert knows whether the machine is working properly.

• The expert can choose to fix the machine or leave it as is.
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Example: Probabilistic Maintenance

• State Space: Working / Broken

• Action Space: Fix / Not Fix
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Example: Probabilistic Maintenance (Numeric)
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OPE in Partially Observable Environments
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Partially Observable Markov Decision Process (POMDP)
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Off-Policy Evaluation in POMDPs

The goal of off-policy evaluation in POMDPs is to evaluate v(πe)
using the measure Pπb(·) over observable trajectories T o

L and the
given policy πe .
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Reinforcement Learning and Causal Inference: Better
Together
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A Meeting Point of RL and CI

• When performing off-policy evaluation (or learning) on data
where we do not have access to the same data as the agent.

• Example: physicians treating patients in an intensive care unit
(ICU)

• Mistakes were made: applying RL to observational ICU data
without considering hidden confounders or overlap (common
support, positivity)

• In RL, hidden confounding can be described using partial
observability.
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CI-RL Dictionary

Causal Term RL Term Example

confounder
(possibly hidden)

state
(possibly

unobserved)

information
available to
the doctor

action,
treatment

action
medications,
procedures

outcome reward mortality

treatment
assigment
process

behavior
policy

the way
doctors treat

patients

proxy
variable

observations
electronic health

record
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The Three Layer Causal Hierarchy

Level (Symbol) Typical Activity Typical Questions

1. Association
P(y |x)

Seeing
What is?

How would seeing x
change my belief in y?

2. Intervention
P(y |do (x) , z)

Doing
Intervening

What if?
What if I do x?

3. Counterfactual
P(yx |x ′, y ′)

Imagining
Retrospection

Why?
Was it x that caused y?

What if I had acted differently?

Pearl, Judea. ”Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution.”
Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, 2018.
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Off-Policy Evaluation in POMDPs

Theorem 1 (POMDP Evaluation)

Assume |O| ≥ |S| and under invertibility assumptions of the
dynamics we have an estimator

v(πe) = f (observable data)
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Off-Policy Evaluation in POMDPs

Theorem 1 (POMDP Evaluation)

Assume |O| ≥ |S| and that the matrices Pb(Oi |ai ,Oi−1) are
invertible for all i and all ai ∈ A. For any τo ∈ T o

t define the
generalized weight matrices

Wi (τ
o) = Pb(Oi |ai ,Oi−1)−1Pb(Oi , oi−1|ai−1,Oi−2)

for i ≥ 1, and W0(τo) = Pb(O0|a0,O−1)−1Pb(O0).

Denote Πe(τo) =
∏t

i=0 π
(i)
e (ai |hoi ), Ω(τo) =

∏t
i=0 Wt−i (τ

o).
Then

Pe(rt) =
∑
τo∈T o

t

Πe(τo)Pb(rt , ot |at ,Ot−1)Ω(τo).
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POMDP Limitation

• Causal structure of POMDPs is restricting.

• Must invert matrices of dimension S even when O ⊂ S.

• Solution:
• Detach observed and unobserved variables.
• Decoupled POMDPs (more in our AAAI 20’ paper).
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A Special POMDP (DE-POMDP)

POMDP Decoupled PODMP

Z observations, U state Z&U is state O is observations
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Conclusions

• Unknown states (confounders) produce bias through factors
that affect both observed actions and rewards.

• This is a major problem in offline off-policy data.

• Be aware of such biases when using off-policy data that was
not generated by them.

• Our work is a first step to introducing OPE for partially
observable environments in RL.

• Causality and RL: Better together
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