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Back in 2015
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Information theory: [KAL 16] [JKALS 17] [SJKAL 19] [DPWZ 20]
Algorithms for Block MDPs: [DKJADL 19] [FWYDY 20] [FRS-LX 20]

Goal: provably efficient sequential decision 
making methods that scale to complex domains

Gaming

Robotics

Dialogue



A latent state model: The block MDP

S1 S2 S3

X1 X2 X3

A1 A2 A3

Rich observation problem with discrete latent state space
Agent operates on rich observations
Latent states are decodable from observations, so no partial observability 
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Nonlinear function 
approximation



Main guarantee

Assumptions:
1. Function class: We have a class of decoders Φ containing the true decoder 𝜙⋆.
2. Reachability: Latent states are reachable with probability at least 𝜂

Theorem [MHKL19]: Homer covers the states and finds an 𝜖-optimal policy using

𝑝𝑜𝑙𝑦( 𝑆 , 𝐴 ,𝐻,
1

𝜂
,
1

𝜖
, log Φ /𝛿 ) trajectories

Homer runs in polynomial time assuming supervised learning problems are tractable.
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Empirical Results
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Methods run for ~1m episodes



Block MDP pros and cons

+ Accommodates nonlinear function approximation

+ Can model many rich observation RL settings

+ Statistically and algorithmically tractable

- Discrete/finite latent state space

- Perfect decodability
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Meanwhile

Flurry of activity around linear function approximation

• Classical results: [G95] [BB96] [TvR97] [SMcASM00] [PSD01] [LP03] [SSM08] [SMPBSS08] …

• Modern results

• Exploration [YW19] [JYWJ19] [ZBBPL20] [AJSWY20] [AHKS20] [WDYS20] [NP-B20]

• Representation quality + approximation [DKWY19] [LS19] [vRD19] 

• Batch RL [DW20][WFK20]

• Weaker assumptions [LSSS20] [DLMW20] [ZLKB20] [WAS20] 

• Infinite horizon [WJLJ20] 

• Adversarial losses [CYJW20] [NO20]

But where do the features come from? 
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This Talk

Provably efficient representation/feature learning in low rank MDPs

• Non-linear function approximation beyond Block MDPs

• Allows us to apply linear RL methods afterwards

Challenge: Feature learning and exploration are intertwined!
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The low rank MDP

𝑇(𝑥′ ∣ 𝑥, 𝑎) = 𝜙(𝑥, 𝑎)

𝜇(𝑥′)

Embedding dimension d ≪ size of observation space

Latent representation
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Block MDPs are low rank

𝑇(𝑥′ ∣ 𝑥, 𝑎) = 𝜙(𝑥, 𝑎)

Features on simplex

Block diagonal

Proposition: There exist transition operators over N observations with 
rank 2 that require N latent states in block factorization.  
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Tangent: beyond decodability

𝑇(𝑥′ ∣ 𝑥, 𝑎) = 𝜙(𝑥, 𝑎)

𝜇(𝑥′)

Features on simplex

Rows on simplex

Simplex representation: sample latent variable 𝑧 ∼ 𝜙(𝑥, 𝑎) and next state 𝑥 ∼ 𝜇 ⋅ 𝑧 .
Latent variables not decodable, but not an HMM.
Studied in [BPP11], mentioned in [JYWJ19]
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Why study low rank MDPs?

Tractable if feature map is known

Statistically tractable even without

Theorem [JYWJ19]: Optimistic LSVI has regret ෨𝑂( 𝑑3𝐻3𝑇 ) when 𝜙 is known

Proposition [JKALS17]:
- Low rank MDPs have Bellman rank 𝑑 for any function class
- With class Φ of embeddings and realizability, OLIVE has sample complexity:

෨𝑂( Τ𝑑2𝐻3 𝐴 𝑑 + log Φ 𝜖2)

But OLIVE is not computationally efficient
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Main guarantee
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Theorem [AKKS20]: FLAMBE learns a low rank MDP model such that

∀ 𝜋, ℎ:     𝔼𝜋 𝜙ℎ 𝑥ℎ, 𝑎ℎ , ො𝜇ℎ ⋅ − 𝑇ℎ ⋅ 𝑥ℎ, 𝑎ℎ TV
≤ 𝜀

With sample complexity:

𝑝𝑜𝑙𝑦(𝑑, 𝐴 , 𝐻,
1

𝜀
, log( ΤΦ Υ 𝛿) )

FLAMBE runs in polynomial time in oracle model. 

Assume function class realizability: Φ, Υ contain the true dynamics
Assume oracle computation model: Can optimize/sample from Φ, Υ

System Identification

No reachability required!



Potpourri

Representation learning: 

For any reward, optimal policy (and Q function) for 𝑀 are linear in 𝜙1:𝐻

⇒ near-optimal policy (and Q function) for 𝑀 are linear in 𝜙1:𝐻
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Real-world planning: 

Can replace model-based planning with real world planning in FLAMBE

• No need for sampling from models

• But requires a reachability assumption

Reward-free learning:

Can efficiently optimize any reward function with no further experience



A model-based algorithm

𝜌0 = random policy
For j = 1,… , 𝐽max :

For each ℎ use 𝜌𝑗−1 to collect data with 𝑎ℎ uniform

For each ℎ learn dynamics 𝑇ℎ using all data
Compute exploratory policy 𝜌𝑗

Ideally ensures good 
data coverage at time h

Questions
1. How to learn dynamics?
2. How to compute exploratory policy?
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𝜌𝑗−1

𝑎ℎ

𝑥ℎ+1𝑥ℎ

𝜌𝑗



Learning one-step model

Collect n triples (𝑥ℎ, 𝑎ℎ, 𝑥ℎ+1) from 𝜌𝑗−1 ∘ 𝑢𝑛𝑖𝑓(𝐴)

Solve MLE problem

Theorem [Z07]: With realizability, can guarantee:
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𝜌𝑗−1

𝑎ℎ

𝑥ℎ+1𝑥ℎ

Function classes:   
𝜙 ∈ Φ, 𝜇 ∈ Υ

err 𝑥ℎ, 𝑎ℎ

𝔼𝑥ℎ,𝑎ℎ∼𝜌𝑗−1∘unif 𝐴
𝜙ℎ 𝑥ℎ, 𝑎ℎ , ො𝜇ℎ ⋅ − 𝑇 ⋅ 𝑥ℎ, 𝑎𝐻 TV

2
≤
2 log( ΤΦ Υ 𝛿 )

𝑛



Learning one-step model

Martingale version:
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𝜌𝑗−1

𝑎ℎ

𝑥ℎ+1𝑥ℎ



𝑖=0

𝑗−1

𝔼𝑥ℎ,𝑎ℎ∼𝜌𝑖∘unif 𝐴 err(𝑥ℎ, 𝑎ℎ) ≤
2 log( ΤΦ Υ 𝛿 )

𝑛

Error transfer: Define Σℎ,𝑗 = 𝜆𝐼 + σ𝑖=0
𝑗−1

𝔼𝜌𝑖𝜙 𝑥ℎ, 𝑎ℎ 𝜙 𝑥ℎ, 𝑎ℎ
⊤

‖ Σℎ−1,𝑗
1/2

⋅ ∫ 𝜇 𝑥ℎ unif 𝑎ℎ ⋅ 𝑒𝑟𝑟 𝑥ℎ, 𝑎ℎ ‖2 ≤ 𝜆𝑑 +
2 log( ΤΦ Υ 𝛿 )

𝑛

Key property of low rank MDPs: For any function 𝑓 and any policy 𝜋

𝔼𝜋𝑓 𝑥ℎ = ⟨𝔼𝜋𝜙 𝑥ℎ−1, 𝑎ℎ−1 , ∫ 𝜇 𝑥ℎ 𝑓 𝑥ℎ ⟩

Independent of 𝜋

Err(Σℎ−1,𝑗)



Simulation Lemma

We have Σℎ,𝑗 for each ℎ

Define known set 𝐾ℎ = {‖Σℎ,𝑗
− Τ1 2𝜙 𝑥ℎ, 𝑎ℎ ‖2 ≤ 1}

Define absorbing MDP 𝑀𝐾 where unknown 𝑥ℎ, 𝑎ℎ transit to absorbing state. 

Simulation lemma: For any function 𝑓 with range [0,1] and any policy 𝜋

𝔼𝜋 𝑓 𝑥ℎ , 𝑎ℎ 𝑀𝐾 ≤ 𝔼𝜋 𝑓 𝑥ℎ, 𝑎ℎ 𝑀 + |𝐴| ⋅

ℎ′

𝐸𝑟𝑟 Σℎ′,𝑗−1

𝔼𝜋 𝑓 𝑥ℎ, 𝑎ℎ 𝑀 ≤ 𝔼𝜋 𝑓 𝑥ℎ, 𝑎ℎ 𝑀𝐾 + |𝐴| ⋅

ℎ′

𝐸𝑟𝑟 Σℎ′,𝑗−1 + 

ℎ′

ℙ𝜋[ 𝑥ℎ′ , 𝑎ℎ′ ∉ 𝐾ℎ′ ∣ 𝑀]

18

Small by MLE argument

“escape” probability

All 𝑥ℎ, 𝑎ℎ

𝜋1 Known set 𝐾ℎ

𝜋2



Planning

We want exploratory policy 𝜌 to have large escape probability

Δ ≤ ℙ𝜌 𝑥ℎ, 𝑎ℎ ∉ 𝐾ℎ ≤ 𝔼𝜌𝜙 𝑥ℎ, 𝑎ℎ
⊤Σℎ,𝑗

−1𝜙(𝑥ℎ, 𝑎ℎ)

This can only happen ∼ 𝑑 ∕ Δ times. 

Challenge: We do not know 𝐾ℎ as it depends on true features 𝜙

Solution: We plan to visit all directions of our learned features 𝜙 at the previous time

By iteratively maximizing quadratic forms, 𝜌 guarantees that 

max
𝜋

𝔼𝜋 𝜙ℎ−1
Σ𝜌
−1 𝜙ℎ−1

𝑀 ≤ 𝑂 𝑑

By simulation lemma, either 𝜌 escapes earlier or  𝜌 ∘ unif (𝐴) has large escape probability at h.
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All 𝑥ℎ, 𝑎ℎ

Known set 𝐾ℎ

𝜌

Elliptical potential using 𝜙

Elliptical potential using 𝜙



Final steps

Ingredients: 

• Simulation lemma with escaping
• 𝜌𝑗 approximately maximizes escaping

Case analysis for iteration j:

• If 𝜌𝑗 escapes with high prob, then we learn a lot: Σℎ,𝑗 ≪ Σℎ,𝑗+1.

• Can only happen in polynomially many iterations. 
• If 𝜌𝑗 escapes with low prob, then no other policy can escape ⇒ we are done!

• No policy can escape and 𝑀 ≈ 𝑀 in the known set
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Known set 𝐾ℎ

All 𝑥ℎ, 𝑎ℎ

Known set 𝐾ℎ

𝜌𝑗



The landscape

Block MDPs
Low rank 

MDPs
Known representation
[JYWJ19] [YW19], etc.

Unknown representation
FLAMBE [AKKS20]

Bellman/ 
Witness rank

Computationally 
intractable
[JKALS17]
[SJKAL19]

Unknown representation
[DKJADL19] [FWYDY19][FR-SLX20]
Homer [MHKL19]
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Known representation
[KS02] [AOM17] [DLB17], etc.

Reachable latent variables



Discussion
• Our approach decouples dynamics assumptions from observations

• Allow expressive non-linear function approximation, yet tractable

• Dependence on |A|? Seems necessary here without further assumptions

• Sharp rates and regret? 

• Does it actually work? We are trying
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Homer: https://arxiv.org/abs/1911.05815
FLAMBE: https://arxiv.org/abs/2006.10814

https://arxiv.org/abs/1911.05815
https://arxiv.org/abs/2006.10814

