
On the Assumptions

used for Obfuscation

Benny Applebaum

Tel Aviv University

New Developments in Obfuscation

Simons Institute, December 2020

Obfuscation

LWE

SXDH

LPN

(mod-q)

Local PRGs

PKE

Assumptions

(Homomotopia)

Cheap

pseudorandomness

(Fast-mini-Crypt)

Learning Parity with Noise [BFKL94]

Problem: find s

<ai,s>+noiseai bi

n

m𝒔ℤ𝟐
𝒏

ℤ𝟐
𝒏

Decoding Random Linear Code [GKL88]

A

s

e

n

m +



= b

iid noise vector of rate 

Problem: find s

• Information theoretic solvable when 𝑚 > 𝑛/(1 − 𝐻(𝜖))

• Gets “easier” when 𝑚 grows and 𝜖 decreases

- Solving LPN(𝑚, 𝜖) => Solving LPN(𝑚+𝑚′, 𝜖 − 𝜖′)

• Trivially solvable in time 2𝐻 𝜖 𝑛

• Trivially solvable w/p 1 − 𝜖 𝑛 < 1 − 𝜖𝑛

Known Attacks

Noise

poly-LPN

const-LPN

Samples

(m)

exp(
𝒏

log 𝒏
)

𝒏𝟏+𝒄

𝑶(𝒏)

Known Attacks

Noise

Quasi-Poly

SZK

worst->avg
[BLVW18]

Poly-time

[BK02,

APY09]

PKE

[Ale03]

Non-Trivial attacks

+ implication

[BJMM12,AIK04]

[Lyu05]

[BKW03]

exp(
n

loglog n
)

exp(
n

log n
)

Samples

(m)

exp(
𝒏

log 𝒏
)

𝒏𝟏+𝒄

𝑶(𝒏)

Simple Distinguishing Attack

A

s

e

n

m +



= b

Goal: Distinguish (A,b) from (A, uniform)

1. Find “small” set of linearly dependent rows in A
output

Simple Distinguishing Attack

A

s

e

n

m +



= b

Goal: Distinguish (A,b) from (A, uniform)

100000

output

v

1. Find “small” set of linearly dependent rows in A

Δ-weight vector v in co-Kernel(A)

2. Output 𝑣, 𝑏 = 𝑣, 𝑒

Distinguishing advantage 0.5 − 𝜖 Δ = exp(−Δ/𝜖)

How small is Δ = Δ(𝑛,𝑚)?

Ignoring complexity of finding v  overall complexity exp in ෨𝑂(
𝑛

𝜖 log𝑚
)

෨𝑂(
𝑛

𝜖 log 𝑚
)

Thm.[BFKL94] LPN  pseudorandomness (A,As+e)  (A,Um)

Proof: [AIK07]

• Assume LPN  By [GL89] can’t approximate <s,r> for a random r

• Use distinguisher D to compute hardcore bit <s,r> given a random r

-Given (A,b=As+e) and r{0,1}n define C=re-random(A) s.t:

C is random and b =

Pseudorandomness

A

s

e+



= b

Uniform if <r,s>=1

Cs+e if <r,s>=0

r

v v v+C <r,s>

Random Self-Reducibility

A

s

e

n

m +



= b

Problem: find s

A

r

n

m

+

=

Random Self-Reducibility

A

s+r

e

n

m +



= b'

Problem: find s

Dual Version: Syndrome Decoding

A

s

e

n

m +



= b

iid noise vector of rate 

Problem: find s

Parity-Check
e

m

m-n



=

iid noise vector of rate 

Problem: find e

Dual Version: Syndrome Decoding

A

s

e

n

m +



= b

iid noise vector of rate 

Problem: find s

Parity-Check
e

m

m-n



=

iid noise vector of rate 

Problem: find x

Parity-Check

Corollary: Planting Short Vector in Kernel

Parity-Check
e

m

m-n



=

iid noise vector of rate 

Public-Key Encryption [Alek03]

Public-key

e



Secret-key

Enc(0)= noisy codeword

Enc(1)= uniform

LPN: Evidence for Hardness
• Search problem, Random-Self Reducibility

• Gaussian-Elimination is noise sensitive

• Well studied in learning/coding community for some parameters

- “Win-Win” results

- Provably resist limited attacks

• Robust (Search-to-Decision, leakage-resilient, low-weight secret, circularity)

[BFKL93,AGV09, DKL09, ACPS09, GKPV10, …,] See Pietrzak’s survey

• Seems hard even for Quantum algorithms and co-AM algorithms

• “Simple mathematical domain” (compare with factoring/group-based crypto)

LPN: Features

• Simple algebraic structure: “almost linear” function

• Computable by simple (bit) operations
- exploited by [HB01, …]

Variants

A

s

e

n

m +



= b

iid noise vector of rate 

• Under-constraint case ( hashing [AHIKV17])

• Changing the matrix distribution

- Make sure that Δ(𝐴) is not too small

• Noise distribution
- Fixed weight vector (OK)

- Structured Noise (may be subject to linearization [AG11])

• Larger Alphabet

- Noise: Gaussian vs Bernoulli

“LPN” over ℤ𝑞

A

s

e

n

m +



= b

𝒆𝒊 = ቊ
𝑼𝒒 w.p 𝝐

𝟎 w.p 𝟏 − 𝝐

• Decoding over the q-ary symmetric channel (Random-Linear-Code)

• Support(x) = sequence of iid Bernoulli variables
- Lifting binary-crypto to Arithmetic Crypto [IPS09, AAB15, ADINZ17, BCGI18…]

• Search-RLC(q,n,m,𝜖): hard to find 𝑠
• Decision-RLC(q,n,m,𝜖): 𝐴, 𝑏 ≈ (𝑈𝑞

𝑚×𝑛, 𝑈𝑞
𝑚)

• Equivalence not known when 𝑞 is super-polynomial

𝐴 ∈𝑅 ℤ𝑞
𝑚×𝑛

𝑠 ∈𝑅 ℤ𝑞
𝑛

“LPN” over ℤ𝑞

A

s

e

n

m +



= b

𝒆𝒊 = ቊ
𝑼𝒒 w.p 𝝐

𝟎 w.p 𝟏 − 𝝐

Seems as hard as binary version (harder?)

• Noisy Linear Algebra is hard

• Large 𝑞 less noise cancelations

Powerful assumption: Effective secret is O𝜖(𝑛) bits

but stretch is Ω𝜖(𝑚) field elements

Requires further study especially for polynomial regime

𝐴 ∈𝑅 ℤ𝑞
𝑚×𝑛

𝑠 ∈𝑅 ℤ𝑞
𝑛

-(q-1)/2 (q-1)/20

Learning with Errors Variant [Regev05]

A

s

x

n

m +



= b

Noise induces geometry

different game

𝐴 ∈𝑅 ℤ𝑞
𝑚×𝑛

𝑠 ∈𝑅 ℤ𝑞
𝑛

𝜖𝑞

Mainstream Crypto Assumption

-(q-1)/2 (q-1)/20

Learning with Errors Variant [Regev05]

A

s

x

n

m +



= b

• Modulus poly(n) or exp(n)

• Noise 1/poly(n) or 1/sub-exponential

As hard as worst-case Lattice problems (GAP-SVP) [Reg05,Peik09]

• Approximation factor ෨𝑂(𝑛/𝜖)
• exp-approximation easy via [LLL82]

Believed to be sub-exp secure even against Quantum adversaries

𝐴 ∈𝑅 ℤ𝑞
𝑚×𝑛

𝑠 ∈𝑅 ℤ𝑞
𝑛

𝜖𝑞

-(q-1)/2 (q-1)/20

Learning with Errors Variant [Regev05]

A

s

x

n

m +



= b

Low noise  Can repeatedly add noise vectors
• Unlike the Bernoulli variant

• Generate additional equations for free

• Key to many applications [GPV08, …,BV11,…]

• Puts the problem in SZK (“co-NP attacks”) [GG98,MV03]

𝐴 ∈𝑅 ℤ𝑞
𝑚×𝑛

𝑠 ∈𝑅 ℤ𝑞
𝑛

𝜖𝑞

Local PRGs

y1 ym

Locally Computable Functions
(NC0)

X1 Xn

yi= Qi(x1,x2,x5)

Each output depends on constant number of inputs

Function defined by:

• (m,n,d) graph G

• List of d-local predicates Q1,…,Qm:{0,1}d{0,1}

OUTPUT

INPUT

d

y1 ym

Locally-Computable PRGs?

X1 Xn

yi= Qi(x1,x2,x5)

Long line of works [CM01,MST02,AIK04,….] see survey [A13]

Stretch matters!

OUTPUT

INPUT

y1 ym

Sub-Linear Local PRG in NC0

X1 Xn

yi= Qi(x1,x2,x5)

Stretch: 𝑚 = 𝑛 + 𝑛1−𝜖

Follows from any OWF in NC1 [AIK04]

• Most standard cryptographic assumptions

• Lattices, DLOG, factoring, LPN, asymptotic DES/AES

OUTPUT

INPUT

Lin-PRG in NC0

Linear Stretch: 𝑚 = 1 + 𝜖 𝑛

Follows from LPN over sparse matrix [AIK07]

• Assumption made by [Alek03]

• Implies hardness of refuting 3-SAT [Feige02]

A

s

e

n

m=O(n) +

=1/4

= b

Random Sparse Matrix

or

Any sparse expanding matrix

00100101

Lin-PRGs in NC0

[A-17] Also follows from other assumptions

• Any exponentially-hard regular Local OWF (e.g., [Gol00])

• Exp-hard LPN over O(n)-time computable code, e.g., [DI14]

e+

=1/4

= bA

n

m=O(n)

00100101
s

y1 ym

Lin-PRGs in NC0

X1 Xn

yi= Qi(x1,x2,x5)

Generic attack [AIK07]

• Find shrinking set

• Enumerate over projected seed

OUTPUT

INPUT

Lin-PRGs in NC0

X1

yi= Qi(x1,x2,x5)

Generic attack [AIK07]

• Find “small” shrinking set of size k

• Enumerate over projected seed

OUTPUT

INPUT

y1 ym

Lin-PRGs in NC0

X1 Xn

yi= Qi(x1,x2,x5)

Expansion is necessary!

• Plausible to achieve exp(𝑛) security

OUTPUT

INPUT

Poly-Stretch PRG in NC0

Polynomial-Stretch: 𝑚 = 𝑛2

• Can only get 𝑛1−𝛿 expansion  sub-exp security

• Morally should get from sparse-LPN w/ sub-const noise [ABW10]

• All known constructions rely on var’s of Goldreich’s Assumption

X1 Xn

yi= Qi(x1,x2,x5)
OUTPUT

INPUT

Goldreich’s Assumption [ECCC ‘00]

X1 Xn

yi= Q(x1,x2,x5)

Use expander graph + “good” (single) predicate

OUTPUT

INPUT

Conjecture: for random predicate Q , and  expander G, m=n

inversion takes exp((n))-time

• First candidate for optimal one-way function

• Random local function is whp exp-hard to invert

• Constraint Satisfaction Problems are cryptographically-hard

expander: every set of n/3

outputs touch 2n/3 inputs

y1 ym

Generalization to Long Output

X1 Xn

yi= Q(x1,x2,x5)
OUTPUT

INPUT

OW-Conjecture: for properly chosen predicate Q, any graph G

inversion complexity is exponential in the expansion of G

Params: output length m, predicate Q, locality d, expansion quality

• Larger m  easier to attack  security requires more “robust” predicates

• Weaker variant: for random graphs no poly-time inversion

• Strong variant confirmed for many classes of attacks

[CEMT09,ABW10,A12,ABR12,BR11,BQ12,OW14,FPV15,AL16, KMOW16] See survey [A15]

Generalization to Long Output

OW-Conjecture: for properly chosen predicate Q, any graph G

inversion complexity is exponential in the expansion of G

PRG-Conject: for properly chosen predicate Q, any graph G

distinguishing complexity is exp. in expansion of G

[A12,AR16]

1/poly-advantage

weak

[AK19]

Poly-stretch local PRG

Generalization to Long Output

PRG-Conject: for properly chosen predicate Q, any graph G

distinguishing complexity is exp. in expansion of G

Which predicates yield PRGs?

“Local” attacks

Linear algebra

Resiliency

“Degree”

Goal: Hard to distinguish y from random

y1 ym

X1 Xn

yi= Q(x1,x2,x5)
OUTPUT

INPUT

More fragile than one-wayness:

Predicate must be balanced

y1 ym

X1 Xn

yi= MAJ(x1,x2,x5)
OUTPUT

INPUT

More fragile than one-wayness:

Predicate must be balanced even after fixing single input

Goal: Hard to distinguish y from random

y1 ym

X1 Xn

yi= MAJ(x1,x2,x5)
OUTPUT

INPUT

k-resiliency [Cho-Gol-Has-Fre-Rud-Smo]:

Predicate must be balanced even after fixing k inputs

Goal: Hard to distinguish y from random

Resiliency defeats local attacks
[Mossel-Shpilka-Trevisan’03]

For m=ns resiliency of k=2s-1 is necessary and sufficient against

• Sub-exponential AC0 circuits [A-Bogdanov-Rosen12]

• Semidefinite programs [O’Donnel Witmer14]

• Sum of Squares attacks [Kothari Mori O’Donnel Witmer17]

• Statistical algorithms [Feldman Perkins Vempala15]

X1 Xn

OUTPUT

INPUT

Resiliency defeats local attacks

For m=ns resiliency of k=2s-1 is necessary and sufficient against

• Sub-exponential AC0 circuits [A-Bogdanov-Rosen12]

• Semidefinite programs [O’Donnel Witmer14]

• Sum of Squares attacks [Kothari Mori O’Donnel Witmer17]

• Statistical algorithms [Feldman Perkins Vempala15]

X1 Xn

OUTPUT

INPUT

Defeating Linear Algebra

For m=ns need algebraic degree of s

Resiliency+DegreePseudorandomness? [OW14, A14, FPV15]

• Yes for m<n5/4 and linear distinguishers [MST03, ABW10, ABR12]

i.e., small-bias generator [NN]

• No for larger m’s [A-Lovett16]

X1 Xn

OUTPUT

INPUT

XOR(x1,x2,x5)+AND(x7,x8,x10)

Defeating Linear Algebra [A-Lovett16]

b-fixing degree: algebraic degree of b even after fixing b inputs

Thm: For m=ns, (s)-bit fixing degree

necessary & sufficient against linear distinguishers

A stronger form of rational-degree is necessary & sufficient for

defeating “algebraic attacks”

X1 Xn

OUTPUT

INPUT

XOR(x1,x2,x5)+AND(x7,x8,x10)+MAJ(x7,x8,x10)

Summary: Local PPRGs

Seem to achieve sub-exp security

• For proper predicate best attack is exponential in expansion

• Concrete security should be further studied, see [CDMRR18]

Interesting TCS applications

• CSPs are hard to approximate [Feige02, Ale03, AIK07,…,A17]

• Densest-subgraph is hard to approximate [A12]

• Hardness of learning depth-3 AC0 [AR16]

Symmetric eXternal DH [BGdMM05]

𝑒:𝔾1 × 𝔾2 → 𝔾𝑇

• SXDH: DDH is hard in both 𝔾1 and 𝔾2

- (𝑔𝑎 , 𝑔𝑏 , 𝑔𝑎𝑏) ≈ (𝑔𝑎 , 𝑔𝑏 , 𝑔𝑐) for 𝑎, 𝑏, 𝑐 ← ℤ𝑝

- where 𝑔 generates 𝔾1 or 𝔾2

Symmetric eXternal DH [BGdMM05]

𝑒:𝔾1 × 𝔾2 → 𝔾𝑇

• SXDH: DDH is hard in both 𝔾1 and 𝔾2

• Strong form of DDH

- Can be broken by Quantum adversary

• Standard bilinear assumption

• Groups defined over elliptic curves

• Decisional

• Cryptanalysis by math community?

Cryptomania
LWE

SXDH

LPN

(mod-q)

Local PRGs

MinicryptComplexity

of

Crypto

Order?
LWE

SXDH

LPN

(mod-q)

Local PRGs

Thank

You!

