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Learning Parity with Noise [BFKL94]

Problem: find s

|

lid noise:
each bitis 1 w/prob. ¢ < 0.5

b <a,s>+noise



Decoding Random Linear Code [GKLS88]

Problem: find s

e —

€

iid noise vector of rate €

 Information theoretic solvable when m > n/(1 — H(e))

« Gets “easier” when m grows and ¢ decreases
- Solving LPN(m, €) => Solving LPN(m + m’, e — €')

- Trivially solvable in time 27(€)n

 Trivially solvable w/p (1 —€)" <1 —en



Known Attacks
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Simple Distinguishing Attack

Goal: Distinguish (A,b) from (A, uniform)

D

output |l
1. Find “small” set of linearly dependent rows in A



Simple Distinguishing Attack

Goal: Distinguish (A,b) from (A, uniform)

\

H BN

Vv

o D

output |l
1. Find “small” set of linearly dependent rows in A

A-weight vector v in co-Kernel(A)
2. Output (v,b) = (v,e)
Distinguishing advantage (0.5 — €)2 = exp(—A/¢)
)

How small is A = A(n,m)? O(
€ logm

n

Ignoring complexity of finding v = overall complexity exp in O(

)

€ logm



Pseudorandomness

Thm.[BFKL94] LPN = pseudorandomness (A,As+e) = (A,U,)

Proof: [AIKO7]

« Assume LPN = By [GL89] can’t approximate <s,r> for a random r
 Use distinguisher D to compute hardcore bit <s,r> given a random r

-Given (A,b=As+e) and re{0,1}" define C=re-random(A) s.t:

_ Uniform If <r,s>=1
C i1s random and b = <

Cs+e If <r,s>=0

~

+ <r,s>




Random Self-Reducibility

Problem: find s




Random Self-Reducibility

Problem: find s




Dual Version: Syndrome Decoding

Problem: find s
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iid noise vector of rate €



Dual Version: Syndrome Decoding
Problem: find s

/= h —
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iild noise vector of rate €

Problem: find x

iid noise vector of rate €



Corollary: Planting Short Vector in Kernel

iid noise vector of rate €



Public-Key Encryption [Alek03]

Enc(0)= noisy codeword

- I Enc(1)= uniform

e

€

Secret-key



LPN: Evidence for Hardness

Search problem, Random-Self Reducibility

Gaussian-Elimination is noise sensitive

Well studied in learning/coding community for some parameters
- “Win-Win” results

- Provably resist limited attacks

Robust (Search-to-Decision, leakage-resilient, low-weight secret, circularity)
[BFKL93,AGV09, DKL09, ACPS09, GKPV10, ..., ] See Pietrzak’s survey

Seems hard even for Quantum algorithms and co-AM algorithms

“Simple mathematical domain” (compare with factoring/group-based crypto)



LPN: Features

« Simple algebraic structure: “almost linear” function

« Computable by simple (bit) operations
- exploited by [HBO1, ...]



Variants

—hn —»
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m + |e
l g

ild noise vector of rate €

Under-constraint case ( = hashing [AHIKV17])

Changing the matrix distribution
- Make sure that A(A) is not too small

Noise distribution
- Fixed weight vector (OK)
- Structured Noise (may be subject to linearization [AG11])

Larger Alphabet
- Noise: Gaussian vs Bernoulli



“LPN” over L
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« Decoding over the g-ary symmetric channel (Random-Linear-Code)

« Support(x) = sequence of iid Bernoulli variables
- Lifting binary-crypto to Arithmetic Crypto [IPS09, AAB15, ADINZ17, BCGI18...]

« Search-RLC(g,n,m,e): hard to find s
« Decision-RLC(q,n,m,e): (A,b) = U U

« Equivalence not known when g is super-polynomial



“LPN” over L
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Seems as hard as binary version (harder?)
* Noisy Linear Algebra is hard
« Large q = less noise cancelations

Powerful assumption: Effective secretis O.(n) bits
but stretch is Q.(m) field elements

Requires further study especially for polynomial regime



Learning with Errors Variant [Regev05]
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Mainstream Crypto Assumption

Noise induces geometry

¥

different game




Learning with Errors Variant [Regev05]
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« Modulus poly(n) or exp(n) @2 0 (@-2)/2
* Noise 1/poly(n) or 1/sub-exponential

As hard as worst-case Lattice problems (GAP-SVP) [Reg05,Peik09]
 Approximation factor O(n/e)
e exp-approximation easy via [LLL82]

Believed to be sub-exp secure even against Quantum adversaries



Learning with Errors Variant [Regev05]
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Low noise = Can repeatedly add noise vectors
« Unlike the Bernoulli variant

« Generate additional equations for free
« Key to many applications [GPV0S, ...,BV11,.. ]

« Puts the problem in SZK (“co-NP attacks”) [GG98,MV03]



Local PRGs

)
mw




Locally Computable Functions
(NCP)

Each output depends on constant number of inputs
Function defined by:

e (m,n,d) graph G

« List of d-local predicates Q,,...,Q,:{0,1}9—{0,1}

Yi Yi= Qi(X1,X5,X5) Ym
“““"““"“ OUTPUT

/f\//\

00000000000 INPUT

I’]



Locally-Computable PRGs?

Long line of works [CM01,MST02,AIK04,....] see survey [A13]

Stretch matters!

Yi Yi= Qi(X1,X5,X5) Ym
....“““‘.."‘ OUTPUT

VAYAR

00000000000 INPUT

1 n



Sub-Linear Local PRG in NC°

Stretch: m =n +nl—¢

Follows from any OWF in NC1 [AIK04]
 Most standard cryptographic assumptions

« Lattices, DLOG, factoring, LPN, asymptotic DES/AES

Y1 Yi= Qi(X1,X5,Xs) Ym
eeo0e00000000O0OQOGO®® OUTPUT

VAYAR

0000000000 INPUT

1 n



Lin-PRG in NC°

Linear Stretch: m = (1 + e)n

Follows from LPN over sparse matrix [AIKO7]

« Assumption made by [Alek03]
« Implies hardness of refuting 3-SAT [Feige02]

Random Sparse Matrix
or
Any sparse expanding matrix
— N —

m=0(n)

l

I +

)
I

e=1/4



Lin-PRGs in NC°

[A-17] Also follows from other assumptions
« Any exponentially-hard regular Local OWF (e.g., [Gol00])

« Exp-hard LPN over O(n)-time computable code, e.g., [DI114]

T

m=0(n)

I + |e =

e=1/4




Generic attack [AIKO7]

* Find shrinking set

 Enumerate over projected seed

Y1

Lin-PRGs in NC°

y|: Qi(X1_1X21X5) ym

o000 00O0OO0OOG®E® OUTPUT

/\

1

/\

XN NN INPUT
X

n



Lin-PRGs in NC°

Generic attack [AIKO7]
« Find “small” shrinking set of size k

 Enumerate over projected seed

V= Qi(X4,X5,Xe)

0000000 OUTPUT
o000 00 INPUT

X1



Lin-PRGs in NC°

Expansion Is necessary!

* Plausible to achieve exp(n) security

y]_ yi: Qi(X11X21X5) ym
0 000000000 OGOGOGOO OUTPUT

A\ T\

00000000000 INPUT
X4 X

n



Poly-Stretch PRG in NC°

Polynomial-Stretch: m = n?

>

« Can only get n'=% expansion = sub-exp security
« Morally should get from sparse-LPN w/ sub-const noise [ABW10]

« All known constructions rely on var’s of Goldreich’s Assumption

Vi= Qi(X1,X5,Xe)
00 000000000000 O OUTPUT

AV

00000000000 INPUT
Xl Xn




Goldreich’s Assumption [ECcC ‘00]

Conjecture: for random predicate Q , and V expander G, m=n
Inversion takes exp(€2(n))-time

» First candidate for optimal one-way function

 Random local function is whp exp-hard to invert

« Constraint Satisfaction Problems are cryptographically-hard

outputs touch 2n/3 inputs

(X11X?1

L OUTPUT

//\
expander: every set of n/3// \ / \

°eo INPUT
X,



Generalization to Long Output

[OW-Conjecture: for properly chosen predicate Q, any graph G J

Inversion complexity is exponential in the expansion of G

Params: output length m, predicate Q, locality d, expansion guality
« Larger m = easier to attack = security requires more “robust” predicates
« Weaker variant: for random graphs no poly-time inversion

« Strong variant confirmed for many classes of attacks
[CEMT09,ABW10,A12,ABR12,BR11,BQ12,0W14,FPV15,AL16, KMOW16] See survey [A15]

Y1 Yi= Q(X1,X5,X5) Ym
00000 00OQ0OQGOGOOOO®® OUTPUT

VAYAR

e00000O0O0COGOO INPUT
X1 Xn



Generalization to Long Output

OW-Conjecture: for properly chosen predicate Q, any graph G
Inversion complexity is exponential in the expansion of G

[A12,AR16]

PRG-Conject: for properly chosen predicate Q, any graph G
distinguishing complexity is exp. in expansion of G

[AK19]

weak

1/poly-advantage

[ Poly-stretch local PRG




Generalization to Long Output

PRG-Conject: for properly chosen predicate Q, any graph G
distinguishing complexity is exp. in expansion of G




Which predicates yield PRGS?

v N\

Resiliency “Local” attacks

¢

“Degree” Linear algebra



Goal: Hard to distinguish y from random

More fragile than one-wayness:

Predicate must be balanced

Y Yi= Q(X1,X5,Xs) Ym
© 00 09000 000000 OCDOCG®OO OUTPUT

VAYAR

00000000000 INPUT

1 n



Goal: Hard to distinguish y from random

More fragile than one-wayness:

Predicate must be balanced even after fixing single input

Y, = MAJ(X{,X5,X5) Y,
0000000000000000 OUTPUT

N

0000000000 INPUT

1 n



Goal: Hard to distinguish y from random

K-resiliency [Cho-Gol-Has-Fre-Rud-Smo]:

Predicate must be balanced even after fixing k inputs

Y, = MAJ(X{,X5,X5) Y,
0000000000000000 OUTPUT

N

0000000000 INPUT

1 n



Resiliency defeats local attacks

[Mossel-Shpilka-Trevisan'03]

For m=ns resiliency of k=2s-1 is necessary and sufficient against
« Sub-exponential ACO circuits [A-Bogdanov-Rosen12]
« Semidefinite programs [O’'Donnel Witmer14]
e Sum of Squares attacks [Kothari Mori O’Donnel Witmer17]

« Statistical algorithms [Feldman Perkins Vempala15]

00000000 0©0G©OGOVOGOGO OUTPUT

I\

\ 4

000000000.‘0
Xl Xn

INPUT




Resiliency defeats local attacks

For m=ns resiliency of k=2s-1 is necessary and sufficient against
« Sub-exponential ACO circuits [A-Bogdanov-Rosen12]
« Semidefinite programs [O’'Donnel Witmer14]
e Sum of Squares attacks [Kothari Mori O’Donnel Witmer17]

« Statistical algorithms [Feldman Perkins Vempala15]
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Defeating Linear Algebra

For m=ns need algebraic degree of s
Resiliency+Degree=Pseudorandomness? [OW14, Al4, FPV15]

« Yes for m<n®4 and linear distinguishers [MST03, ABW10, ABR12]
l.e., small-bias generator [NN]

* No for larger m’s [A-Lovett16]

XOR(X1,X3,X5) +AND(X7,Xg,X 1)
eee0000000000000@® OUTPUT

ANS

00000000000 INPUT

1 n



Defeating Linear Algebra [A-Lovett16]

b-fixing degree: algebraic degree of b even after fixing b inputs

Thm: For m=ns, ®(s)-bit fixing degree
necessary & sufficient against linear distinguishers

A stronger form of rational-degree is necessary & sufficient for
defeating “algebraic attacks”

XOR(X1,X2,X5) *MAJ(X7,Xg,X 1)
eee0000000000000@® OUTPUT

ANS

00000000000 INPUT

1 n



Summary: Local PPRGs

Seem to achieve sub-exp security
* For proper predicate best attack is exponential in expansion

« Concrete security should be further studied, see [CDMRR18]

Interesting TCS applications

« CSPs are hard to approximate [Feige02, Ale03, AIK07,...,A17]

m

« Densest-subgraph is hard to approximate [A12]

« Hardness of learning depth-3 ACO [AR16]




Symmetric exXternal DH [BGdMMO5]

e: @ X Gy —» Gy

« SXDH: DDH is hard in both G, and G,

- (ga:gb;gab) ~ (g“,gb,gc) fora,b,c « Zp

- where g generates G, or G,




Symmetric exXternal DH [BGdMMO5]

e: @ X Gy » Gy

SXDH: DDH is hard in both G; and G,
Strong form of DDH

- Can be broken by Quantum adversary
Standard bilinear assumption

Groups defined over elliptic curves
Decisional

Cryptanalysis by math community?
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