On the **Assumptions** used for **Obfuscation**

Benny Applebaum

Tel Aviv University

New Developments in Obfuscation Simons Institute, December 2020

Learning Parity with Noise [BFKL94]

Problem: find s

Decoding Random Linear Code [GKL88]

Problem: find s

- Information theoretic solvable when $m > n/(1 H(\epsilon))$
- Gets "easier" when m grows and ϵ decreases
 - Solving LPN (m, ϵ) => Solving LPN $(m + m', \epsilon \epsilon')$
- Trivially solvable in time $2^{H(\epsilon)n}$
- Trivially solvable w/p $(1 \epsilon)^n < 1 \epsilon n$

Known Attacks

$$n^{1+c}$$

O(n)

poly-LPN

const-LPN

Noise

$$\frac{\log n}{n}$$
 $\frac{\log^2 n}{n}$

$$\frac{1}{n^{0.9}}$$
 $\frac{1}{n^{0.5}}$ $\frac{1}{n^{0.1}}$

0.25

0.5

Known Attacks

Samples (m)

$$\exp(\frac{n}{\log n})$$

$$n^{1+c}$$

O(n)

$$\exp(\frac{n}{\log n})$$
 [BKW03]

$$\exp(\frac{n}{\log\log n})$$
 [Lyu05]

Poly-time SZK [BK02, worst->avg APY09] [BLVW18]

Sub-Exp $exp(n^{1-\delta})$

PKE [Ale03]

Exp

exp(n)

Non-Trivial attacks
+ implication
[BJMM12,AIK04]

Noise

$$\frac{\log n}{n}$$
 $\frac{\log^2 n}{n}$

$$\left(\frac{1}{n^{0.9}} \quad \frac{1}{n^{0.5}} \quad \frac{1}{n^{0.1}}\right)$$

0.5

Simple Distinguishing Attack

Goal: Distinguish (A,b) from (A, uniform)

1. Find "small" set of linearly dependent rows in A

Simple Distinguishing Attack

Goal: Distinguish (A,b) from (A, uniform)

- Find "small" set of linearly dependent rows in A
 Δ-weight vector v in co-Kernel(A)
- 2. Output $\langle v, b \rangle = \langle v, e \rangle$

Distinguishing advantage $(0.5 - \epsilon)^{\Delta} = \exp(-\Delta/\epsilon)$

How small is $\Delta = \Delta(n, m)$? $\tilde{O}(\frac{n}{\epsilon \log m})$

Ignoring complexity of finding $\mathbf{v} \Rightarrow \text{overall complexity exp in } \tilde{O}(\frac{n}{\epsilon \log m})$

Pseudorandomness

Thm.[BFKL94] LPN \Rightarrow pseudorandomness (A,As+e) \approx (A,U_m)

Proof: [AIK07]

- Assume LPN ⇒ By [GL89] can't approximate <s,r> for a random r
- Use distinguisher $\bf D$ to compute hardcore bit <**s**, $\bf r>$ given a random $\bf r$

-Given (A,b=As+e) and $r \in \{0,1\}^n$ define C=re-random(A) s.t:

C is random and

$$\mathbf{b} = \begin{cases} & \text{Uniform} & \text{if } <\mathbf{r},\mathbf{s}>=1\\ & \text{Cs+e} & \text{if } <\mathbf{r},\mathbf{s}>=0 \end{cases}$$

Random Self-Reducibility

Problem: find s

Random Self-Reducibility

Problem: find s

Dual Version: Syndrome Decoding

Problem: find s

iid noise vector of rate &

Dual Version: Syndrome Decoding

Problem: find s

Corollary: Planting Short Vector in Kernel

Public-Key Encryption [Alek03]

LPN: Evidence for Hardness

- Search problem, Random-Self Reducibility
- Gaussian-Elimination is noise sensitive

- Well studied in learning/coding community for some parameters
 - "Win-Win" results
 - Provably resist limited attacks
- Robust (Search-to-Decision, leakage-resilient, low-weight secret, circularity)
 [BFKL93,AGV09, DKL09, ACPS09, GKPV10, ...,] See Pietrzak's survey
- Seems hard even for Quantum algorithms and co-AM algorithms
- "Simple mathematical domain" (compare with factoring/group-based crypto)

LPN: Features

Simple algebraic structure: "almost linear" function

- Computable by simple (bit) operations
 - exploited by [HB01, ...]

Variants

iid noise vector of rate &

- Under-constraint case (⇒ hashing [AHIKV17])
- Changing the matrix distribution
 - Make sure that $\Delta(A)$ is not too small
- Noise distribution
 - Fixed weight vector (OK)
 - Structured Noise (may be subject to linearization [AG11])
- Larger Alphabet
 - Noise: Gaussian vs Bernoulli

"LPN" over \mathbb{Z}_a

$$A \in_{R} \mathbb{Z}_{q}^{m \times n}$$

$$S \in_{R} \mathbb{Z}_{q}^{n}$$

$$e_{i} = \begin{cases} U_{q} & \text{w.p. } \epsilon \\ 0 & \text{w.p. } 1 - \epsilon \end{cases}$$

- Decoding over the q-ary symmetric channel (Random-Linear-Code)
- Support(x) = sequence of iid Bernoulli variables
 - Lifting binary-crypto to Arithmetic Crypto [IPS09, AAB15, ADINZ17, BCGI18...]
- Search-RLC(q,n,m,ϵ): hard to find sDecision-RLC(q,n,m,ϵ): $(A,b) \approx (U_q^{m\times n},U_q^m)$
- Equivalence not known when q is super-polynomial

"LPN" over \mathbb{Z}_q

$$A \in_{R} \mathbb{Z}_{q}^{m \times n}$$

$$S \in_{R} \mathbb{Z}_{q}^{n}$$

$$e_{i} = \begin{cases} U_{q} & \text{w.p. } \epsilon \\ \text{w.p. } 1 - \epsilon \end{cases}$$

Seems as hard as binary version (harder?)

- Noisy Linear Algebra is hard
- Large $q \Rightarrow$ less noise cancelations

Powerful assumption: Effective secret is $O_{\epsilon}(n)$ bits but stretch is $\Omega_{\epsilon}(m)$ field elements

Requires further study especially for polynomial regime

Learning with Errors Variant [Regev05]

Mainstream Crypto Assumption

Noise induces geometry

Learning with Errors Variant [Regev05]

As hard as worst-case Lattice problems (GAP-SVP) [Reg05,Peik09]

- Approximation factor $\tilde{O}(n/\epsilon)$
- exp-approximation easy via [LLL82]

Believed to be sub-exp secure even against Quantum adversaries

Learning with Errors Variant [Regev05]

Low noise ⇒ Can repeatedly add noise vectors

- Unlike the Bernoulli variant
- Generate additional equations for free
- Key to many applications [GPV08, ...,BV11,...]
- Puts the problem in SZK ("co-NP attacks") [GG98,MV03]

Local PRGs

Locally Computable Functions (NC°)

Each output depends on constant number of inputs

Function defined by:

- (m,n,d) graph G
- List of d-local predicates Q₁,...,Q_m:{0,1}^d→{0,1}

Locally-Computable PRGs?

Long line of works [CM01,MST02,AIK04,....] see survey [A13]

Stretch matters!

Sub-Linear Local PRG in NC⁰

Stretch: $m = n + n^{1-\epsilon}$

Follows from any OWF in NC1 [AIK04]

- Most standard cryptographic assumptions
- Lattices, DLOG, factoring, LPN, asymptotic DES/AES

Linear Stretch: $m = (1 + \epsilon)n$

Follows from LPN over sparse matrix [AIK07]

- Assumption made by [Alek03]
- Implies hardness of refuting 3-SAT [Feige02]

Random Sparse Matrix or Any sparse expanding matrix

[A-17] Also follows from other assumptions

Any exponentially-hard regular Local OWF (e.g., [Gol00])

Exp-hard LPN over O(n)-time computable code, e.g., [DI14]

Generic attack [AIK07]

- Find shrinking set
- Enumerate over projected seed

Generic attack [AIK07]

- Find "small" shrinking set of size k
- Enumerate over projected seed

OUTPUT

INPUT

Expansion is necessary!

• Plausible to achieve exp(n) security

Poly-Stretch PRG in NC⁰

Polynomial-Stretch: $m = n^2$

- Can only get $n^{1-\delta}$ expansion \Rightarrow sub-exp security
- Morally should get from sparse-LPN w/ sub-const noise [ABW10]
- All known constructions rely on var's of Goldreich's Assumption

Goldreich's Assumption [ECCC '00]

Conjecture: for random predicate Q, and \forall expander G, m=n inversion takes $exp(\Omega(n))$ -time

- First candidate for optimal one-way function
- Random local function is whp exp-hard to invert
- Constraint Satisfaction Problems are cryptographically-hard

Generalization to Long Output

OW-Conjecture: for properly chosen predicate Q, any graph G inversion complexity is exponential in the expansion of G

Params: output length m, predicate Q, locality d, expansion quality

- Larger m ⇒ easier to attack ⇒ security requires more "robust" predicates
- Weaker variant: for random graphs no poly-time inversion

[CEMT09,ABW10,A12,ABR12,BR11,BQ12,OW14,FPV15,AL16, KMOW16] See survey [A15]

Generalization to Long Output

OW-Conjecture: for properly chosen predicate Q, any graph G inversion complexity is exponential in the expansion of G

weak

PRG-Conject: for properly chosen predicate Q, any graph G distinguishing complexity is exp. in expansion of G

1/poly-advantage

Poly-stretch local PRG

Generalization to Long Output

PRG-Conject: for properly chosen predicate Q, any graph G distinguishing complexity is exp. in expansion of G

Which predicates yield PRGs?

Goal: Hard to distinguish y from random

More fragile than one-wayness:

Predicate must be balanced

Goal: Hard to distinguish y from random

More fragile than one-wayness:

Predicate must be balanced even after fixing single input

Goal: Hard to distinguish y from random

k-resiliency [Cho-Gol-Has-Fre-Rud-Smo]:

Predicate must be balanced even after fixing k inputs

Resiliency defeats local attacks

[Mossel-Shpilka-Trevisan'03]

For m=n^s resiliency of k=2s-1 is necessary and sufficient against

- Sub-exponential AC0 circuits [A-Bogdanov-Rosen12]
- Semidefinite programs [O'Donnel Witmer14]
- Sum of Squares attacks [Kothari Mori O'Donnel Witmer17]
- Statistical algorithms [Feldman Perkins Vempala15]

Resiliency defeats local attacks

For m=n^s resiliency of k=2s-1 is necessary and sufficient against

- Sub-exponential AC0 circuits [A-Bogdanov-Rosen12]
- Semidefinite programs [O'Donnel Witmer14]
- Sum of Squares attacks [Kothari Mori O'Donnel Witmer17]
- Statistical algorithms [Feldman Perkins Vempala15]

Defeating Linear Algebra

For m=ns need algebraic degree of s

Resiliency+Degree⇒Pseudorandomness? [OW14, A14, FPV15]

- Yes for m<n^{5/4} and linear distinguishers [MST03, ABW10, ABR12]
 i.e., small-bias generator [NN]
- No for larger m's [A-Lovett16]

Defeating Linear Algebra [A-Lovett16]

b-fixing degree: algebraic degree of b even after fixing b inputs

Thm: For m=n^s, Θ(s)-bit fixing degree necessary & sufficient against linear distinguishers

A stronger form of **rational-degree** is necessary & sufficient for defeating "algebraic attacks"

Summary: Local PPRGs

Seem to achieve sub-exp security

- For proper predicate best attack is exponential in expansion
- Concrete security should be further studied, see [CDMRR18]

Interesting TCS applications

- CSPs are hard to approximate [Feige02, Ale03, AlK07,...,A17]
- Densest-subgraph is hard to approximate [A12]
- Hardness of learning depth-3 AC0 [AR16]

Symmetric eXternal DH [BGdMM05]

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

- SXDH: DDH is hard in both G₁ and G₂
 - $(g^a, g^b, g^{ab}) \approx (g^a, g^b, g^c)$ for $a, b, c \leftarrow \mathbb{Z}_p$
 - where g generates \mathbb{G}_1 or \mathbb{G}_2

Symmetric eXternal DH [BGdMM05]

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

- SXDH: DDH is hard in both G₁ and G₂
- Strong form of DDH
 - Can be broken by Quantum adversary
- Standard bilinear assumption
- Groups defined over elliptic curves
- Decisional
- Cryptanalysis by math community?

