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Decision-making in Marketplaces 

Online decision making under uncertainty in a time-varying 
environment

Assortment planning:  What 
items to offer to customers 
to maximize market share?

Product ranking: How to 
display products on online 

platforms?

Reserve price optimization:  
How to set reserve prices in 

auctions run to sell ads?  

Without uncertainty, the offline problem is NP-hard to solve

Marketplaces have to make certain decisions repeatedly over time 

Challenges:
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Research Questions

How to design learning algorithms for such combinatorial and time-varying 
environments? 

Can we transform offline algorithms to online algorithms with sublinear 
(approximate) regret?

Yes, for a large class of offline problems that admit a robust
greedy algorithm with a constant approximation factor  

Assortment planning

Greedy ✔

Product ranking

Greedy ✔

Reserve price op9miza9on

Greedy ✔

Use this problem to illustrate our technique  



• There are n products 

• Our goal is to choose set ! with ! ≤ # that maximizes market share 

(probability of purchase)

• $ ! = ∑'∈) Prob i is purchased !) is the market share (demand) under set !
• $(⋅) is a monotone submodular func=on under all random u=lity choice models

• We want to find

• The offline problem admits a greedy algorithm with : = 1 − 1/> approx. 

factor [Nemhauser et al., 1978] 
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Preliminary: Offline Problem 

!∗ = argmax ) CD$(!) Offline Problem
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Greedy Algorithm for the Offline Problem 

Initialize !(#) = {}
For subproblem ( = 1 *+ ,:

Greedily pick -. ∈ 0 such that 
-. ← 2345267∈[9] ; !(.<=) ∪ ? − ; ! .<=

Set !(A) ← !(A<B) ∪ {-A}
End
Return !(C)

Choose a product with the 
maximum marginal market share

Greedy algorithm builds the solution stage by stage 



• T periods

• In round t, nature (ADV) chooses a monotone submodular demand function !" ⋅
• !" ⋅ is unobservable to the decision-maker (ALG) at the time of the decision

• ALG chooses a set $" and obtains market share (reward) of !"($")
• ALG gets feedback 

• Full information: ALG observes !"(⋅)
• Bandit: ALG only observes !"($")

Today’s talk

ALG chooses $" and 
earns !"($")

Feedback

… ALG chooses $( and 
earns !(($()

Feedback

…
Round t Round T

Preliminary: Online Problem

ADV picks 
!" ⋅

ADV picks 
!( ⋅



Goal: minimize regret w.r.t. ! ⋅ OPT

OPT = max
*, * ,-

.
/∈[2]

4/(6)

Regret= ! ⋅ OPT − ∑/∈[2] 4/ 6/

ALG chooses 6/ and 
earns 4/(6/)

Feedback

… ALG chooses 62 and 
earns 42(62)

Feedback

…
Round t Round T

Preliminary: Online Problem

ADV picks 
4/ ⋅

ADV picks 
42 ⋅



• Design an efficient framework to transform offline greedy-based algorithm to a low-
regret online algorithm via Blackwell approachability 
• For full information and bandit feedback structures 

• ! " # − regret for full information and ! "%/' # − regret for bandit

• Maximizing monotone set submodular with cardinality constraints

• Full information: our #-regret bound ! ( " log , [Best prior bound  

! ( " -./ , by Streeter and Golovin, 2008]

• Bandit:  our bound ! (,%/' log , 0/' "%/' [Best prior bound 
! (%(, -./ , 0/'"%/' -./ " %) by Streeter and Golovin, 2008]

Contributions and Main Results



• Our framework has a wide-range of applications

Online Full-Information Setting Online Bandit Setting

Applications ! Our !-Regret 
Bound

The Best Prior 
Bound

Our !-Regret Bound
The Best Prior 

Bound

Product Ranking 1/2 % & ' log & - % &+/,'-/, log & ./, -

Reserve Price 
Optimization

1/2 % & ' log ' % & ' log ' * % &,/+'//+ log &' ./, -

Non-Monotone 
Set SM

1/2 % & ' % & ' ‡ % &'-/, -

Non-Monotone 
Strong-DR SM

1/2 % & ' log ' ! = 1/4,
%('+/4)§ % &'//+ log ' ./, ! =

.
/ , %('

../.-)§

Non-Monotone 
Weak-DR SM

1/2 % & ' log ' - % &'//+ log ' ./, -

*Roughgarden and Wang, 2019;   ‡Roughgarden and Wang, 2018; §Thang and 
Srivastav, 2019

Contributions and Main Results

' dependency Discrete: '
6
7 dependency; Continuous:  '

8
9 dependency

Bandit feedback structure captures more realistic scenarios; But, sparse results!



Offline-to-online transformation for NP-hard combinatorial problems

Offline-to-online 
transformation

• Hazan and Koren, 2016 – negative results for general 
comb. problems

• Kalai and Vempala, 2005, Dudik et al., 2017 – learner 
can solve offline problem efficiently

• Kakade et al., 2009 – NP-hard problem amenable to 
approximation, linear rewards

Combinatorial 
learning

• Audibert et al., 2014 – exponentially weighted avg. 
forecaster for full-info setting, tight regret, linear 
rewards

• Bubeck et al., 2012, Hazan and Karnin, 2016 – efficient 
algorithm for the bandit setting, linear rewards

Our contribution
• NP-hard problems with non-linear rewards
• Both bandit and full-information settings
• Transform offline greedy algorithms to online

Related Work



High level ideas and our algorithm 
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Revisi(ng the Greedy Algorithm 

Subproblem 1

Subproblem i
!" ← $%&'$()∈[,]Δ/ 0 "12 , 4

Subproblem k

⋮

⋮

Δ/ 0, 4 = f 0 ∪ {4} − / 0 marginal market share of adding product 4 to set 0

Payoff(!", 0 "12 , Δ/)=
Δ/ 0 "12 , !" − Δ/ 0 "12 , 1
Δ/ 0 "12 , !" − Δ/ 0 "12 , 2

⋮
Δ/ 0 "12 , !" − Δ/ 0 "12 , ?

≥ A

Greedy chooses product !" that maximizes
marginal market share Δ/(0 "12 ,⋅)

Issue: vector payoff is not linear in 
the greedy’s decisions  !"!
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Revisiting the Greedy Algorithm 

Subproblem 1

Subproblem i
returns distribu:on !" over n

Subproblem k

⋮

⋮
Payoff(!", & "'( , Δ*)=

∑-∈[0] !",-Δ* & "'( , 2 − Δ* & "'( , 1
∑-∈[0] !",-Δ* & "'( , 2 − Δ* & "'( , 2

⋮
∑-∈[0] !",-Δ* & "'( , 2 − Δ* & "'( , 5

≥ 7

All products with positive mass in !"
maximizes marginal market share Δ*(& "'( ,⋅)

∑-∈[0] !",-Δ* & "'( , 2 is the expected value of marginal market share at the greedy 
solution !"

Vector payoff is now LINEAR in 
the greedy’s decisions !"!
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Greedy Algorithm is Robust to Local Errors 

Errorless system: For every 
subproblem i and coordinate j, if we 
have

we get ! = 1 − %
& approx. factor:

' ( ) ≥ ! ⋅ '((∗)

System with local errors:  If /0 is 
replaced by its noisy version 1/0 such 
that 

we get 

[Payoff /0, ( 04% , Δ' ]7≥ 0 9 ∈ [;] [Payoff 1/0, ( 04% , Δ' ]7+= ≥ 0 9 ∈ [;]

' ( ) ≥ !' (∗ − = >

Local errors do not propagate!  
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That Is Not All! Greedy is Extended Robust
Consider noisy run of the algorithm over ! rounds. Then, if for every 
subproblem "

we have 

If the aggregate error (over the T rounds) for every 
coordinate is small, the algorithm will still do well

∑$∈['] Payoff )*+,$, -$(+) , Δ1$ 2
+ Error(T)≥ 0 5 ∈ [6]

7
$∈[']

1$(-$) ≥ 8 ⋅ 7
$∈ '

1$ - − ; ⋅ Error(T) ∀-: - ≤ ;

• We say the greedy algorithm is extended robust 
• Not every greedy algorithm has this property 
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Our High-level Idea 

Transforming offline greedy algorithm to an online algorithm

⋮

⋮

Subproblem i

Returns distribution "#:
Payoff "#, & #'( , Δ* ≥ ,

Offline problem

⋮

⋮

Subproblem i

returns distribution -"#,. ∶ for 0 ∈ [3]
∑67(.

Payoff -"#,., &6
(#'() , Δ:6 ;

+ Error(t)≥ 0

Online problem (round t)
*= is unknown 

If we can keep Error(t) = O( ?), by the extended robustness property, we get 

@ A B-regret

C
.∈[D]

:.(&.) ≥ E ⋅ C
.∈ D

:. & − H ⋅ Error(T) ∀&: & ≤ HExtended 
robustness :

This is what ALG earns This is the benchmark 
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Question: How to design an algorithm for each 
subproblem with Error(t) = O " ?

Blackwell Approachability 
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Blackwell Sequen/al Games  
Repeated two-player (P1 and P2) zero-sum game with vector-valued reward

P1 plays !"
P2 plays #"

P1 obtains r(x&, y&)
P2 obtains −r(x&, y&)

Round t
P1 plays !,
P2 plays #,

P1 obtains r(x-, y-)
P2 obtains -r(x-, y-)

Round T

…

/ ⋅,⋅ is a vector-valued 
Reward vector / !, # is biaffine

Blackwell Game:  P1 wants to approach a convex set 1 and P2 does not want 

this to happen
A convex and closed target set 1 is 2 3 −approachable if ∃ a P1 strategy such 
that for every P2 strategy:

Average vector-valued reward

We want g(T) to go to 
zero as 3 → ∞78

1
3:";<

,
r x&, y& , 1 ≤ 2 3
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Not Every Target Set Is Approachable 

Set ! is approachable if for every P2 action ", there exists a P1 action #,
such that r #, " ∈ !

! is approachable à ! is g T = ) * + log . ⁄0 123 ⁄0 1 −approachable

• * + is the diameter of the reward vector 

• d is the dimension of the reward vector 

For any approachable set, there is an algorithm AlgB with 
g T = ) * + log . ⁄0 123 ⁄0 1
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Revisiting our High-level Idea 
Transforming offline greedy algorithm to an online algorithm

⋮

⋮

Subproblem i
Returns distribu=on "#:

Payoff "#, & #'( , Δ* ≥ ,

Offline problem

⋮

⋮

Subproblem i
returns distribution -"#,. ∶ for 0 ∈ [3]

∑67(. Payoff -"#,6, &6(#'() , Δ:6 ;
+ Error(t)≥ 0

Online problem (round t)
*= is unknown 

We let AlgB handle each subproblem > ∈ [?]
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Blackwell Algorithms Handle Subproblems 

Subproblem i
returns distribution !"#,% ∶ for ' ∈ [*]

∑-./% Payoff !"#,-, 0-
(#2/) , Δ5-

6
+ Error(t)≥ 0

• P1 is algorithm that returns !"#,%
• P2 is the nature (ADV) that chooses 

Δ5 0 #2/ , .

• Per period payoff vector is biaffine

Payoff("#, 0 #2/ , Δ5)=

∑6∈[:] "#,6Δ5 0 #2/ , ' − Δ5 0 #2/ , 1
∑6∈[:] "#,6Δ5 0 #2/ , ' − Δ5 0 #2/ , 2

⋮
∑6∈[:] "#,6Δ5 0 #2/ , ' − Δ5 0 #2/ , *

≥ >

• Target set 0 is the positive orthant Payoff !"#,%, 0%
(#2/) , Δ5% ≥ > and is approachable

• We can approach set 0 with g t = B C D log G ⁄I JK2 ⁄I J = O(log * //NK2//N)

Error(t) = K//N log * //N



Blackwell Algorithms Coordination and Regret  

• Blackwell algorithms coordinate with 

the help of the greedy algorithm

• Each AlgB gets updated independently 

Subproblem 1
!"#$% returns &'%,)

⋮

⋮

Subproblem i
!"#$+ returns &'+,)

Subproblem k
!"#$, returns &',,)

Online problem (round t)

Full information: -) ⋅ is realized 

Fe
ed

ba
ck

• Each AlgB has Error(T) = /%/1 log 5 %/1

Total regret = K /%/1 log 5 %/1



Full Information: Beyond Assortment Planning 

Theorem 1 (Full-information offline-to-online transformation)  Suppose 
that an offline algorithm 
• is an extended robust approximation algorithm, and 
• Blackwell reducible.
Then, in the full information setting, there exists an online algorithm that 
runs in polynomial time and satisfies:

! − regret ≤ ( )* + log . /0 12 /0 1

where ) is the number of subproblems, . is the dimension of the payoffs, 
and *(+) is the ℓ6 diameter of the vector payoff.

Blackwell reducible: 
1) Defining bi-affine vector payoff for each subproblem
2) Defining an approachable target set for each subproblem   



• Our framework has a wide-range of applications

Online Full-Information Setting Online Bandit Setting

Applications ! Our !-Regret 
Bound

The Best Prior 
Bound Our !-Regret Bound The Best Prior 

Bound

Product Ranking 1/2 % & ' log & - % &+/,'-/, log & ./, -

Reserve Price 
Optimization 1/2 % & ' log ' % & ' log ' * % &,/+'//+ log &' ./, -

Non-Monotone 
Set SM 1/2 % & ' % & ' ‡ % &'-/, -

Non-Monotone 
Strong-DR SM 1/2 % & ' log ' ! = 1/4,

%('+/4)§ % &'//+ log ' ./, ! =
.
/ , %('

../.-)§

Non-Monotone 
Weak-DR SM 1/2 % & ' log ' - % &'//+ log ' ./, -

*Roughgarden and Wang, 2019;   ‡Roughgarden and Wang, 2018; §Thang and 
Srivastav, 2019

Maximizing Non-Monotone Submodular Functions 



Takeaway

• Transform offline greedy algorithms to online ones using Blackwell
approachability
• Need the greedy algorithm to be extended robust and bandit Blackwell 

reducible  

• For full information setting, our algorithm has ! " # −regret
• For Bandit setting, our algorithm has ! "%/' # −regret

• Our framework is flexible and can be applied to many applications 
• Product ranking optimization in online platforms
• Reserve price optimization in auctions
• Submodular maximization



Link to the paper: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3613756
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